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Configurational thermodynamics of the Fe-Cr sigma phase is investigated on the basis of an Ising-type
configurational Hamiltonian and a single-site mean-field model for the free energy. The parameters of the
statistical models are obtained from efficient first-principles calculations using different computational techniques.
We demonstrate that the effective pair and multisite interactions in the o phase are relatively small, which allows
using a simplified model for distributing Fe and Cr atoms among sublattices. We also show that this system
exhibits a nontrivial magnetic behavior at high temperatures, which affects the site occupation by Fe and Cr
atoms. The structural variation (volume and c/a) that might be present due to neutron irradiation and thermal

expansion can lead to an additional atomic redistribution.
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I. INTRODUCTION

Alloys based on the Fe-Cr system are of great importance
for materials science due to their potential applications in
the nuclear industry, which still provides an important energy
source. One of the main problems of this alloy is an accurate
description of its phase stability and in particular, the stability
of the so-called o phase. The o phase produces a large impact
on the alloy structure and its mechanical and thermodynamic
properties: when it precipitates it has a destructive effect on
the mechanical properties of the alloy. It decreases both the
ductility and corrosion resistance of the material, but it also
promotes the formation of cracks leading to high temperature
failure, metal dusting, and loss of toughness during heat
treatment and welding.'

The Fe-Cr o phase is formed in a quite narrow concentration
(0.462 < x¢r < 0.505) and temperature range (700 K <
T < 1100 K).>* Although it is paramagnetic at ambient
temperatures, it becomes ferromagnetic at low temperatures
(below 50 K) with a small magnetic moment.>® It has a
topologically closed packed structure which is defined by
a tetragonal unit cell (space group P4,/mnm) containing
30 atoms divided into five nonequivalent groups of sites
or sublattices (A,B,C ,D,E).z’9 The crystal structure of the o
phase can be described as a stacking of the kagome tiles
with the A(0,0,0), B(x,x,0), C(x,y,0), and D(x,y,0) atoms
lying in the tile plane and the E(x,x,z) atoms placed between
the pseudohexagonal rings of the kagome tile’ (see Fig. 1).
The general formula of the o phase can be defined as
AP B CHDI*EL*, where the bottom and top indices denote
the site multiplicities and coordination numbers for each
sublattice, respectively.

The alloy components partially occupy all the nonequiva-
lent sites but exhibit certain site preferences. In 1955 Kasper
and Waterstrat performed a neutron and x-ray diffraction study
in Fe-V, Ni-V, and Mn-Cr alloys and suggested a general
scheme for the ordering of binary o phases of first-row
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transition metal elements (and those containing Mo).'? It was
found that the highly coordinated B sites are predominately
occupied by the elements to the left of Mn in the periodic
table (V, Cr, Mo), the A and D sublattice with icosahedral
environment are almost exclusively occupied by elements to
the right of manganese (Fe, Co, Ni), whereas the C and E sites
are partially occupied by both components with proportions
depending on the specific alloy and external conditions.

The distribution of Fe and Cr on the sublattices in the
o phase has been investigated using ab initio methods in a
number of recent publications.'!~!® In particular, a Connolly-
Williams approach!” has been used in Ref. 11 to represent
the configurational dependent part of the total energy of the o
phase within an Ising configurational Hamiltonian. A similar
scheme, but in the so-called compound energy formalism, has
been used by Korzhavyi et al.'® In general, the Ising-type
Hamiltonian representation of the total energy is a commonly
used method to solve the statistical thermodynamics problem.
However, as discussed below, this formalism can become
cumbersome in the case of such complicated systems as the o
phase.

In fact, until now only its simplified version has been used,
without any distinction between sites of a specific sublattice.
In this case the effective cluster interactions (ECIs) of the
corresponding configurational Hamiltonian are obtained by
fitting total energies of the o phase with the five sublattices
(A,B,C.D,E) occupied exclusively either by Cr or Fe atoms.
There are 25 = 32 ordered atomic arrangements for a single
unit cell in the whole concentration range which can be used to
extract the same number of interaction parameters. In fact this
approach has even been used for ternary o phases like Cr-Ni-
Re, where 3° = 243 ordered configurations were calculated in
order to extract the ECIs for the whole concentration range. '8
However, these interaction parameters cannot be used for the
investigation of ordering effects on the same sublattice and
besides, they are likely to produce a less accurate cluster
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FIG. 1. (Color online) The tetragonal unit cell of the Fe-Cr
o-phase structure with five crystallographically inequivalent sites
(A,B,C.D,E).

expansion for the range of the relevant compositions because
of its restricted number of configurations and the inclusion of
completely irrelevant configurations (for instance, outside the
actual concentration range of the existing o phase).

Alternatively, we recently proposed a simple approach to
calculate the atomic site occupancies in binary o phases.'*°
With a simple single-site mean-field model, we can take into
account the relevant experimental conditions and parameters
of the systems and thus produce results which are in very good
agreement with the available experimental data. In the present
paper we investigate the reason behind its success. In particu-
lar, we show its connection to a general Ising-type model for
the o phase, whose parameters we estimate using direct ab
initio calculations and some simple arguments. We also study
how the atomic site distribution in the Fe-Cr o phase depends
on different factors such as different magnetic states, temper-
ature effects, or structural variations which might be present
due to possible thermal expansion or neutron irradiation.

II. CONFIGURATIONAL HAMILTONIAN AND
EFFECTIVE CLUSTER INTERACTIONS

A. Geometrical structure

The configurational Hamiltonian of the o phase can be
written in the usual Ising form for an inhomogeneous binary
alloy with five different sublattices as

Heont = Eo + Z Z V(,El)(scoc;i

a=1,5 i

1
3 Z Z Z Vuf?}?pfscot;iacﬂ;j

a,f=1,5 p ijep

+% Z Z Z Voféi/,zfsca;i‘scﬁ;jacy;k +.

a,By=1,5 t ijket

(H
where VD, Vof?,) ,» and VOE;)W are on-site, pair, and three-site
effective cluster interactions for specific sublattices («, 8, and
y ) and coordination shells identified here by p for pair effective
interactions and ¢ for the three-site interactions; dc,; is the
concentration fluctuation: 8¢, = ¢4; — Co, Where co; = 1 if

Cr occupies site i of sublattice o, otherwise it is equal to 0 and
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co = (cq.;) is the concentration of Cr on sublattice «. Let us
note that in this context “sites” refers to all lattice sites in the
system but should not be confused with the term “sites” that is
used in a simplified mean-field expression for the free energy
of the o phase, defined for its unit cell.

The ECIs in (1) depend on the whole set of concentrations
on sublattices {c,}. The on-site effective interactions Vogl)
are the zero-temperature effective chemical potentials of the
corresponding sublattices. Pair effective interactions VOE?  as
well as multisite interactions are defined for the corresponding
geometrically distinct sets of sites of the o-phase structure,
such as coordination shells for atomic pairs for the two-site
interactions, triangles for the three-site interactions, and so on.
The term coordination shell refers to a set of neighbor atoms
(shell) located at a given distance around a chosen atom. In the
high-symmetry structures, for instance, in the bcc structure, an
atom is surrounded by the first nearest-neighbor shell, which
forms a cube and contains eight atoms that all have the same
distance; the next shell contains six atoms, and so on. In case of
alow-symmetry structure, as the o phase is, such coordination
shells are, however, distorted and one usually speaks about
coordination polyhedra, which are formed around each atom.
For illustration purposes we have chosen one of the o-phase
sublattices, namely, the E sublattice, as shown in the inset of
Fig. 2. An E atom is surrounded by a coordination polyhedron
which consists of 14 atoms of various types. The distances
of these atoms to the central one are given in the lowest
section of Table I and vary from 1.60 to 2.07 (in the units
of the Wigner-Seitz radius). This coordination polyhedron
consists of nine coordination shells, each of which contain
only one or two atoms, in contrast to the high-symmetry case
of the bcc lattice. The total number of atoms which form
a polyhedron around a nonequivalent atom in the o-phase
cell is referred to as a “coordination number” in the general
formula AézBJS C§4D§2E§4 mentioned above but is distinct
from the usual term “coordination (shell) number” used for
the high-symmetry structures.

Il...I....I....I....I....I....I....I‘...I....I....I....I....I....I....
1 5 10 15 20 25 30 35 40 45 S0 55 60 65 70
i (coordination shell number)

FIG. 2. (Color online) Radii of coordination shells (in units of
the Wigner-Seitz radii of the corresponding structures) of the five
sublattices of the o phase (A,B,C,D,E), bcc and fcc structures versus
the coordination shell number.
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TABLE 1. Effective pair interactions (ECIs) (in mRy) in the o
phase within the range of polyhedra of the closest sites; n{* is the
coordination number (number of sites at the ith coordination shell)
with a radius 7; (in units of the Wigner-Seitz radius Sy s). For the first
composition the one-electron contribution V>~ is specified in

addition to the total GPM interaction V""",

Subl. Coord. Fe(lSCI'O.S FCO'4CI'0‘6
type shell n;;s ri/SWS Vi(Z)—one—el Vi(2)—tot Vi(Z)—tot
A-D 1 4 1.6770 2.319 4.730 4.495
A-E 2 4 1.8051 0.914 2.931 2.567
A-B 3 4 1.8465 0.009 1.846 1.450
B-C 1 2 1.7160 —2.103 —0.362 0.000
B-B 2 1 1.7878 0.985 2.506 2.601
B-A 3 2 1.8465 0.009 1.846 1.450
B-D 4 4 1.9094 —0.959 0.372 0.028
B-E 5 4 2.0091 —1.184 —0.121 —0.294
B-E 6 2 20715 —1.323 —-0.564  —0.597
c-C 1 1 1.6987 —2.819 —-0.991 —-0.473
C-B 2 1 1.7160 —2.103 —0.362 0.000
C-D 3 2 1.7604 1.643 3.739 3.652
C-D 4 1 1.7646 0.434 2.529 2.574
C-D 5 1 1.7675 0.394 2.489 2.569
C-E 6 2 19578 —0.481 0.634 0.556
C-E 7 2 1.9640 —0.906 0.210 0.132
c-C 8 4 20133 -1.319 —-0.405 —0.753
D-A 1 1 1.6770 2319 4.730 4.495
D-D 2 1 1.7160 2.856 5.258 5.147
D-C 3 2 1.7604 1.643 3.739 3.652
D-C 4 1 1.7646 0.434 2.529 2.574
D-C 5 1 1.7675 0.394 2.489 2.569
D-E 6 2 1.7949 0.478 2.299 2.284
D-E 7 2 1.8183 0.598 2.242 2.239
D-B 8 2 1.909%4 —0.959 0.372 0.028
E-E 1 1 1.6026 0.191 2.358 4.511
E-E 2 1 1.6287 —1.076 1.091 2.708
E-D 3 2 1.7949 0.478 2.299 2.284
E-A 4 1 1.8051 0.914 2.931 2.567
E-D 5 2 1.8183 0.598 2.242 2.239
E-C 6 2 19578 —0.481 0.634 0.556
E-C 7 2 1.9640 —0.906 0.210 0.132
E-B 8 2 2.0091 —1.184 —0.121 —0.294
E-B 9 1 20715 —1.323 —-0.564  —0.597

In Fig. 2 we plot the coordination shell radii (in units
of the corresponding Wigner-Seitz radius Syy) for the five
sublattices of the o phase in comparison to those for the bcc
and fcc structures within approximately the same distance up to
r;/Sws = 5, which is equivalent to the range of seven and nine
coordination shells for the fcc and bece structures, respectively.
The number of sites within this distance is approximately
the same (about 130) independent of the structure and the
sublattice type of the o phase. However, one can clearly see the
huge difference in the number of coordination shells (within
this range) between the simple Bravais lattices and the different
sublattices of the o phase, in particular, the huge number of
coordination shells for sublattices C, D, and E, close to 70.
This clearly means that these coordination shells consist, on
average, of less than just two sites. The structural isolation of
the o -phase sites results in a kind of gap for the relative radii
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of the coordination shells between 2.1 and 2.8, which can be
seen in Fig. 2. In other words, the coordination numbers are
the number of sites within a range of relative distances up to
about r/Sws = 2.1. Such a gap can also be seen between the
second and third coordination shells of the bcc structure (see
Fig. 2) and to some extent between the radii of the first and
second coordination shells of the fcc lattice.

The coordination number within this range for the bcc
structure is 14 (the first two coordination shells) and 12 (just
the first coordination shell) for the fcc structure. On the basis of
such consideration, one may say that the A and D sublattices
have the nearest-neighbor environment closer to that of the
fce structure (coordination number 12), while other sublattices
have an environment which is closer to that of the bce structure.
This appears to be important for the site substitution behavior,
since as has been mentioned above, the A and D sublattices
are mostly occupied by the Fe atoms.

The information presented in Fig. 2 serves the purpose
of demonstrating the problem related to extracting the ECI
using a structure inversion method. The number of different
effective pair interactions Vi(z) just within a polyhedron of
the closest sites (or within the relative range of the first two
coordination shells of the bce structure) is 20 (see Table II:
note that interactions between different sites are listed there
twice), while the number of inequivalent multisite interactions
is much larger, even within such short distances. In fact, this
makes the structure inversion method for the Hamiltonian
(1) impractical for the o phase.

B. Effective cluster interactions

The ECI parameters can be directly calculated by the
generalized perturbation method (GPM).2'"?3 The screening
contribution,?* which is needed for the calculation of the
effective pair interactions, is quite difficult to obtain because of
the huge size of the supercell that would be needed to model a
random alloy with the o -phase structure. Therefore, we assume
that the screened Coulomb interaction contribution is similar
to that in the bee structure and depends linearly on the distance
within the range of the first two coordination shells. This is, of
course, an approximation, but one that is justified for the main
purpose of our calculations in this section, namely, to check the
qualitative picture of the effective interactions in the o phase.

In Fig. 3 we first show the one-electron contribution to
the screened GPM effective pair interactions calculated up
to r;/Sws = 5 for the Feys5Crps system. These interactions
were obtained by the screened GPM method (SGPM) on the
basis of local density approximation (LDA) self-consistent
calculations of the electronic structure for these alloys for
which the paramagnetic disordered local moment (DLM)?
state was assumed for the Fe species. The calculations were
done for a high-temperature lattice parameter of the o phase
by applying the exact muffin-tin orbital (EMTO) method?®
within the coherent potential approximation (CPA),>” where
the Fermi function smearing (corresponding to a temperature
of 1100 K) was used. One can see that the effective interactions
decay very fast with distance, where the strongest interactions
are those at short distances.

More details about effective interactions within the range
of the polyhedra of the closest sites are given in Table I,
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FIG. 3. (Color online) One-electron contribution to the effective
pair interactions obtained by the generalized perturbation method
(GPM).

where we present the effective pair interactions for two alloy
compositions, namely, FeysCrqs and Fey 4Crg . For the first
composition we also specify the one-electron contribution
(without the screened Coulomb interaction) to the total GPM
interaction. It is clear that the screening contribution is about
1-2 mRy and thus is of the same order as the other term
and makes the total GPM interactions more positive, that is,
of ordering type. However, the SGPM yields only chemical
effective interactions, i.e., the interactions on a fixed ideal
underlying lattice. Although the size mismatch between Fe and
Cr is relatively small, one still can expect contributions from
strain-induced interactions, which originate from local lattice
relaxations due to a change in the alloy configuration. In the
case of bce Fe-Cr alloys, the contribution of the strain-induced
interactions at the first coordination shell is about —1.0 to
—1.5 mRy.”® This means that it partly compensates the
contribution from the screened Coulomb interactions.

The main conclusion from the results presented above is
that the strongest nearest-neighbor effective interactions in
the FeCr o phase are of an ordering type and have values of
0-3 mRy. This means that they are weak and cannot produce
substantial ordering effects above 800 K, neither on the same
sublattice nor between different sublattices, especially when
taking into account the fact that the coordination numbers
are small. As one can see, there is a certain concentration
dependence of the effective pair interactions, but in most
cases it is quite weak, except for the first two coordination
shells of the sublattice E. However, these coordination shells
consist of only one site and thus their contribution to the
average concentration dependence of the effective interactions
is negligible.

We have also calculated some of the three- and four-site
EClIs within the polyhedron of the closest sites, but most of
them are less than 0.1 mRy. The strongest three-site interaction,
0.7 mRy, is for the triangle formed by one B site and two A
sites, which correspond to the second and third coordination
shells of the B sublattice (see Table I). The strongest four-site
interaction, —0.48 mRy, is for a tetrahedron formed by two A
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and two B sites. Two B sites and each A site form the triangle
described above, while the A sites are at the eighth coordination
shell relative to each other. It is clear that such interactions
cannot produce a large effect on the ordering energetics at
the temperatures of interest. Besides, the contribution from
three-site interactions on the ordering energy is practically
negligible, at least close to the equiatomic composition.

With the analysis given above we can assume that (1) the
free energy of the o phase can be quite accurately presented
in terms of concentration-independent cluster interactions,
(2) the dominating terms in this expansion are the on-site
interactions Vl.(l), as shown below, and finally (3) the single-site
mean-field approximation will be sufficient to provide a
reasonably accurate description of the configurational effects
at high temperatures.

III. SINGLE-SITE MODEL FOR THE FREE ENERGY

Athigh temperature, where atomic short-range order effects
are relatively weak, we assume that the Helmholtz free energy
F for a given composition ¢ = c¢, and temperature 7 is

F ({ca}) = Etor ({ca}) — T(Scont + Smagn)~ ()

Here E({c,}) is the total energy of the Fe;_,Cr,o
phase, whose sublattices are completely random and have
the corresponding site occupations {c,}, where c, is the
concentration of Cr in site (sublattice) o (« = A,B,C,D.E).

For a fixed composition the total energy (per unit cell)
E({cy}) can be written in a simplified form as

Z naJO(ll)ca

a=1,4(A,D)

2
D nangligcacs, 3)
ao,f=1,4(A,D)

E({ca})) = Eo(c) +

+

| =

where n,, is the number of sites at sublattice «.

Here the summation runs only over four sublattices, since
the concentration at the fifth sublattice is determined from the
alloy concentration ¢ and the concentrations at the other four
sublattices c,. Eo(c) is the total energy of a homogeneous
random alloy (¢, = ¢), and J{" and Jo(ng) are the on-site and
pair (or second-order) interaction parameters.

The on-site interaction parameter J(" is the zero-
temperature relative effective chemical potential which can
be determined as

T = [0Eo/0cy — 0 Eiot/ICE] |cgy=c 4)

and describes the preference of Cr atoms to occupy site o
relative to that of sublattice E. If there is no dependence on
{cy} of the ECLin (1), JOV = v — (D

The second-order interaction parameters are determined in
a similar way:

I35 = [0 Bt/ (9cadcp) — 87 Evor/(Dcaderp)

— 3*Eqot/(3cpdcE) + 9* Ext/(AcpIcE) logyme- (5)
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As in the case of the on-site parameters JOSI) they can
also be expressed through effective pair interactions of the
Hamiltonian defined in Eq. (1):

@ _ @ @ @ @
Jag = D Vapoj = D Vabw; = D Ve + D Viroy:
jeB JEE jeB JEE
(6)

that is, Jé/zg) presents an “integral” information about effective
pair interactions.

Temperature effects are described by the second term in
Eq. (2), which takes the configurational and magnetic entropy
into account. We neglect contributions from lattice vibrations,
assuming that they do not play a decisive role in the distribution
of the components between the sublattices. Since the relevant
temperatures are relatively high and there is no experimental
evidence of being close to any kind of phase transition
(ordering or magnetic), we also neglect contributions from
short-range order effects in the configurational part of the
problem. The configurational entropy (per unit cell) in Eq. (2)
is then defined as

Seont = —kp Y, Malcalncy + (1 —c)In(l —c)l. ()

a=1,5

The importance of magnetism in the Fe-Cr o phase, even at
the relevant high temperatures, was recognized by Korzhavyi
et al.,'> who considered a spin-polarized paramagnetic state of
this phase as described by the DLM model. In this work it has
been shown that even at these temperatures the local magnetic
moments do not disappear on the Fe atoms (but vanish for the
Cr atoms) but make an important contribution to the energetics
of the o phase.

As already discussed in our previous work,'® the Fe-
Cr o phase is a weak itinerant magnet and thus another
magnetic contribution should also appear at high temperatures,
namely, longitudinal spin fluctuations, which are thermal
Stoner-like many-body excitations that lead to fluctuations
of the magnitude of the local magnetic moments of Fe and
Cr. To calculate these high-temperature magnetic excitations
by accurate first-principles schemes would be extremely
computationally demanding. Therefore we adopt a simple
model® which implies that longitudinal spin fluctuations
(LSFs) contribute to the magnetic entropy of the paramagnetic
state.

In particular, LSFs induce modified spin magnetic moments
on Fe and Cr atoms, while the Cr atoms would have zero
magnetic moments in the DLM state. The corresponding
magnetic entropy in Eq. (2) is given by the following
expression:

Smagn =kp Z Ny [Ca In (l + [,Lgr)

a=1,5

+(1 —co)In(1+ k)], ®)

where the local magnetic moments are found by minimizing
the corresponding magnetic free energy in the first-principles
calculations at a given temperature.
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IV. FIRST-PRINCIPLES CALCULATIONS

The energy derivatives of the total energies have been
evaluated for the random alloys close to the equiatomic
composition by the exact muffin-tin orbital (EMTO) method
within the full charge density formalism (FCD).*° The EMTO
method is an improved screened Korringa-Kohn-Rostoker
method, where large overlapping potential spheres are used
for accurately describing the exact single-electron potential.
The FCD method was devised to perform with high efficiency
as well as with an accuracy of full potential total energy
methods.?® For the exchange-correlation functional the gen-
eralized gradient approximation was taken.>!

In the present work we use the CPA?’ to determine the
electronic structure of random alloys on sublattices of the
o phase. The coefficient for screened Coulomb interactions
have been chosen to be o, = 0.67 and f,., = 1.05 for
all the sublattices. Obviously this is an approximation, but
supercell calculations of the screening constants would be
impractical for many reasons. For instance, it would be
impossible to calculate the electronic structure of a reasonably
small supercell (up to several thousand atoms) such that all
the atomic short-range order parameters would be as in a
perfectly random alloy (at least within the range of interactions
as presented in Table I). Another approximation in the present
work is that local atomic relaxations have been ignored. As
has been demonstrated in Ref. 19, their effect on the formation
enthalpy is not greater than 0.1 kJ/mol." The latter is due to
the similar atomic sizes of Fe and Cr.

A. CPA-LSGF

The applicability of the CPA to the electronic structure
calculations of random alloys, and in particular the case of the
Fe-Cr o phase, can be checked using methods going beyond
the single-site approximation. The best choice in this particular
case is the locally self-consistent Green’s function technique,
implemented within the EMTO method (LSGF-EMTO).*?
This method allows one to calculate the electronic structure
of large supercells modeling random alloys that are built upon
the corresponding underlying lattice. The latter determines
the symmetry and structure of the effective medium, which is
obtained using the CPA for all the atoms on the sublattices
in the supercell. The effective medium provides the boundary
condition for a local interaction zone consisting of a given
atom and several coordination shells in the Green’s function
calculations of the electronic structure of this atom. Solving
such a (Dyson) equation for every atom in the supercell
produces the electronic structure of the whole supercell.

The supercell representing a random alloy is usually chosen
to have certain atomic distribution correlation functions which
are the same as they would be in a real random alloy. However,
the problem in the case of the o phase is that quite a large
number of correlation functions should be optimized, even
if only the pair correlation functions of the polyhedra of
the closest sites are considered. Therefore we have used a
simplified procedure that can work quite reasonably for large
supercells. Namely, we have randomly distributed atoms in
a4 x 4 x 4(x30) supercell (1920 atoms in total) using only
the condition that the number of Cr and Fe atoms should
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FIG. 4. (Color online) Total density of states (DOSs) of the
FeysCrps o phase obtained in the LSGF supercell and CPA
calculations.

be the same at each sublattice. This is the way we represent
the Fe( 5Cry s random alloy. Two supercells, SC1 and SC2,
have been constructed in this way for the LSGF electronic
structure calculations.

The LSGF-EMTO calculations have been done using
the same setup of parameters as in the usual EMTO-CPA
calculations in the DLM state. The local interaction zone
included the polyhedron of the nearest neighbors for each
site. In Fig. 4 we show the density of states for the Fey sCrg 5 o
phase obtained in the supercell LSGF and CPA calculations.
They are practically indistinguishable, which means that the
CPA is quite accurate for this system. This is so in spite of
the fact that there exist very strong fluctuations of the local
magnetic moments of Fe atoms in the o phase.

In Fig. 5 we show the local magnetic moments of the Fe
atoms on the different sublattices in one of the calculated
supercells, the average magnetic moments of Fe on the
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FIG. 5. (Color online) Local magnetic moments of Fe in the
supercells in the LSGF calculation, average magnitudes in two
supercells (SC1 and SC2), and the CPA result.

PHYSICAL REVIEW B 84, 184206 (2011)

sublattices in both supercells, and the corresponding CPA
result. There is a huge dispersion of the magnetic moments,
especially on the sublattices C, D, and E in the supercell.
Nevertheless, the average magnetic moments of the supercells
agree quite well with each other. It is also clear that the CPA
results are in very good agreement with those of the LSGF
calculations for supercells.

V. RESULTS AND DISCUSSION

A. Convergence of the total energy parametrization

As described in Sec. III, the single-site model implies the
expansion of the total energy in terms of effective interactions,
which we determine as the derivatives of the total energy with
respect to the sublattice occupancies [see Eq. (3)]. In general,
these interactions could be calculated using the usual least-
squares-fit method of the total energies, but this requires much
more computational effort, especially taking into account that
they are temperature dependent (see below). Since we want
also to study how the atomic distribution depends on different
magnetic states and structural variations, we would like to stay
within the single-site model and use only the on-site effective
interactions determined by Eq. (4).

However, in order to check the accuracy of the on-site
form of the energy expansion, we calculate the total energies
of 89 different o -phase configurations for x¢, = 0.50 in the
DLM state with different sublattice occupancies and obtain
parameters of the total energy expansion up to the second
order using the least-mean-squares method. The calculated
parameters foﬁ”,fo(é) are given in Table II. First, one can see
that the pair interaction parameters are much weaker than the
on-site ones and therefore their contribution to the total energy
would be rather small. At the same time, the on-site interactions
obtained using Eq. (4) are very close to the corresponding
least-squares values J(V. This means that the dependency
of the energy on the site occupancies is quite smooth and
therefore we can stay within the on-site approach, keeping
only contributions from chemical potentials to the total energy.

B. Effect of the magnetic state

In this section we analyze how magnetism affects the site
distribution of Fe and Cr atoms in the o phase. For this purpose

TABLE II. Effective cluster interactions (ECIs) calculated for the
experimental lattice volume V., = 0.35271 nm® and (¢ [@exp =
0.518 at T = 1000 K in the DLM state once as chemical potentials
J{V [according to Eq. (4)] and once using a least-squares fit (fo(t",f;?)
in mRy/cell.

ECI A B c D E
Jo 16.095 0.867 1.480 15415 0
J 16.406 0.469 1781 14344 0
Ty A B c D E
A —1.198 —0371  —0.648  —0457 0
B —0490  —039%0  —0463 0
c —0568  —0407 0
D —0.640 0
E 0
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TABLE III. Effective on-site interactions J{! (mRy/cell) calcu-
lated for the experimental lattice volume V., = 0.35271 nm’ and
(¢/a)exp = 0.518 at T = 1000 K in different magnetic states.

Site NM DLM DLM with LSF
A 19.031 16.406 15.750

B —0.656 0.469 0.281

C 2.344 1.781 1.969

D 15.750 14.344 13.406

E 0.0 0.0 0.0

we calculate the site occupancies as a function of temperature
in three different magnetic states: (i) the nonmagnetic state
(NM), in which the effect of spin polarization is completely
neglected, (ii) the paramagnetic state given by the usual DLM
model, and (iii) the paramagnetic state (again given by the
DLM model) but including the longitudinal spin fluctuations
(LSFs). The latter are many-body Stoner excitations, which
can in an approximate way be included in the usual DFT
scheme by assuming that they lead to an additional contribution
to the entropy given by Eq. (8), a situation for which the
magnetic moment can be determined from a Helmholtz free
energy minimization.

The corresponding on-site parameters J{! calculated for
the experimental lattice volume Ve, = 0.35271 nm’® and
(¢/a)exp = 0.518 at T = 1000 K are given in Table III. One
can see that the difference between interaction parameters
in different magnetic states is rather small, especially in
the case of the DLM interactions with and without LSFs.
Nevertheless, the magnetism produces a substantial effect on
the site substitution behavior in the high-temperature range,
which is, of course, mostly an entropy effect.

In Fig. 6 we show the results of the minimization of
the free energy given in Eq. (2) with the total energy from
Eq. (3) obtained for the on-site interaction parameters given
in Table III. The full symbols denote the calculated site
occupancies, while the empty symbols show the available
experimental data,>* and the vertical lines indicate the narrow
temperature range of the o-phase formation, 700 < T <
1100 K. As can be seen, the configurational entropy drives
the system at very high temperatures to a highly disordered
distribution of alloy components on the five nonequivalent
sites. When the temperature is decreased, Fe and Cr atoms
exhibit a preference for different sites. At temperatures of
about 700 K, which is the lower border of the o -phase stability
range, the (A,D) sites become solely occupied by Fe atoms (i.e.,
nearly no Cr atoms), the (B,E) sites mostly by Cr atoms, while
the occupation of C sites remains almost the same. This is a
common behavior that is independent of the magnetic state.

Nevertheless, there are important differences when looking
at the details. For instance, neglecting the magnetic entropy
causes an underestimation of the Cr concentration on the A
and D sublattices, while the B and E sublattices have an excess
of Cr atoms in comparison with the DLM results (without
the LSF), as well as the experimental data. Therefore it is
clear that the magnetic entropy has a noticeable effect on the
site preference of Fe and Cr atoms. One can also see that the
inclusion of the longitudinal spin fluctuations affects the site
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FIG. 6. (Color online) The Cr site occupancies of the (A,B,C,D,E)
sublattices versus temperature for xc, = 0.50 calculated for the
experimental lattice parameters V., = 0.35271 nm?® and (c/@)exp =
0.518 in different magnetic states: (a) nonmagnetic state (NM),
(b) disordered local moment state (DLM), (c) disordered local
moment state including longitudinal spin fluctuations (LSFs). The
full symbols denote the calculated results, and the empty symbols
the available experimental data.>* The vertical lines indicate the
temperature range of the o-phase formation in the Fe-Cr alloy.

occupation of the B sites and increases the content of Cr. Let
us note that our theoretical results presented in Fig. 6 are in
good agreement with experimental data. There can be many
reasons for small discrepancies, from which we analyze the
structural effects in the next section.

C. Structural variations

In order to study the effect of structural variations (volume
and also the c¢/a ratio) we calculate the site occupancies for
four different sets of parameters (a—d) given in Table IV.
The change of volume at constant ¢/a = 0.518 from the
experimental low-temperature value Vey, = 0.35271 nm? [set
(a)] to the high-temperature value V = 0.36247 nm? [set (b)]
increases the Cr occupancy for the (A,D) sites while decreasing
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FIG. 7. (Color online) The Cr site occupancies of the (A,B,C,D,E)
sublattices for four different sets of structural parameters given in
Table IV. In parenthesis we specity the element which predominately
occupies the given sublattice « = (A,B,C,D,E).

the Cr content in the (B,E) sites (see Fig. 7). The volume
expansion [from set (a) to set (b)] increases the available
space (see Fig. 1) around the (A,D) sublattices and thus favors
occupation by the bigger Cr atoms. We have also optimized
the c/a ratio using the EMTO-CPA method for the high-
temperature volume [set (c) in Table IV]. It can be clearly
seen from Fig. 7 [sets (b) and (c)] that although c¢/a changes
only very little, it produces a remarkable decrease of the Cr
occupancy of the E site with a corresponding increase at the
other sites, mainly the C site. With the c¢/a expansion the
average volume of the E sublattice decreases, while it increases
for the C sublattice. At the same time the occupation of the
12-coordinated A and D sites by large Cr atoms is not favored,
since this would lead (within the kagome layers of the o phase)
to a distortion that would act against the structural stability.>*

TABLE IV. Structural variation and temperature dependency for
the Fey sCry s o phase in the DLM state including LSF.

Set Volume cla T dependency
a 0.35271 nm? 0.5180 No
b 0.36247 nm? 0.5180 No
c 0.36247 nm? 0.5232 No
d 0.36247 nm? 0.5232 Yes

PHYSICAL REVIEW B 84, 184206 (2011)

TABLE V. On-site parameters J{" (mRy/cell) and local magnetic
moments of Fe and Cr atom pf¢ and ufj calculated for expanded
lattice parameters V = 0.36247 nm® and c/a =0.5232 at T = 500,
1000 K (DLM incl. LSF).

TK) A B c D E
JO (mRy/cell) 500 13.219 —0.375 0.656 11.250 0.0
1000 12937 —0.656 0.656 10.969 0.0
e (i) 500 0.847 1.742 1.585 1.074 1.404
1000 1.046 1.773 1.626 1.236 1.478
1E (up) 500  0.171  0.286 0.245 0.198 0.203
1000 0306 0.481 0.380 0.350 0.358

D. Temperature effects

Furthermore, the use of the DLM model including LSFs
implies that the local magnetic moments of Fe and Cr at
different sublattices u£“‘") depend on temperature making
the interaction parameters J{! temperature dependent. In
Table V we list the values of J{" and uf“€") calculated at 500
and 1000 K. One can notice that in general the temperature
dependence of the on-site interaction parameters J{ is very
small and is visible only for the B site, which is mostly
occupied by Cr. In common DLM calculations uS” is zero at
those temperatures, but the LSFs produce a finite Cr moment
with a fairly pronounced T dependency. It should be mentioned
here that an increase of local magnetic moments is possible
in a simple LSF model used in the present work® and is due
to the entropic effect. As can be seen from Fig. 7 [set (d)]
temperature dependence of u£¢€" and J{V causes a decrease
of the Cr site occupation of the B site, but this is evident only
at low temperatures, whereas almost no effect can be seen at
high temperatures.

E. Final results and summary

In order to get the proper atomic distribution which takes
into account all effects described above (magnetic state, struc-
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FIG. 8. (Color online) The Cr site occupancies of the (A,B,C,D,E)

sublattices versus temperature including all effects mentioned. The
empty symbols denote the available experimental data.>*
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tural variations, and temperature effects), we interpolate the Cr
site occupancies between the low- and high-temperature values
that were obtained for the experimental room-temperature
lattice parameters and temperature-expanded ones. The re-
sults are shown in Fig. 8 and agree quite well with the
available experimental data.>* It is interesting to note that
the preference of the Cr atoms between the B and E
sites crosses at around 650-700 K, at a temperature where
the o-phase formation starts. The occupation behavior for
other sites also changes at this temperature, as discussed
above.

In the present work we studied the configurational ther-
modynamics of the Fe-Cr o phase on the basis of the Ising-
type configurational Hamiltonian and a single-site mean-field
model for the free energy. The effective pair interactions in the
o phase are relatively small and thus the mean-field model can
be used in a simplified form in which only contributions from
effective on-site interactions are included.

PHYSICAL REVIEW B 84, 184206 (2011)

Using this model we demonstrate that the site occupation
behavior is governed by several factors. The magnetic entropy
contributes mainly to the (A,D) and B sites, whereas the
structural variations (volume and c¢/a), which might be present
in the system due to effects of the neutron irradiation and
thermal expansion, lead to an additional atomic redistribution.
In particular, the volume expansion allows to accumulate more
Cr in the A and D sublattices, while the c¢/a ratio affects the
occupation of the C sites.
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