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Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys
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This work is motivated by the need for large-scale simulations to extract physical information on the iron-
chromium system that is a binary model alloy for ferritic steels used or proposed in many nuclear applications.
From first-principles calculations and the experimental critical temperature we build a new energetic rigid
lattice model based on pair interactions with concentration and temperature dependence. Density functional
theory calculations in both norm-conserving and projector augmented-wave approaches have been performed. A
thorough comparison of these two different ab initio techniques leads to a robust parametrization of the Fe-Cr
Hamiltonian. Mean-field approximations and Monte Carlo calculations are then used to account for temperature
effects. The predictions of the model are in agreement with the most recent phase diagram at all temperatures
and compositions. The solubility of Cr in Fe below 700 K remains in the range of about 6 to 12%. It reproduces
the transition between the ordering and demixing tendency and the spinodal decomposition limits are also in
agreement with the values given in the literature.
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I. INTRODUCTION

As has been extensively reported in the literature,1–4 ferritic
steels with a Cr content that ranges from 5 to 13 at.%
demonstrate radiation damage resistance that makes them
the strongest candidates as structural materials for future
nuclear energy applications. To develop new materials capable
of sustaining high irradiation doses we need to understand
both their thermodynamic and kinetic properties. At high
temperatures, the kinetic evolution is rapid enough whereby
the formation of the σ phase and the decomposition of Fe-Cr
alloys into two body-centered-cubic (bcc) solid solutions,
α and α′, is observed and, therefore, the phase diagram
is well known. Below 700 K, the equilibrium state is still
in debate. The phase diagrams, available in compilations
and databases like CALPHAD,5–7 are derived from high-
temperature experiments.8–12 They display an almost symmet-
rical α-α′ miscibility gap and yield a zero solubility limit of Cr
in Fe at low temperatures. However, first-principles calcula-
tions by Hennion13 in 1983, which were confirmed a few years
later by a neutron study of short-range order (SRO),14,15 have
shown that Fe-Cr alloys display an ordering tendency for low
chromium content. This anomaly has been extensively studied
using various ab initio methods and is now well understood,
although the Cr concentration at which the sign of the mixing
energy changes depends on the approximation (from 5% up to
approximately 10%).16–19 This behavior has been rationalized
in terms of an antialignment of the magnetic moment of
Cr in the Fe matrix, the repulsion between first nearest
neighbor (1nn) Cr, and the ordering tendency observed at low
concentrations.18 Moreover, a few experimental observations
in irradiated alloys have been recently reviewed by Bonny
et al..20 They suggest that the chromium solubility remains
above 8%, even at low temperatures. This interpretation is
based on the assumption that irradiation results only in an
enhancement of diffusion and that more complex effects that
could modify the solubility limit, such as ballistic disordering
or radiation induced segregation, can be neglected. Recent
critical reviews have, therefore, highlighted the need to modify
the Fe-Cr phase diagram at low temperatures.20–22

Several atomistic models have been proposed in this context
to reproduce the complex thermodynamic behavior of Fe-Cr
alloys. Semiempirical potentials have been developed that
take into account the change of sign of the mixing energy,
such as the concentration-dependent model (CDM) of Caro
et al.1 or the two-band model (2BM) of Olsson et al.,23

recently updated by Bonny et al.24 A lot of work has been
done in order to assess their thermodynamic properties as
well as their dynamical behavior.25–28 However, it is still
difficult to develop a potential that simultaneously fits all the
key properties that control the thermodynamics and kinetics
of the Fe-Cr decomposition (such as the mixing energies,
the point defects formation energies, and migration barriers,
with their dependence on the local atomic distribution and
with the corresponding vibrational entropy contributions).
Furthermore, magnetic contributions have not been introduced
in these potentials. Because the kinetic modeling of phase
transformations, including atomic relaxations and vibrational
contributions, is a challenging task,29 these potentials are
usually mapped on a rigid lattice model that in turn affects
their thermodynamic and kinetic properties.

Cluster expansion (CE) techniques, based on a rigid
lattice approximation with N -body concentration-independent
interactions, have been proposed to model the thermodynamics
of Fe-Cr alloys.30–32 However, to be able to reproduce the
ab initio mixing energies of Fe-Cr, a purely chemical CE
(i.e., that does not take explicitly into account the magnetic
moments) requires a large set of many-body interactions.31,32

The difficulty of obtaining a small set of effective interactions
was also reported by authors using a screened generalized
perturbation method.33 Therefore, a cluster interaction model,
although restricted to a rigid lattice description, remains
quite heavy numerically. The whole corresponding phase
diagram was not published, but, following the trend of
the empirical concentration-dependent energy models, it is
expected that the critical temperature for the miscibility
gap is too high compared to experiments and the classical
CALPHAD database.5,10 Two missing ingredients in those
CE models are the vibrational entropy (which is significant
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in the Fe-Cr system)34,35 and the magnetic contributions.
The screen generalized perturbation model has been used
to show how the effective cluster interactions depend on the
magnetic state of the alloy and, therefore, on the temperature33

and the composition.36 Mixed models, including chemical
and magnetic interactions, have been proposed.30,37–39 The
Ising model by Ackland, with magnetic moments of constant
amplitude, reproduces some key features of the Fe-Cr alloys.
The magnetic cluster expansion of Lavrentiev et al.38,39 is
able to reproduce the ab initio mixing energies with much
fewer interactions than a purely chemical CE and it can
take into account the variation of the magnetic moments
with the concentration, but its phase diagram has never been
calculated in the α-α′ region. The last model we wanted to
mention is the Stoner Hamiltonian developed by Nguyen-
Manh and Dudarev.40 It is shown that all the significant
features of the Fe-Cr alloys can be explained in terms of
bonding effects involving 3d electron orbitals and magnetic
symmetry-breaking effects resulting from intra-atomic on-site
Stoner exchange. The complete phase diagram has not been
reported for this Hamiltonian and, as stated in the manuscript,
further approximate computational algorithms will have to be
developed that are suitable for large-scale simulations.

Finally, it is worth noting that using a magnetic model
in a kinetic simulation of the α-α′ decomposition (such as a
kinetic Monte Carlo simulation) would require the relaxation
of the atom-vacancy exchange events and magnetic moments
transitions that probably occur at a very different time scale.
Even with simplifying assumptions (e.g., if the relaxation time
of the magnetic moment is negligible), it would make the
simulation much more time-consuming than for a nonmagnetic
model. We propose here an alternative model: a concentration-
and temperature-dependent pair interaction model fitted on ab
initio calculations and the experimental critical temperature of
Fe-Cr alloys. The goal is to keep the model simple enough to
be used in kinetic Monte Carlo simulations such as the one in
Ref. 41.

The article is organized as follows. In Sec. II the results from
density functional theory (DFT) calculations on the energetics
of the Fe-Cr system that have been used to parametrize
the interaction model are reported. Because energy values,
in the magnetic Fe-Cr system, depend on the method, we
have performed our own ab initio calculations using two
different methods. In Sec. III we present the concentration-
and temperature-dependent pair interaction model and its
phase diagram, computed in a mean-field approximation and
by Monte Carlo simulations. The phase diagram, including
the spinodal decomposition region, and the short-range order
are compared with available experimental data. Comparison
with other models are discussed in Sec. IV. Finally, some
conclusions and perspectives are highlighted.

II. DFT CALCULATIONS

Several studies have already been devoted to the cal-
culations of energetic properties of FeCr alloys.16–19,26 We
have, nevertheless, performed a new systematic first-principles
study in order to parametrize our interaction model in a
self-consistent way. In particular, we have calculated the

enthalpy of mixing of the FeCr alloy to account for its behavior
in the whole concentration range. We have also estimated the
interactions between two Cr(Fe) impurities in a bcc Fe(Cr)
matrix, which allows us to determine the cutoff of interactions
distance of the pair-interaction model. Ferromagnetic (FM) Fe
and (100)-layered antiferromagnetic (AF) Cr have been taken
as reference states to obtain the values mentioned above. Note
that even though the experimental magnetic ground state of
pure bcc Cr is an incommensurate spin-density wave (SDW),
the presence of Fe atoms seems to reduce the stability of such
a long-ranged state. It, indeed, becomes unstable against the
formation of AF structures with 1.6% of Fe.42 Because our
interest is mainly focused on the Fe-rich side of the alloy, we
assume the AF state for Cr in the present study.

Calculations are performed in the framework of density
functional theory as implemented in the PWSCF code.43

They are spin polarized within the generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof
parametrization.44 We have used the projector augmented-
wave (PAW) potential instead of pseudopotentials. The kinetic
energy cutoff chosen for the plane-wave basis set was 544 eV.
All the calculations are fully relaxed, i.e., both atomic positions
and simulation-cell volumes are optimized. The correspond-
ing residual force and stress tolerances are, respectively,
0.04 eV/Å and 5 kbar. We have also calculated the mixing
enthalpies using norm-conserving (NC) pseudopotentials and
localized basis sets, as implemented in the SIESTA code.45

This approach has been shown to give results of equivalent
accuracy as plane-wave DFT methods. In particular, properties
of defects in various Fe-based systems have been satisfac-
torly predicted.41,46–49 It is, however, less computationally
demanding, thanks to a significant reduction of the basis size.
The aim is to check the ability of this less-standard DFT
approach for quantitative prediction of properties in FeCr
alloys, where the energetics may be extremely sensitive to
magnetic couplings.18,50

A. Mixing enthalpy

The enthalpy of mixing is defined as

�Hmix = E[nFe + mCr] − {nE[Fe] + mE[Cr]}
n + m

, (1)

where E[nFe + mCr] is the total energy of a mixed system
containing n Fe atoms and m Cr atoms. E(Fe) and E(Cr) are
energies per atom of the Fe and Cr reference systems. Because
the calculations are performed at zero pressure, this value is
also equivalent to the mixing energy.

The supercells used for different concentrations have been
generated using two methods. The first generation method is
“user” chosen. It consists of a large set of ordered structures
devised to explore various energetic landscapes (DO3, B2,
Fen−1Cr, FeCrm−1, etc.), the same as considered in a previous
work on Fe-Cu alloys.41 The other generation method is based
on the special quasirandom structure methodology (SQS)51

that allows us to generate a supercell with as small short-
range order as possible. These supercells are, thus, the best
representative configurations of a random solid solution for
each concentration. The number of atoms in each supercell
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FIG. 1. (Color online) Enthalpy of mixing for the Fe-Cr system as
a function of Cr atomic fraction. PAW-GGA (NC-GGA) calculations
are in black (red). Full symbols are for SQS structures and crosses
for ordered structures. The lines give the best fit of the enthalpy of
mixing of the SQS structures in the Redlich-Kister formalism (see
Sec. III).

is either 54 or 128. The resulting mixing enthalpies for both
ordered and SQS structures are shown in Fig. 1.

In good agreement with previous DFT results,18,52 we note a
change of sign of the mixing enthalpy, showing negative values
for low Cr concentrations according to both PWSCF and SIESTA

approaches. However, the range of this negative part of the
enthalpy of mixing as well as its depth strongly depend on the
approach. From the SIESTA-NC calculations the change in sign
is around xCr = 0.15 while, with the PWSCF-PAW approach,
the value is about xCr = 0.07.

First, we focus on two extreme cases, i.e., infinite dilution in
Fe and Cr, respectively, where we may also define the solution
energy as

EXinY
sol = E[Yn−1X1] − {(n − 1)E[Y] + E[X]}, (2)

where X and Y are either Fe or Cr, E[Yn−1X1] is the total
energy of a supercell containing n − 1 atoms of Y and one
atom of X and E[Y ] and E[X] are the energy per atom of the
pure systems: bcc FM Fe and AF Cr. The solution energies are
well converged within 1 meV for n = 128 atoms. For the case
of Cr dissolution in Fe we find a value of Esol = −0.20 eV
using PWSCF while SIESTA predicts Esol = −0.47 eV. They
are consistent with previous DFT values ranging between
Esol = −0.12 eV and Esol = −0.46 eV.18,52 We see that all
DFT results predict Cr dissolution to be exothermic, i.e.,
energeticaly favorable to insert one substitutional Cr in the
Fe matrix. However, the precise value is method dependent.
In particular, the SIESTA-NC result overestimates the solution
tendency of Cr in Fe with respect to the PWSCF-PAW data. In
order to gain more insight into the origin of this overestimation,
we have performed complementary PWSCF calculations using
an NC pseudopotential (PWSCF-NC) as close as possible to that
of SIESTA. The obtained Cr solution energy in Fe is −0.49 eV,
which is very close to the SIESTA value. This comparison
suggests that the overestimation of the Cr solution energy
is essentially due to the NC-pseudopotential approximation

rather than the use of localized basis functions in the SIESTA

approach. We have also checked that the magnitude of Cr
solution energy is indeed closely correlated with the local
magnetic moments of the Cr in Fe. The corresponding values
from the PWSCF-PAW, PWSCF-NC, and SIESTA-NC studies are
2.1 μB , 2.6 μB , and 2.5 μB , respectively. It is interesting to
point out that the overestimation of the Cr solution energy
from a NC pseudopotential prediction is closely correlated to
the obtained higher value of Cr local moments with respect to
the PAW value.

When a Cr atom is substituted by one Fe atom in the
Cr matrix, the solution energy obtained was Esol = 0.45 eV
using PWSCF and Esol = 0.29 eV with SIESTA, indicating an
endothermic reaction. In this case, the Fe local magnetic
moment found for the Fe impurity is within the precision limits,
0.02 μB while SIESTA gives 0.14 μB . In both cases the magnetic
moment of the Fe solute is antialigned to the local moment of
its first nearest neighbors. The local magnetic moment of all
the Cr atoms remains, as expected, practically the same as
in pure AF Cr. The small moment of Fe may be explained
as a consequence of magnetic frustration resulting from the
competition between the Fe and its first- and second-nearest Cr
neighbors. As also suggested by a previous study,18 Fe and Cr
first- and second-nearest neighbors prefer an antiferromagnetic
coupling, which can clearly not be satisfied for an isolated Fe
in a bcc AF Cr lattice.

Beyond the infinite diluted cases, ordered structures with
a mixing energy lower than the SQS-random configurations
(�Hmix = −xECr in Fe

sol ) are observed at low Cr concentrations
with both PWSCF and SIESTA. In particular, the Fe52Cr2 system
with the two Cr atoms separated by (1.5,1.5,1.5) times the
bcc lattice parameter (a0) has an energy lower than the solid
solution of the same composition, suggesting the possible
formation of an intermetallic phase for that concentration at
low temperatures. Indeed, the same Fe52Cr2 structure has also
been pointed out by Erhart et al. as a possible intermetallic
system.26 Other DFT calculations predict that the Fe15Cr31 or
the Fe14Cr53 ordered structures could be the ones forming the
intermetallic compounds. However, it should be noted that the
relative stability of such phases is difficult to assess because
their difference in formation energies is very close to the DFT
uncertainties and because it remains to be verified whether they
may exist at finite temperatures when the entropy becomes
relevant.

On the other hand, at higher Cr concentrations, SQS
systems show overall lower energy than the ordered config-
urations. This is indeed consistent with the positive mixing
enthalpies, suggesting a tendency to phase separation rather
than ordering.

B. Impurity interactions

In order to determine the cut-off distance of the pair
interaction model for FeCr, we have also evaluated the
interaction between two Cr(Fe) impurities in a bcc Fe(Cr)
matrix. Binding energy between two X atoms i th nearest
neighbors in a bcc lattice of Y atoms is defined as follows,
where positive values denote attraction:

Eb(X − X) = −E[YN−2 + X2] − E[YN ] + 2E[YN−1X1],
(3)
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FIG. 2. (Color online) Binding energy of two Cr (Fe) impurities in
an Fe (Cr) matrix where inn denotes the i th nearest neighbor between
the impurities in a bcc lattice.

where E[YN−2 + X2] is the total energy of the system with
the two X atoms at an i th nearest-neighbor distance, E[YN ] is
the total energy of N Y atoms in the corresponding reference
system (either ferromagnetic bcc Fe or antiferromagnetic bcc
Cr), and E[YN−1X1] is the total energy of the system of N

atoms with just one impurity atom. The values for the binding
energies of Cr-Cr in Fe and Fe-Fe in Cr are shown in Fig. 2.
The calculations have been done within the more accurate
PAW approach using 128-atom supercells.

Consistent with previous DFT calculations18 and with the
experimentally observed ordering tendency at low Cr content,
we find that two Cr atoms repel each other in a dilute FeCr
alloy. Such repulsion is particularly strong for 1nn and 2nn
interactions. The binding energies are −0.32 and −0.15 eV,
respectively, from the PWSCF calculations. For 3nn to 5nn
the Cr repulsion significantly weakens (around −0.04 eV)
according to our results (Fig. 2). It vanishes for farther Cr-Cr
distances within the estimated error range of ±0.025 eV. As
explained in previous studies,18 this Cr-Cr repulsion is directly
correlated to the corresponding local magnetic structure. Local
magnetic moments of both Cr atoms are found to be parallel to
each other when they are close neighbors. In addition, their
moment amplitudes are reduced as compared with that of
an isolated Cr (2.2 μB). For instance, we find local moment
reductions of around 0.1 μB for two 1nn and 2nn Cr atoms
with respect to an isolated Cr. This can be understood as a
magnetic frustration resulting from a competition between
various magnetic coupling tendencies, i.e., antiferromagnetic
for Fe-Cr and Cr-Cr and ferromagnetic for Fe-Fe pairs. Indeed,
when performing complementary calculations constraining all
the Cr local moments to zero, the resulting Cr-Cr binding
energies become negligible.

On the other hand, in the case of two Fe impurities in
a Cr matrix, their binding energy is slightly positive for
a 1nn separation (0.06 eV), whereas it is negative for the
2nn Fe-Fe pair (−0.05 eV). Beyond these, all the values
are repulsive, but their magnitudes are smaller than 0.03 eV,
close to our estimated error range (Fig. 2). It is interesting
to note that the change of interaction between the 1nn to
the 2nn separations, i.e., from an attraction to a repulsion,

may be linked to a change of local magnetic moments of
the respective Fe atoms. Indeed, as discussed in Sec. II A,
an isolated Fe in the AF-Cr shows a small moment due to
the magnetic frustration. It is also the case for all the Fe
atoms separated by a 2nn distance or farther. However, the
magnetic state can be expected to change when Fe atoms get
close to each other. For instance, when they are first nearest
neighbors, one of the two Fe atoms adopts a high moment
of 2.11 μB , whereas the other remains at a low-moment state
(0.53 μB). Both Fe moments align parallel to each other, but
only the high-moment Fe is antiferromagnetically coupled to
its Cr first-nearest neighbors. This asymmetric configuration
suggests that at least the magnetic frustration of one iron atom,
i.e., the high-moment Fe, is partly relaxed, inducing a decrease
of the system energy. It is worth noting that other metastable
states may also exist for the 1nn Fe-Fe case. For instance,
we have found another magnetic configuration where both Fe
atoms have low local moments. The corresponding binding
energies are practically zero.

Even though the absolute values of Cr-Cr interaction
energies in Fe are, overall, larger than the corresponding Fe-Fe
values, in both cases, the range of the significant interactions
is up to a second-nearest-neighbor distance, which may,
therefore, be reasonably considered as the cut-off distance for
our pairwise energetic model as described below (Sec. III).

III. THERMODYNAMIC MODEL

A. Constant pair interactions (Ising model)

Our objective is now to build an interaction model able to
take into account the key energetic properties revealed by DFT
calculations and to predict a phase diagram in agreement with
the experimental one. The simplest model of phase separation
in a binary A-B alloy is probably the Ising model, with constant
pair interactions ε

(i)
AA, ε(i)

AB , and ε
(i)
BB between A and B atoms on

i th neighbor sites. The mixing free enthalpy of a solid solution
can be computed using mean-field (MF) approximations
(see, e.g., Ref. 54). With the simplest Bragg-Williams (BW)
approximation and when ε

(i)
AA + ε

(i)
BB − 2ε

(i)
AB < 0, one gets for

the mixing enthalpy:

�Hmix = −� x(1 − x), (4)

while the configurational entropy of mixing is given by

�Smix = −kB [(1 − x) ln (1 − x) + x ln x] , (5)

where x is the B atomic fraction, kB is the Boltzmann constant,

� =
∑

i

[
z(i)

2

(
ε

(i)
AA + ε

(i)
BB − 2ε

(i)
AB

)]
(6)

is the ordering energy, and z(i) is the coordination number
of shell i. The minimization of the free enthalpy �Gmix =
�Hmix − T �Smix gives a symmetrical miscibility gap, with a
critical temperature Tc = −�/2kB . In the BW approximation,
when all the combinations ε

(i)
AA + ε

(i)
BB − 2ε

(i)
AB are negative,

the phase diagram depends exclusively on � and not on
the distribution of the interactions among the different co-
ordination shells (i). This approach neglects the short-range
order in the solid solution. In the specific case of alloys with
nearest-neighbor interactions, the BW critical temperature
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is 20% larger than the Monte Carlo reference value.55 The
discrepancy decreases with the range of interactions (for
infinitely long-range interactions, mean-field approximations
become exact).56

B. Composition-dependent pair interactions

A constant pair interaction model always gives symmetrical
mixing energies and phase diagrams and, therefore, cannot
reproduce the DFT mixing energies of Fe-Cr alloys (Fig. 1),
with negative mixing energies in the Fe-rich configurations
only. To be able to reproduce the mixing enthalpy in the whole
concentration range we introduce pair interactions that depend
on the local composition, using a polynomial expression. In
the BW approximation, the mixing enthalpy is given by

�Hmix = −�(x) x(1 − x) = −x(1 − x)
n∑

p=0

L(p)(1 − 2x)p,

(7)
also known as the Redlich-Kister formalism,57 where n is
the maximum order of the parametrization and L(p) is the
interaction parameter of order p and has the form

L(p) = a(p) + b(p)T . (8)

The L(p) parameters at 0 K (i.e., the a(p) parameters) are
fitted on the mixing energies of the SQS structures presented in
Sec. II. Ordered structures are not taken into account because
the SQS configurations are more representative of a random
solid solution described by the BW approximation. The best
fit we have found (see Fig. 1) is of the form

�(x) = (x − α)(βx2 + γ x + δ), (9)

where the values of α, β, γ , and δ for the PWSCF-PAW and
SIESTA-NC results are given in Table I. The maximum of the
�Hmix in the PWSCF-PAW fit is at x = 0.48 with a value of
0.089 eV, whereas for the SIESTA-NC x = 0.52 and the value
is 0.071 eV.

The corresponding phase diagram was first computed in
the BW approximation, with b(p) = 0, i.e., with temperature-
independent pair interactions (see Fig. 3). We observe that the
solubility limits are nonsymmetric. The solubility of Cr in Fe
does not vanish at 0 K. On the other hand, the Fe solubility
in Cr is negligible at that temperature. The nonzero solubility
limit on the Fe rich side is in contradiction with the reference
phase diagram given by CALPHAD 10 but in accordance with
more recent studies.20–22,24 The critical temperature (about
4200 K for the PWSCF-PAW parametrization and 3800 K for
the SIESTA-NC values) is much higher than the experimental
one (approximately 1000 K).21 The spinodal limits for both

TABLE I. Fitting parameters for the ordering energy �(x) at 0 K
obtained from PWSCF-PAW and SIESTA-NC calculations.

PWSCF-PAW SIESTA-NC

α 0.070 0.160
β (eV) −2.288 −2.348
γ (eV) 4.439 4.381
δ (eV) −2.480 −2.480
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FIG. 3. (Color online) Mean-field Fe-Cr phase diagram with the
concentration-dependent interaction model (no temperature depen-
dence) fitted on the ab initio PAW (solid black lines) and NC (solid
red lines) calculations. Spinodal decomposition limits are shown as
dashed lines.

parametrizations, defined as

∂2�Gmix

∂2x
= 0, (10)

are shown in Fig. 3. We observe an unusual local minimum
(for x ≈ 0.8) on the Cr-rich side. This phenomenon occurs
at temperatures lower than 500 K, the regime where data are
difficult to obtain experimentally due to slow kinetics. The
phase diagram obtained with the PWSCF-PAW and SIESTA-NC
parameters are qualitatively similar. Since the PWSCF-PAW is
more reliable, and for the sake of clarity, we will discuss only
the corresponding results in the following.

The phase diagram has also been computed by Monte Carlo
simulations in the semigrand canonical ensemble.58 In the
BW approximation, as for the constant interaction model,
the phase diagram depends only on the ordering enthalpy
[Eq. (9)]. For the Monte Carlo simulations for the same
ordering energy, one must consider the pair interactions ε

(i)
FeFe,

ε
(i)
CrCr, and ε

(i)
FeCr, the range of interactions and the way they

decrease with the distance. For the sake of simplicity we have
chosen that cross interactions ε

(i)
FeCr carry the dependency on

the local concentration. The self-interactions ε
(i)
FeFe and ε

(i)
CrCr

are considered as constants given by the cohesive energies
of the pure elements, according to Ecoh(A) = −∑

i z
(i)ε

(i)
AA

(Caro and coworkers followed the same strategy in the de-
velopment of their CDM model).1 The local Cr concentration
around a Fe-Cr pair is defined as the fraction of Cr atoms
among their neighbors. If the interactions are limited to
the r th nearest neighbors, the local chromium concentration
around a Fe atom on site i and a Cr atom on site j is
defined as

c(FeiCrj ) =
∑r

n=0

∑z(n)

k=1 p
(n)
ik + ∑r

n=0

∑z(n)

k=1 p
(n)
jk

2
∑r

n=0 z(n)
,
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FIG. 4. The Fe-Cr phase diagram with a composition-dependent
pair interaction model fitted on the PWSCF-PAW mixing energies (no
temperature dependence). The continuous line gives the solubility
limit computed in the BW approximation. The open circles give
the Monte Carlo results with first- and second-nearest-neighbor
interactions, the full circles the Monte Carlo results with interactions
up to fifth neighbors.

where p
(n)
ik = 1 when the kth site of the nth coordination shell

of site i is a Cr atom. We also include in the calculation the
type of the atoms in sites i and j .

To assess the effect of the interaction range, we have
used two sets of pair interactions. One has to consider
enough neighbors to get a sufficient discretization of the
mixing energy with its change of sign at 7%, so first-nearest-
neighbor interactions are not enough. Therefore, the first set
of parameters is limited to first- and second-nearest-neighbor
interactions, with the second-nearest-neighbor interactions 2
times smaller than the first ones (ε(2)

XY = ε
(1)
XY /2). The second set

includes up to the fifth-nearest-neighbor interactions and they
decrease more slowly, as the inverse of interatomic distance.

The resulting phase diagrams are compared with the
BW approximation on Fig. 4: at low temperature, the BW
approximation is close to the Monte Carlo results. At high
temperature it underestimates the mutual solubility of Fe and
Cr and overestimates the critical temperature by approxi-
mately 40% when the interactions are limited to the first-
and second-nearest-neighbor shells. The discrepancy is then
2 times larger than for the usual Ising model. The critical
temperature of the Monte Carlo simulations is significantly
higher with interactions up to the fifth-nearest-neighbors. This
is in agreement with the usual tendency, where the mean-field
and Monte Carlo results converge for infinite interaction
range.56

C. Temperature dependence

The critical temperatures calculated by the composition-
dependent approach, shown in Figs. 3 and 4, lay well above the
critical temperature observed experimentally for this system of
about 1000 K.21 The CDM potential shows the same deviation,
as does the chemical CE (see Sec. IV).

We rationalize this difference in terms of the major effects
that are not taken into account: (i) the competition between

magnetic and chemical interactions, (ii) the intrinsic nature
and the amplitude of the atomic magnetic moments change
(the magnetic moments decrease with the temperature which,
in turn, decreases the pair interaction strength),59(iii) the
vibrational entropy, and (iv) the magnetic entropy.

One could, in principle, evaluate the vibrational entropy
from DFT calculations, for instance, in the harmonic approxi-
mation, but would be obliged to take the rest of the temperature
effects empirically. We, consequently, decided to introduce an
empirical temperature dependency on the ordering energy to
compensate all the effects of the nonconfigurational entropies
and magnetic contributions. In order to keep the simplicity of
the model and to get a phase diagram closer to the experimental
one we assign to the ordering energy � a simple linear
dependency on temperature:

�(x,T ) = �(x)

(
1 − T

�

)
, (11)

where � has units of temperature and it is adjusted such that
the Monte Carlo simulations yield the experimental critical
temperature (≈1000 K). This effect is again taken into account
solely to fit the pair interaction cross term ε

(i)
FeCr. We find

� = 1480 K using the PWSCF-PAW parameters. The phase
diagram as given by this model is shown in Fig. 5. It is worth
noting that it is not just a temperature rescaling of the one in
Fig. 4, since the configurational entropy is not changed. As a
consequence, the BW and the Monte Carlo results are closer
than before. These results match the collection of experimental
results reported by Xiong et al.21 and Bonny et al.20 quite
well (Fig. 6). The Cr solubility in Fe is larger than 0 at
low temperatures. Following the results by Xiong et al., the
solubility limit at 250 K should be between 1 and 7%. We have
obtained a value of around 7% with our model. The solubility
limit in the Cr-rich side is lower than 1% at temperatures below
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FIG. 5. The Fe-Cr phase diagram with a composition- and
temperature-dependent pair interaction model fitted on the PWSCF-
PAW mixing energies and the experimental critical temperature.
The continuous line gives the solubility limit computed in the BW
approximation. The full circles give the Monte Carlo results with
first- and second-nearest-neighbor interactions, and the open circles
denote the Monte Carlo results with interactions up to the fifth-nearest
neighbors.
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FIG. 6. (Color online) The Fe-Cr phase diagram. Comparison
between the composition- and temperature-dependent pair interaction
model (Monte Carlo simulations with first- and second-nearest-
neighbor interactions and BW approximations fitted on PWSCF-PAW
mixing energies) and the critical reviews of Bonny et al.20 (dotted
line) and Xiong et al.21 (shaded region).

600 K. At very low temperatures the Monte Carlo results show
a solubility of Cr in Fe of about 6%.

Long runs of Monte Carlo simulations at lower tem-
peratures seem to confirm that the Cr solubility in Fe at
zero temperature differs from zero. This unusual aspect of
a demixing alloy can be explained by the change of sign
of the mixing energy, as already mentioned. No evidence
of a long-range ordered structure has been observed above
200 K. At lower temperatures, the stability of such structures
is difficult to study because the efficiency of the Monte Carlo
algorithm decreases. A negative ordering energy invariant with
respect to the local concentration would imply the stabilization
of an ordered phase. At 0 K, the solid solution would be less
energetically favorable than the two-phase system formed by
the ordered phase and a pure phase. However, in the case of a
concentration-dependent model, it is possible that in the small
concentration range associated with a negative value of the
ordering energy there is no formation of an ordered phase and
then stabilization of the solid solution.

The spinodal decomposition limits as given by our
concentration- and temperature-dependent model are shown
in Fig. 7 (computed in the BW approximation), where they
are compared to the experimental data compiled by Xiong
et al.21 obtained in the temperature range of 650 to 800 K.
The existence of a strictly defined limit between two kinetic
regimes (nucleation and growth and spinodal decomposition)
is debatable.60 Nevertheless, we observe in Fig. 7 that the
spinodal limits we are proposing are in good agreement with
the existing experimental data.

D. Short-range order

The negative part of the enthalpy of mixing at low
Cr concentrations induces the formation of SRO structures
in the Fe-Cr alloy, as shown experimentally by Mirebeau
et al.,14,15 who measured the Cowley-Warren SRO parameter
for different Cr contents via neutron diffraction at 703 K.
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FIG. 7. (Color online) Miscibility gap and spinodal limit of
the composition- and temperature-dependent pair interaction model
(PWSCF-PAW parameters) computed in the BW approximation. The
experimental data for the nucleation and growth regime are denoted
by square red dots and the spinodal decomposition regime is denoted
by the blue triangles. The experimental values have been collected by
Xiong et al.21

They observed a change in sign in the parameter at around
10% Cr, showing a minimum close to 5%. This inversion of
sign was earlier predicted by Hennion,13 carrying out ab initio
calculations on ferromagnetic systems.

The analysis of the SRO parameter is of technological
importance because of its implications on the mechanical
properties of the alloy. It is usually defined following Cowley’s
notation61,62 where the expression for the i th atomic shell of a
B atom in an A-B binary allow is given by

α
(i)
B = 1 − z

(i)
A

z(i)(1 − xB)
, (12)

where z
(i)
A denotes the number of A atoms in the i th shell from

a B atom, z(i) is the total number of atoms in the i th shell, and
xB is the global concentration of B atoms. The value of this
parameter will tend to 1 in a segregated alloy and it will be
close to 0 for a random solution. For a system with ordering
tendency the value will be negative, with a minimum given by

α
(i)
B = − xB

1 − xB

. (13)

This latter value indicates the maximum degree of short-range
order that an alloy can possibly attain. In the studies by
Mirebeau et al., the parameter that is actually measured is
specific for bcc structures and defined for the Fe-Cr system as

β = 8α
(1)
Cr + 6α

(2)
Cr

14
. (14)

To be able to compare to the experimental measurements
and to the recently published data based on the empirical
energetic models described above, we have performed equi-
librium Monte Carlo calculations in the semigrand-canonical
ensemble58 and measured the parameter described in Eq. (14)
for different Cr concentrations. Results are shown in Fig. 8,
where the concentration- and temperature-dependent model
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FIG. 8. (Color online) Short-range order of the FeCr system as
given by the concentration- and temperature-dependent model (CTD
model) with interactions up to 2nn. The results of the model are
compared to available experimental data (blue squares and black
triangles)14,15 performed at 703 K.

was used with interactions up to 2nn. We observe that the
model slightly overestimates the ordering tendency but cap-
tures the ordering trend of the alloy for small Cr concentrations.
The β values tend to 0 with temperature due to entropic
effects. The solubility limits are also shown in the figure.
Beyond the solubility limit, the SRO parameters are measured
in metastable solid solutions that remain homogeneous during
the simulation.

We have shown how the model captures the ordering
tendency of Cr in the Fe matrix. The β parameter becomes
negative for low Cr concentrations. Experiments show the
same trend, with negative values for low Cr concentration
and a change in sign at around 11%. This inversion of sign
observed experimentally is probably due to the presence of a
secondary α′ phase, as explained by Erhart et al..27 Our results
are in very good agreement with those presented in Ref. 27
using the CDM semiempirical potential.1

IV. DISCUSSION

The results given above show that the simple pair interaction
model described along the manuscript is able to reproduce
the main features of the experimental phase diagram. In the
following we analyze the matches and the disagreements
between our model and existing models in the literature with
special attention to the Cr solubility in Fe, since it controls the
precipitation driving force.

Our model has been fitted to the experimental critical
temperature following the CALPHAD approach by Andersson
and Sundman10 (dotted line in Fig. 9) and, therefore, it
reproduces the value given by the regular solution results but
with a solubility limit of Cr in Fe that differs from zero. The
magnetic model proposed by Inden and Schön30 following
a cluster variation method was fitted to high temperature
values of the experimental phase diagram. It reproduces the
magnetic phase transitions with a critical temperature for the
miscibility gap of around 880 K. The solubility limits at low
temperature tend to 0 in both sides of the phase diagram.
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FIG. 9. (Color online) Solubility limits of Cr in iron as given by
different models. The CALPHAD values are taken from Ref. 10. The
solubility limit for the CE and for the CDM were presented in Ref. 25.
The values for both 2BM potentials were obtained from Ref. 24.

It would be interesting to see the results of this model with
the parameters fitted to ab initio results. In the magnetic
Ising model by Ackland37 the temperature is not in real units
and it is difficult to compare. However, it reproduces the
magnetic transitions in spite of its simplicity and results in
an asymmetric phase diagram. Concerning the nonmagnetic
CE of Lavrentiev et al.,25,31 the solubility of Cr in Fe at
low temperatures reported in that study matches the values
obtained with our model (see Fig. 9), even though the curves
deviate for temperatures above 400 K, with the solubility
predicted by our approach larger than the one given by the CE.
This CE development does not take into account the vibrational
or magnetic entropy that results in low solubility at high
temperatures.

The semiempirical interatomic potentials existing in the
literature and described in Sec. I have not been fitted to the
phase diagram itself but only to the enthalpy of mixing at
0 K. The original 2BM predicts a symmetric mixing enthalpy,
with two changes of sign at low and high Cr concentrations,
implying a nonzero Fe concentration in Cr at low temperatures.
The vibrational entropy is found to be very high, implying a
decrease in the critical temperature to around 750 K (EAM
Olsson in Fig. 9). For the new version of the potential,
the mixing enthalpy is nonsymmetric, following the DFT
results by Olsson et al.52 using SQS structures. Therefore, the
solubility of Fe in Cr is closer to the experimental values. The
vibrational entropy is lower in this case which increases the
critical temperature to a value close to 1100 K (EAM Bonny in
Fig. 9). The CDM is fitted to the enthalpy of mixing of the alloy
as given by exact muffin-tin orbitals theory within the coherent
potential approximation (EMTO-CPA) calculations.16 The
maximum value is, in this case, higher than that using
SQS-PAW structures. This effect, added to the fact that the
vibrational entropy is lower, results in a critical temperature
above the experimental melting temperature (EAM Caro in
Fig. 9). These models have been fitted to a 0 K enthalpy of
mixing curves. Both Fe and Cr undergo a magnetic transition
at high temperatures (around 1043 K for Fe and 312 K for
Cr). This means that calculations beyond the magnetic critical
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temperature of the alloy are beyond their scope. In a kinetic
calculation in a rigid lattice63,64 using these potentials directly,
the vibrational contribution to the entropy is not taken into
account, which modifies the solubility limits and, therefore,
the chemical composition in each phase. More specifically,
the experimental solubility limit at 773 K in the Fe-rich side
of the phase diagram is about 14–15%.21,25,65 On the other
hand, the original 2BM potential (according to the latest
reported values24) gives no miscibility gap at 773 K, whereas,
if the data shown in Ref. 25 are still valid, the solubility limit
at the same temperature without the vibrational contribution is
around 8%. The new version of the potential gives a solubility
about 20% and it seems more suitable for these kind of kinetic
calculations because its vibrational entropy is lower. However,
there is no information about the values for the solubility
without taking into consideration the vibrational entropy. For
the CDM potential the solubility at this temperature is already
too low. Its vibrational entropy contribution is small and,
therefore, the values for the solubility limits in a rigid lattice
model will not be strongly modified; although the variation
will persist and care should be taken if kinetic simulations on
a rigid lattice are to be performed. This discrepancy between
the relaxed models versus the rigid lattice approximations will
result in the wrong thermodynamic forces as taken into account
in the kinetic calculation. In the studies on precipitation
kinetics published in Refs. 28, 63, 53, and 64 nucleation starts
around 10%, in disagreement with experiments. It is worth
noting that describing this concentration region accurately is
important for industrial applications.

Our model avoids such a drawback, which makes it
more useful for kinetic calculations. In our model, the pair
interactions depend on the temperature taking in this way
into account the magnetic and vibrational contributions to the
entropy. This approximation will not be able to reproduce the
magnetic transitions either for the pure elements or the alloy.
Even though the ferromagnetic-paramagnetic transition in Fe
is neither linear with the temperature and nor is it in Cr or
the alloy, the simple model described is able to reproduce
the experimental phase diagram by adding just one extra
degree of freedom. This extra degree of freedom does not
affect the computational performance and makes it suitable
for large-scale calculations.

V. CONCLUSION

We propose in this article a rigid lattice model based on
concentration- and temperature-dependent pair interactions to
describe the thermodynamics of the Fe-Cr system in the whole

concentration range. It is fitted to both ab initio calculations
of the enthalpy of mixing at 0 K and to the experimental
critical temperature. Only the cross terms of the atomic pair
interactions depend on both the local concentration and the
temperature, while the self interaction terms are fitted to the
respective cohesive energies. In order to check the sensitivity of
energetic values in FeCr alloys against DFT implementations
with different approximations, and to choose the most accurate
values of the enthalpy of mixing, we have performed a set of
first-principles calculations. We carried out the calculations
from two different kind of approaches. The first one was the
norm-conserving pseudopotential approach as implemented in
the efficient SIESTA-NC code and the second the more robust
projector-augmented wave as implemented in the PWSCF code.
Both approaches give the same qualitative trend but different
quantitative mixing energies at 0 K. The resulting models are
similar, although the SIESTA values overestimate slightly the
Cr solubility in Fe.

Although it is simple and does not explicitly consider
the magnetic degrees of freedom, this approach captures
the main features of the Fe-Cr thermodynamics; thanks to
the concentration dependence of the pair interactions, it
reproduces the transition between the ordering and demixing
tendency and the trend in the short-range order parameter when
the Cr content increases. The magnetic and nonconfigurational
entropic contributions are taken into account by a linear
temperature dependence of the pair interactions. The resulting
phase diagram is in very good qualitative and quantitative
agreement with the experimental results. Finally, the model
remains simple enough to be used in Monte Carlo simulations
of the solid solution decomposition kinetics (preliminary
results can be found in Ref. 66).
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LEVESQUE, MARTÍNEZ, FU, NASTAR, AND SOISSON PHYSICAL REVIEW B 84, 184205 (2011)

9S. Hertzman and B. Sundman, Calphad 6, 67 (1982).
10J. O. Andersson and B. Sundman, Calphad 11, 83 (1987).
11Y. Y. Chuang, J. C. Lin, and Y. A. Chang, Calphad 11, 57 (1987).
12J. C. Lin, Y. Y. Chuang, K. C. Hsieh, and Y. A. Chang, Calphad 11,

73 (1987).
13M. Hennion, J. Phys. F 13, 2351 (1983).
14I. Mirebeau, M. Hennion, and G. Parette, Phys. Rev. Lett. 53, 687

(1984).
15I. Mirebeau and G. Parette, Phys. Rev. B 82, 104203 (2010).
16P. Olsson, I. A. Abrikosov, L. Vitos, and J. Wallenius, J. Nucl.

Mater. 321, 84 (2003).
17P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys. Rev. B 73,

104416 (2006).
18T. P. C. Klaver, R. Drautz, and M. W. Finnis, Phys. Rev. B 74,

094435 (2006).
19A. T. Paxton and M. W. Finnis, Phys. Rev. B 77, 024428 (2008).
20G. Bonny, D. Terentyev, and L. Malerba, Scr. Mater. 59, 1193

(2008).
21W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Crit. Rev.

Solid State Mater. Sci. 35, 125 (2010).
22G. Bonny, D. Terentyev, and L. Malerba, J. Phase Equilib. Diff. 31,

439 (2010).
23P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba,

Phys. Rev. B 72, 214119 (2005).
24G. Bonny, R. Pasianot, D. Terentyev, and L. Malerba, Philos. Mag.

91, 1724 (2011).
25G. Bonny, R. C. Pasianot, L. Malerba, A. Caro, P. Olsson, and

M. Y. Lavrentiev, J. Nucl. Mater. 385, 268 (2009).
26P. Erhart, B. Sadigh, and A. Caro, Appl. Phys. Lett. 92, 141904

(2008).
27P. Erhart, A. Caro, M. Serrano de Caro, and B. Sadigh, Phys. Rev.

B 77, 134206 (2008).
28G. Bonny, D. Terentyev, and L. Malerba, J. Nucl. Mater. 385, 278

(2009).
29J.-L. Bocquet, Defect and Diffusion Forum 203-205, 81 (2002).
30G. Inden and C. G. Schon, Calphad 32, 661 (2008).
31M. Y. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. P. C. Klaver, and

S. L. Dudarev, Phys. Rev. B 75, 014208 (2007).
32D. Nguyen-Manh, M. Lavrentiev, and S. Dudarev, C. R. Phys. 9,

379 (2008).
33A. V. Ruban, P. A. Korzhavyi, and B. Johansson, Phys. Rev. B 77,

094436 (2008).
34T. L. Swan-Wood, O. Delaire, and B. Fultz, Phys. Rev. B 72, 024305

(2005).
35M. S. Lucas, M. Kresch, R. Stevens, and B. Fultz, Phys. Rev. B 77

184303 (2008).
36P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J. O. Nilsson, and

B. Johansson, Phys. Rev. B 79, 054202 (2009).
37G. J. Ackland, Phys. Rev. Lett. 97, 015502 (2006).
38M. Y. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev.

B 81, 184202 (2010).

39M. Y. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev, Comput.
Mater. Sci. 4, 199 (2010).

40D. Nguyen-Manh and S. L. Dudarev, Phys. Rev. B 80, 104440
(2009).

41F. Soisson and C.-C. Fu, Phys. Rev. B 76, 214102 (2007).
42E. Fawcett, H. Alberts, V. Galkin, D. Noakes, and J. Yakhmi, Rev.

Mod. Phys. 66, 25 (1994).
43P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502

(2009).
44J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996).
45J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera,

P. Ordejón, and D. Sanchez-Portal, J. Phys. Condens. Matter 14,
2745 (2002).

46C. C. Fu, F. Willaime, and P. Ordejón, Phys. Rev. Lett. 92, 175503
(2004).

47C. C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, and A. Barbu,
Nat. Mater. 4, 68 (2005).

48C. C. Fu and F. Willaime, Phys. Rev. B 72, 064117 (2005).
49E. Martinez and C.-C. Fu, Phys. Rev. B 84, 014203 (2011).
50R. Soulairol, C.-C. Fu, and C. Barreteau, J. Phys. Condens. Matter

22, 295502 (2010).
51A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev.

Lett. 65, 353 (1990).
52P. Olsson, C. Domain, and J. Wallenius, Phys. Rev. B 75, 014110

(2007).
53C. Pareige, C. Domain, and P. Olsson, J. Appl. Phys. 106, 104906

(2009).
54D. Porter and K. E. Easterling, Phase Transformations in Metals

and Alloys (Chapman & Hall, London, 1992).
55C. Domb, in Phase Transitions and Critical Phenomena, edited by

C. Domb and M. Green (Academic Press, 1974), Vol. 3, Chap. 6,
p. 357.

56C. Domb and N. C. Dalton, Proc. Phys. Soc. 89, 859 (1966).
57O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948).
58D. Frenkel and B. Smit, Understanding Molecular Simulation

(Academic Press, New York, 2001).
59E. Fawcett, H. L. Alberts, V. Y. Galkin, D. R. Noakes, and J. V.

Yakhmi, Rev. Mod. Phys. 66, 25 (1994).
60K. Binder, Spinodal Decomposition (Wiley-VCH, Chichester,

2001), Chap. 6.
61J. M. Cowley, J. Appl. Phys. 21, 24 (1950).
62J. M. Cowley, Phys. Rev. 77, 5 (1950).
63G. Bonny, D. Terentyev, L. Malerba, and D. Van Neck, Phys. Rev.

B 79, 104207 (2009).
64C. Pareige, M. Roussel, S. Novy, V. Kuksenko, P. Olsson,

C. Domain, and P. Pareige, Acta Mater. 59, 2404 (2011).
65S. Novy, P. Pareige, and C. Pareige, J. Nucl. Mater. 384, 96

(2009).
66E. Martinez, C.-C. Fu, M. Levesque, M. Nastar, and F. Soisson,

Solid State Phenomena 172-174, 1146 (2011).

184205-10

http://dx.doi.org/10.1016/0364-5916(82)90018-9
http://dx.doi.org/10.1016/0364-5916(87)90021-6
http://dx.doi.org/10.1016/0364-5916(87)90019-8
http://dx.doi.org/10.1016/0364-5916(87)90020-4
http://dx.doi.org/10.1016/0364-5916(87)90020-4
http://dx.doi.org/10.1088/0305-4608/13/11/017
http://dx.doi.org/10.1103/PhysRevLett.53.687
http://dx.doi.org/10.1103/PhysRevLett.53.687
http://dx.doi.org/10.1103/PhysRevB.82.104203
http://dx.doi.org/10.1016/S0022-3115(03)00207-1
http://dx.doi.org/10.1016/S0022-3115(03)00207-1
http://dx.doi.org/10.1103/PhysRevB.73.104416
http://dx.doi.org/10.1103/PhysRevB.73.104416
http://dx.doi.org/10.1103/PhysRevB.74.094435
http://dx.doi.org/10.1103/PhysRevB.74.094435
http://dx.doi.org/10.1103/PhysRevB.77.024428
http://dx.doi.org/10.1016/j.scriptamat.2008.08.008
http://dx.doi.org/10.1016/j.scriptamat.2008.08.008
http://dx.doi.org/10.1080/10408431003788472
http://dx.doi.org/10.1080/10408431003788472
http://dx.doi.org/10.1007/s11669-010-9782-9
http://dx.doi.org/10.1007/s11669-010-9782-9
http://dx.doi.org/10.1103/PhysRevB.72.214119
http://dx.doi.org/10.1080/14786435.2010.545780
http://dx.doi.org/10.1080/14786435.2010.545780
http://dx.doi.org/10.1016/j.jnucmat.2008.12.001
http://dx.doi.org/10.1063/1.2907337
http://dx.doi.org/10.1063/1.2907337
http://dx.doi.org/10.1103/PhysRevB.77.134206
http://dx.doi.org/10.1103/PhysRevB.77.134206
http://dx.doi.org/10.1016/j.jnucmat.2008.12.002
http://dx.doi.org/10.1016/j.jnucmat.2008.12.002
http://dx.doi.org/10.4028/www.scientific.net/DDF.203-205.81
http://dx.doi.org/10.1016/j.calphad.2008.09.012
http://dx.doi.org/10.1103/PhysRevB.75.014208
http://dx.doi.org/10.1016/j.crhy.2007.10.011
http://dx.doi.org/10.1016/j.crhy.2007.10.011
http://dx.doi.org/10.1103/PhysRevB.77.094436
http://dx.doi.org/10.1103/PhysRevB.77.094436
http://dx.doi.org/10.1103/PhysRevB.72.024305
http://dx.doi.org/10.1103/PhysRevB.72.024305
http://dx.doi.org/10.1103/PhysRevB.77.184303
http://dx.doi.org/10.1103/PhysRevB.77.184303
http://dx.doi.org/10.1103/PhysRevB.79.054202
http://dx.doi.org/10.1103/PhysRevLett.97.015502
http://dx.doi.org/10.1103/PhysRevB.81.184202
http://dx.doi.org/10.1103/PhysRevB.81.184202
http://dx.doi.org/10.1016/j.commatsci.2010.04.033
http://dx.doi.org/10.1016/j.commatsci.2010.04.033
http://dx.doi.org/10.1103/PhysRevB.80.104440
http://dx.doi.org/10.1103/PhysRevB.80.104440
http://dx.doi.org/10.1103/PhysRevB.76.214102
http://dx.doi.org/10.1103/RevModPhys.66.25
http://dx.doi.org/10.1103/RevModPhys.66.25
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRevLett.92.175503
http://dx.doi.org/10.1103/PhysRevLett.92.175503
http://dx.doi.org/10.1038/nmat1286
http://dx.doi.org/10.1103/PhysRevB.72.064117
http://dx.doi.org/10.1103/PhysRevB.84.014203
http://dx.doi.org/10.1088/0953-8984/22/29/295502
http://dx.doi.org/10.1088/0953-8984/22/29/295502
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1103/PhysRevLett.65.353
http://dx.doi.org/10.1103/PhysRevB.75.014110
http://dx.doi.org/10.1103/PhysRevB.75.014110
http://dx.doi.org/10.1063/1.3257232
http://dx.doi.org/10.1063/1.3257232
http://dx.doi.org/10.1088/0370-1328/89/4/311
http://dx.doi.org/10.1021/ie50458a036
http://dx.doi.org/10.1103/RevModPhys.66.25
http://dx.doi.org/10.1063/1.1699415
http://dx.doi.org/10.1103/PhysRev.77.669
http://dx.doi.org/10.1103/PhysRevB.79.104207
http://dx.doi.org/10.1103/PhysRevB.79.104207
http://dx.doi.org/10.1016/j.actamat.2010.12.038
http://dx.doi.org/10.1016/j.jnucmat.2008.10.008
http://dx.doi.org/10.1016/j.jnucmat.2008.10.008
http://dx.doi.org/10.4028/www.scientific.net/SSP.172-174.1016

