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Infinite-randomness criticality in a randomly layered Heisenberg magnet
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We study the ferromagnetic phase transition in a randomly layered Heisenberg magnet using large-scale
Monte Carlo simulations. Our results provide numerical evidence for the infinite-randomness scenario recently
predicted within a strong-disorder renormalization-group approach. Specifically, we investigate the finite-size
scaling behavior of the magnetic susceptibility, which is characterized by a nonuniversal power-law divergence
in the Griffiths phase. We also study the perpendicular and parallel spin-wave stiffnesses in the Griffiths phase.
In agreement with the theoretical predictions, the parallel stiffness is nonzero for all temperatures T < Tc. In
contrast, the perpendicular stiffness remains zero in part of the ordered phase, giving rise to anomalous elasticity.
In addition, we calculate the in-plane correlation length, which diverges already inside the disordered phase at a
temperature significantly higher than Tc. The time autocorrelation function within model A dynamics displays
an ultraslow logarithmic decay at criticality and a nonuniversal power law in the Griffiths phase.
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I. INTRODUCTION

When weak quenched disorder is added to a system
undergoing a classical continuous phase transition, generically
the critical behavior will either remain unchanged or it will
be replaced by another critical point with different exponent
values. Which scenario is realized depends on whether or not
the clean critical point fulfills the Harris criterion.1 In contrast,
zero-temperature quantum phase transitions generically dis-
play much stronger disorder phenomena including power-law
quantum Griffiths singularities,2–4 infinite-randomness critical
points featuring exponential instead of power-law scaling,5,6

and smeared phase transitions.7,8 A recent review of these
phenomena can be found in Ref. 9, while Ref. 10 focuses on
metallic systems and also discusses experiments.

The reason for the disorder effects being stronger at
quantum phase transitions than at classical transitions is that
quenched disorder is perfectly correlated in the imaginary time
direction. Imaginary time behaves as an additional dimension
at a quantum phase transition and becomes infinitely extended
at zero temperature. Therefore, the impurities and defects are
effectively “infinitely large” in this extra dimension, which
makes them much harder to average out than the usual
finite-size defects and so increases their influence.

For this reason, one should also expect strong uncon-
ventional disorder phenomena at classical thermal phase
transitions in systems in which the disorder is perfectly
correlated in one or more space dimensions. Indeed, such
behavior has been observed in the McCoy-Wu model, a
disordered classical two-dimensional Ising model having
perfect disorder correlations in one of the two dimensions.
In a series of papers, McCoy and Wu11–14 showed that this
model exhibits an unusual phase transition featuring a smooth
specific heat while the susceptibility is infinite over an entire
temperature range. Fisher5,6 achieved an essentially complete
understanding of this phase transition with the help of a
strong-disorder renormalization-group approach (using the
equivalence between the McCoy-Wu model and the random
transverse-field Ising chain). He determined that the critical
point is of exotic infinite-randomness type and is accompanied
by power-law Griffiths singularities. In a classical Ising model

with perfect disorder correlations in two dimensions, the
disorder effects are even stronger than in the McCoy-Wu
model: the sharp critical point is destroyed, and the transition
is smeared over a range of temperatures.15,16

Recently, another classical system with perfect disorder
correlations in two dimensions was investigated by means of a
strong-disorder renormalization group.17 This theory predicts
that the randomly layered Heisenberg magnet features a sharp
critical point (in contrast to the Ising case discussed above).
However, it is of exotic infinite-randomness type. Somewhat
surprisingly, it is in the same universality class as the quantum
critical point of the random transverse-field Ising chain.

In this paper, we present the results of Monte Carlo
simulations of the randomly layered Heisenberg model.
They provide numerical evidence in support of the above
renormalization-group predictions. Our paper is organized as
follows. In Sec. II, we define our model and discuss its phase
diagram. We also briefly summarize the predictions of the
strong-disorder renormalization-group theory.17 In Sec. III, we
describe our Monte Carlo simulations, we present the results,
and compare them to the theory. We conclude in Sec. IV.

II. MODEL AND RENORMALIZATION-GROUP
PREDICTIONS

We consider a ferromagnet consisting of a random sequence
of layers made up of two different ferromagnetic materials; see
sketch in Fig. 1.

Its Hamiltonian, a classical Heisenberg model on a three-
dimensional lattice of perpendicular size L⊥ (in z direction)
and in-plane size L‖ (in the x and y directions), is given by

H =−
∑

r

J ‖
z (Sr · Sr+x̂ + Sr · Sr+ŷ) −

∑
r

J⊥
z Sr · Sr+ẑ. (1)

Here, Sr is a three-component unit vector on lattice site r, and
x̂, ŷ, and ẑ are the unit vectors in the coordinate directions.
The interactions within the layers, J ‖

z , and between the layers,
J⊥

z , are both positive and independent random functions of the
perpendicular coordinate z.
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FIG. 1. (Color online) Schematic of the layered Heisenberg
magnet: it consists of a random sequence of layers of two different
ferromagnetic materials.17

In the following, we take all J⊥
z to be identical, J⊥

z ≡ J⊥,
while the J

‖
z are drawn from a binary probability distribution,

P (J ‖) = (1 − p)δ(J ‖ − Ju) + pδ(J ‖ − Jl), (2)

with Ju > Jl . Here, p is the concentration of the “weak” layers,
while 1 − p is the concentration of the “strong” layers.

The qualitative behavior of the model (1) is easily explained
(see Fig. 2). At sufficiently high temperatures, the model is
in a conventional paramagnetic (strongly disordered) phase.
Below a temperature Tu (the transition temperature of a
hypothetical system having J

‖
z ≡ Ju for all z) but above the

actual critical temperature Tc, rare thick slabs of strong layers
develop local order while the bulk system is still nonmagnetic.
This is the paramagnetic (weakly disordered) Griffiths phase
(or Griffiths region). In the ferromagnetic (weakly ordered)
Griffiths phase, located between Tc and a temperature Tl (the
transition temperature of a hypothetical system having J

‖
z ≡ Jl

for all z), bulk magnetism coexists with rare nonmagnetic
slabs. Finally, below Tl , all slabs are locally ferromagnetic
and the system is in a conventional ferromagnetic (strongly
ordered) phase.

In Ref. 17, the behavior in both Griffiths phases and
at criticality has been derived within a strong-disorder
renormalization-group calculation. Here, we simply motivate
and summarize the results. The probability of finding a
slab of LRR consecutive strong layers is given by simple
combinatorics; it reads w(LRR) ∼ (1 − p)LRR = e−p̃LRR with
p̃ = − ln(1 − p). Each such slab is equivalent to a two-
dimensional Heisenberg model with an effective interaction
LRRJu. Because the two-dimensional Heisenberg model is
exactly at its lower critical dimension, the renormalized dis-
tance from criticality, ε, of such a slab decreases exponentially

FIG. 2. (Color online) Schematic phase diagram of the randomly
layered Heisenberg magnet (1). SD and SO denote the conventional
strongly disordered and strongly ordered phases, respectively. WD
and WO are the weakly disordered and ordered Griffiths phases. Tc is
the critical temperature, while Tu and Tl mark the boundaries of the
Griffiths phase.

with its thickness, ε(LRR) ∼ e−bLRR .9,18 Combining the two
exponentials gives a power-law probability density of locally
ordered slabs,

ρ(ε) ∼ εp̃/b−1 = ε1/z−1, (3)

where the second equality defines the conventionally used dy-
namical exponent, z. It increases with decreasing temperature
throughout the Griffiths phase and diverges as z ∼ 1/|T − Tc|
at the actual critical point.

Many important observables follow from appropriate in-
tegrals of the density of states (3). The susceptibility can be
estimated by χ ∼ ∫

dε ρ(ε)/ε. In an infinite system, the lower
bound of the integral is 0; therefore, the susceptibility diverges
in the entire temperature region where z > 1. A finite system
size L‖ in the in-plane directions introduces a nonzero lower
bound εmin ∼ L−2

‖ . Thus, for z > 1, the susceptibility in the
weakly disordered Griffiths phase diverges as

χ (L‖) ∼ L
2−2/z

‖ (4)

and in the weakly ordered Griffiths phase, it diverges as

χ (L‖) ∼ L
2+2/z

‖ . (5)

The strong-disorder renormalization group17 confirms these
simple estimates and gives χ ∼ L2

‖[ln (L‖/a)]2φ−1/ψ at criti-

cality where φ = (1 + √
5)/2 and ψ = 1/2 are critical expo-

nents of the infinite randomness critical point.
The spin-wave stiffness ρs is defined by the work needed to

twist the spins of two opposite boundaries by a relative angle
θ . Specifically, in the limit of small θ and large system size,
the free-energy density f depends on θ as

f (θ ) − f (0) = 1

2
ρs

(
θ

L

)2

. (6)

Because the randomly layered Heisenberg model is
anisotropic, we need to distinguish the parallel spin-wave
stiffness ρ

‖
s from the perpendicular spin-wave stiffness ρ⊥

s . To
calculate the parallel spin-wave stiffness, we apply boundary
conditions at x = 0 and x = L‖ and set L = L‖ in Eq. (6),
whereas the boundary conditions are applied at z = 0 and
z = L⊥ to calculate the perpendicular spin-wave stiffness with
L = L⊥ in Eq. (6).

Let us first discuss the parallel stiffness. In this case,
the free-energy difference f (θ ) − f (0) is simply the sum
over all layers participating in the long-range order (each
having the same twisted boundary conditions). Thus ρ

‖
s is

nonzero everywhere in the ordered phase. The strong-disorder
renormalization-group approach17 predicts

ρ‖
s ∼ m ∼ |T − Tc|β (T < Tc), (7)

where β = (3 − √
5)/2 is the order parameter exponent of

the infinite-randomness critical point. The parallel stiffness
behaves like the total magnetization m = |∑r 〈Sr〉|/(L⊥L2

‖),
because both renormalize additively under the strong-disorder
renormalization-group theory.17
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If the twist θ is applied between the bottom (z = 0) and
the top (z = L⊥) layers, the local twists between consecutive
layers will vary from layer to layer. Minimizing f (θ ) −
f (0) leads to ρ⊥

s ∼ 〈1/J⊥
eff〉−1, where J⊥

eff are the effective
couplings between the rare regions. Within the strong-disorder
renormalization-group approach, the distribution of the J⊥

eff
follows a power law p(J⊥

eff) ∼ (J⊥
eff)

1/z−1. Thus ρ⊥
s = 0 in part

of the ordered Griffiths phase. It only becomes nonzero once
z falls below 1 at a temperature Ts < Tc. Between Tc and Ts ,
the system displays anomalous elasticity. Here, the free energy
due to the twist scales with f (θ ) − f (0) ∼ L−1−z

⊥ . Thus the
perpendicular stiffness formally vanishes as ρ⊥

s ∼ L1−z
⊥ with

increasing L⊥.
To study the dynamical critical behavior, a phenomenolog-

ical dynamics is added to the randomly layered Heisenberg
model. The simplest case is a purely relaxational dynamics
corresponding to model A in the classification of Hohenberg
and Halperin.19

The dynamic behavior can be characterized by the average
time autocorrelation function

C(t) = 1

L⊥L2
‖

∫
d3r〈Sr(t)Sr(0)〉, (8)

where Sr(t) is the value of the spin at position r and time t .
The behavior of C(t) in the weakly disordered Griffiths

phase can be easily estimated. The correlation time of a single
locally ordered slab is proportional to 1/ε.17 Summing over
all slabs using the density of states (3) then gives

C(t) ∼
∫

dε ρ(ε)e−εt ∼ t−1/z. (9)

The strong-disorder renormalization-group calculation17

confirms this estimate. Moreover, at criticality, when z → ∞,
it gives an even slower logarithmic behavior,

C(t) ∼ [ln(t/t0)]φ−1/ψ , (10)

where t0 is a microscopic length scale.

III. MONTE CARLO SIMULATIONS

A. Overview

In this section, we report results of Monte Carlo simulations
of the randomly layered Heisenberg magnet. Because the
phase transition in this system is dominated by the rare
regions, sufficiently large system sizes are required in order to
get reliable results. We have simulated system sizes ranging
from L⊥ = 90 to 800 and L‖ = 10 to 400. We have chosen
Ju = 1 and Jl = 0.25 in Eq. (2). All the simulations have
been performed for disorder concentrations p = 0.8. With
these parameter choices, the Griffiths region ranges from
Tl ≈ 0.63 to Tu ≈ 1.443. For optimal performance, we have
used large numbers of disorder realizations, ranging from 100
to 7200, depending on the system size. While studying the
thermodynamics, we have used the efficient Wolff cluster
algorithm20 to eliminate critical slowing down. We have
equilibrated every run by 100 Monte Carlo sweeps, and
we have used another 100 sweeps for measurements. To
investigate the critical dynamics, we have equilibrated the
system using the Wolff algorithm, but then propagated the

FIG. 3. (Color online) Susceptibility χ as a function of in-plane
system size L‖ for several temperatures in the Griffiths region. The
perpendicular size is L⊥ = 800; the data are averages over 300
disorder configurations. The solid lines are fits to the power laws
(4) and (5).

system in time by means of the Metropolis algorithm,21 which
implements model A dynamics.

B. Thermodynamics

To test the finite-size behavior (4) and (5) of the suscepti-
bility, one needs to consider samples having sizes L⊥ � L‖,
such that L⊥ is effectively infinite. We have used system sizes
L⊥ = 800 and L‖ = 10 to 90. Figure 3 shows the susceptibility
χ as a function of L‖ for several temperatures in the Griffiths
region between Tl = 0.63 and Tu ≈ 1.443. In agreement with
the theoretical predictions (4) and (5), χ follows a nonuniversal
power law in L‖ with a temperature-dependent exponent.
Simulations for many more temperature values, in the range
T ≈ 0.76–1.2, yield analogous results.

The values of the exponent z extracted from fits to Eqs. (4)
and (5) are shown in Fig. 4 for the paramagnetic and
ferromagnetic sides of the Griffiths region. z can be fitted

FIG. 4. (Color online) Griffiths dynamical exponent z vs temper-
ature. The data are extracted from the perpendicular stiffness data
in Fig. 6(b), the susceptibility data in Fig. 3, the parallel correlation
length data in Fig. 5, and the autocorrelation function data in Fig. 7.
The solid lines are a power-law fit of z (extracted from Fig. 3) to
Eqs. (4) and (5).
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FIG. 5. (Color online) Scaled in-plane correlation length ξ‖/L‖
as a function of temperature T for several in-plane system sizes L‖
in the Griffiths region. The perpendicular size is L⊥ = 800; the data
are averaged over 300 disorder configurations.

to the predicted power law z ∼ 1/|T − Tc|, as discussed after
Eq. (3), giving the estimate Tc ≈ 0.933.

For a deeper understanding of the thermodynamic critical
phenomena of the layered Heisenberg model, we have also
studied the behavior of the in-plane correlation lengths in
Griffiths phase. Figure 5 shows the scaled correlation length
ξ‖/L‖ as a function of temperature for different values of L‖.
Surprisingly, the curves cross at a temperature, T ≈ 1.17,
significantly higher than Tc ≈ 0.93. This implies that the
average in-plane correlation length diverges in part of the
disordered phase.

To understand this behavior, we estimate the rare region
contribution to the averaged in-plane correlation length. It can
be calculated by integrating over the density of states (3) as

ξ 2
‖ ∼

∫ ε0

0
dε ρ(ε)ξ 2

‖ (ε) ∼
∫ ε0

0
dε ε1/z−1 1

ε
, (11)

where ξ 2
‖ (ε) ∼ 1/ε is the dependence of the in-plane cor-

relation length of a single region17,22 on the renormalized
distance ε from criticality. Note that we average ξ 2

‖ instead
of ξ‖ because that is what numerically happens in the second
moment method, which defines ξ 2

‖ via

ξ 2
‖ =

∑
r C(r)r2∑

r C(r)
, (12)

with C(r) being the spatial correlation function. The integral
in Eq. (11) diverges for z > 1 and converges for z < 1.
The in-plane correlation length therefore diverges already
in the disordered Griffiths phase at the temperature at
which the Griffiths dynamical exponent is z = 1. From Fig. 5,
we estimate this temperature to be T ≈ 1.17. As can be seen in
Fig. 4, this value is in good agreement with the result extracted
from the finite-size behavior of χ .

We now turn to the spin-wave stiffness. Calculating the
stiffness by actually carrying out simulations with twisted
boundary conditions is not very efficient. However, the stiff-
ness can be rewritten in terms of expectation values calculated
in a conventional run with periodic boundary conditions. The

FIG. 6. (Color online) (a) Perpendicular and parallel spin-wave
stiffnesses (ρ⊥

s and ρ‖
s , respectively) as functions of temperature

T for a system with sizes L⊥ = 100 and L‖ = 400. The data
are averaged over 100 disorder configurations. (b) Perpendicular
spin-wave stiffness as a function of L⊥ for temperatures in the weakly
ordered Griffiths phase and L‖ = 400. The data are averaged over
1000 disorder configurations. The solid lines are fits to Eq. (14).

resulting formula, which is a generalization of that used by
Caffarel et al.,23 reads

ρ⊥
s =

〈∑
〈r,r′〉

Jr,r′ [Sr · Sr′ − (Sr · â)(Sr′ · â)] (z − z′)2

〉

− 1

T

〈⎛
⎝∑

〈r,r′〉
Jr,r′ [(Sr × Sr′) · â] (z − z′)

⎞
⎠

2〉
. (13)

Here, â can be any unit vector perpendicular to the total
magnetization m. For ρ

‖
s , (z − z′) has to be replaced by (x −

x ′). This formula is derived in the Appendix.
Figure 6(a) shows the results for the perpendicular and

parallel stiffnesses of our randomly layered Heisenberg model.
We have used a system of size L⊥ = 100 and L‖ = 400.
The figure shows that the two stiffness indeed behave very
differently. The parallel stiffness ρ

‖
s vanishes at T ≈ 0.9–0.95,

in good agreement with our earlier estimate of Tc ≈ 0.93. In
contrast, the perpendicular stiffness vanishes at a much lower
temperature T ≈ 0.7. Thus, in the range between T ≈ 0.7
and Tc, the system displays anomalous elasticity, as predicted.
(Note: the slight rounding of both ρ

‖
s and ρ⊥

s can be attributed
to finite-size effects.)

The results of the perpendicular spin-wave stiffness ρ⊥
s

are analyzed in more detail in Fig. 6(b) for perpendicular
sizes L⊥ = 15–40. We have used a parallel size L‖ = 400
and a temperature range T = 0.65–0.85, where the data are
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FIG. 7. (Color online) Time autocorrelation function C(t) for
temperatures from T = 1.25 to 1.35 (within the Griffiths phase).
The system sizes are L⊥ = 400 and L‖ = 100. The data are averaged
over 1720–7200 disorder configurations. The solid lines are fits to the
power-law prediction (9) (with the fit range marked).

averaged over 1000 disorder configurations. The plot shows
a nonuniversal power-law dependence of ρ⊥

s on L⊥, which
agrees with the prediction

ρ⊥
s ∼ L1−z

⊥ . (14)

The dynamical exponents z extracted from fits of ρ⊥
s to Eq. (14)

are also shown in Fig. 4. While they roughly agree with the
values extracted from χ , the agreement is not very good. We
believe this is due to the rather small L⊥ values used.

C. Critical dynamics

To investigate the behavior of the autocorrelation function
C(t) in the weakly disordered Griffiths phase, we have used
system sizes L⊥ = 400 and L‖ = 100 and temperatures from
T = 1.25 to 1.35. From Fig. 7, one can see that the long-time
behavior of C(t) in the Griffiths phase follows a nonuniversal
power law, which is in agreement with the prediction (9). Fits
of the data to Eq. (9) can be used to obtain yet another estimate
of the dynamical exponent z. The resulting values are shown

FIG. 8. (Color online) Time autocorrelation function C(t) for
temperatures from T = 0.86 to 0.91 (near criticality). The system
sizes are L⊥ = 400 and L‖ = 230. The data are averaged over 70
to 80 disorder configurations. The dashed line shows the logarithmic
behavior (10) at the estimated critical temperature Tc = 0.895.

in Fig. 4; they are in good agreement with those extracted from
χ .

Figure 8 shows the behavior of C(t) near criticality plotted
such that the expected logarithmic time dependence (10) gives
a straight line independent of the value of the microscopic
time t0. We have used system sizes L⊥ = 400 and L‖ = 230
and temperatures from T = 0.86 to 0.91. We find that C(t)
indeed follows the prediction at an estimated Tc ≈ 0.895. This
estimate agrees reasonably well with that stemming from the
finite-size behavior of χ . We attribute the remaining difference
to the finite-size effects and [in the case of C(t)] finite-time
effects.

IV. CONCLUSIONS

To summarize, we have reported the results of large-
scale Monte Carlo simulations of the thermodynamics and
dynamic behavior of a randomly layered Heisenberg model.
Our results provide strong numerical evidence in support of
the infinite-randomness scenario predicted within the strong-
disorder renormalization-group approach.17 Morever, our data
are compatible with the prediction that the randomly layered
Heisenberg model is in the same universality class as the
one-dimensional random transverse-field Ising model.

We would have liked to determine the complete set of
critical exponents of the infinite-randomness critical point
directly from the numerical data. To this end, we have
attempted to perform an anisotropic finite-size scaling analysis
as in Refs. 24 or 25. However, within the accessible range of
system sizes of up to about 107 sites, the corrections to the
leading scaling behavior were so strong that we could not
complete the analysis. This task thus remains for the future.

An important question left unanswered by the strong-
disorder renormalization-group approach17 is whether or not
weakly or moderately disordered systems actually flow to
the infinite-randomness critical point. The clean Heisenberg
critical point is unstable against weak layered disorder because
it violates the generalized Harris criterion drν > 2, where
dr = 1 is the number of random dimensions. Thus weak
layered randomness initially increases under renormalization.
Our numerical parameter choices, p = 0.8 and Ju/Jl = 4,
correspond to moderate disorder as the distribution is not
particularly broad on a logarithmic scale. The fact that we
do confirm infinite-randomness behavior for these parameters
suggests that the infinite-randomness critical point may control
the transition for any nonzero disorder strength. A numerical
verification of this conjecture by simulating very weakly
disordered systems would require even larger system sizes
and is thus beyond our present computational capabilities.

Experimental verifications of infinite-randomness critical
behavior and the accompanying power-law Griffiths singu-
larities have been hard to come by, in particular in higher-
dimensional systems. Only very recently, promising measure-
ments have been reported26,27 of the quantum phase transitions
in CePd1−xRhx and Ni1−xVx . The randomly layered Heisen-
berg magnet considered here provides an alternative realization
of an infinite-randomness critical point. It may be more easily
realizable in experiment because the critical point is classical,
and samples can be produced by depositing random layers of
two different ferromagnetic materials.
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Magnetic multilayers with systematic variation of the
critical temperature from layer to layer have already been
produced,28 and our results would apply to random versions
of these structures.
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APPENDIX: SPIN-WAVE STIFFNESS IN TERMS OF SPIN
CORRELATION FUNCTIONS

Twisted boundary conditions, i.e., forcing the spins on one
surface of the sample of size L to make an angle of θ with those
on the opposite surface, lead to a change in the free-energy
density f . It can be parametrized by

f (θ ) − f (0) = 1

2
ρs

(
θ

L

)2

, (A1)

which defines the spin-wave stiffness ρs .
For definiteness, assume we apply a twist of θ around the

perpendicular axis between the top and bottom surfaces of the
sample. We parametrize the Heisenberg spin as

Sr =

⎛
⎜⎝

sin(ϑr) cos(φr)

sin(ϑr) sin(φr)

cos(ϑr)

⎞
⎟⎠. (A2)

The boundary conditions then read φr = 0 at the bottom (z =
0) surface and φr = θ at the top (z = L⊥) surface. To eliminate
the twisted boundary condition, we now perform the variable
transformation

ψr = φr − θ
zr

L⊥
, (A3)

which gives new boundary conditions of ψr = 0 at both zr = 0
and zr = L⊥.

Substituting the variable transformation in the Heisenberg
Hamiltonian (1), we obtain

H = −
∑
〈r,r′〉

Jr,r′

{
sin(ϑr) sin(ϑr′) cos

(
ψr − ψr′

+ θ

L⊥
(z − z′)

)
+ cos(ϑr) cos(ϑr′)

}
, (A4)

where the twist is “distributed” over the volume. Thus the twist
angle θ now appears as a parameter of the Hamiltonian. We
can use standard methods to reformulate the second derivative
of the free energy F as

∂2F

∂θ2
= 1

T

〈
∂H

∂θ

〉2

+
〈
∂2H

∂θ2

〉

− 1

T

〈(
∂H

∂θ

)2
〉

, (A5)

where the first term on the right-hand side vanishes due to
symmetry. Evaluating the derivatives of H for the Hamiltonian
(A4) gives the spin-wave stiffness ρs = L2(∂2f /∂θ2)|θ=0

as

ρ⊥
s =

〈∑
〈r,r′〉

Jr,r′ [Sr · Sr′ − (Sr · k̂)(Sr′ · k̂)](z − z′)2

〉

− 1

T

〈( ∑
〈r,r′〉

Jr,r′ [(Sr × Sr′) · k̂](z − z′)

)2〉
. (A6)

Here, k̂ is the unit vector in the z-direction. The same
equation was derived in Ref. 23 for the XY case. Equation (A6)
needs to be evaluated with fixed boundary conditions at the top
and bottom layeres. Applying this formula to simulations with
periodic boundary conditions leads to incorrect results in the
Heisenberg case (even though it works in the XY case). The
reason is that Eq. (A6) is sensitive to twist in the XY plane only.

In the Heisenberg case, this can be fixed by aligning
the imaginary twist axis with a direction â perpendicular to
the total magnetization in each Monte Carlo measurement.
We use â = (m × k̂)/|m × k̂|. The resulting formula for
the spin-wave stiffness can be used efficiently by Monte
Carlo simulations with periodic boundary conditions. It
reads

ρ⊥
s =

〈∑
〈r,r′〉

Jr,r′ [Sr · Sr′ − (Sr · â)(Sr′ · â)] (z − z′)2

〉

− 1

T

〈( ∑
〈r,r′〉

Jr,r′ [(Sr × Sr′) · â] (z − z′)

)2〉
. (A7)

We have tested that this equation reproduces the results
obtained directly from Eq. (A1).
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