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In most of the ternary (and higher-order) ferromagnetic shape memory alloys (FSMAs) with compositions
close to the A2BC stoichiometry, the austenite phase exhibits L21-type ordering. Recent investigations of the
Co-Ni-Ga FSMA system, however, suggest that the austenite phase has B2-type ordering, although definite
confirmation remains elusive. In this work, we present a theoretical investigation of the effect of configurational
order on the magnetic properties of the ordered (L21) and disordered (B2) FSMA Co2NiGa. Through the use
of calculations based on density functional theory, we predict the structural and magnetic properties (including
magnetic exchange constants) of ordered and disordered Co2NiGa alloys. We validate our calculation of the
magnetic exchange constants by extracting the Curie temperatures of the austenite and martensite structures
and comparing them to experimental results. By constructing a q-state Potts magnetic Hamiltonian and through
the use of lattice Monte Carlo simulation, we predict the finite-temperature behavior of the magnetization and
magnetic susceptibility as well as the magnetic specific heat and entropy. The role of configurational order in the
magnetic properties of the phases involved in the martensitic phase transformation is discussed, and predictions
of the magnitude of the magnetic contributions to the transformation entropy are presented. The calculations
are compared to experimental information available in the literature as well as experiments performed by the
authors. It is concluded that in FSMAs magnetism plays a fundamental role in determining the relative stability
of the austenite and martensite phases, which in turn determines the martensitic transformation temperature Ms ,
irrespective of whether magnetic fields are used to drive the transformation.
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I. INTRODUCTION

In recent years, research on ferromagnetic shape memory
alloys (FSMAs) has gained significant momentum owing to
their remarkable multifunctional behavior, not only related to
the shape memory effect, giant magnetostriction, and coupled
magnetomechanical phase transformations but also—at least
in some systems—due to other magnetic phenomena such
as the giant magnetocaloric effect and magnetoresistance.1,2

Ni-Mn-Ga-based FSMAs have been studied in great detail
since the first reported large magnetic-field-induced strains in
these alloys.3 Despite their remarkable magnetic-field-induced
shape change levels, these materials suffer from relatively
low Curie temperature (∼373 K), intrinsic brittleness, rela-
tively low martensitic transformation temperatures, and low
actuation stress levels.4,5 In order to increase the martensitic
start transformation temperature (Ms), Ga is replaced with
Mn, but the resulting alloys have poor magnetic properties
due to antiferromagnetic interaction between the Mn atoms
occupying the original Mn lattice sites and those occupying
Ga lattice sites.6,7 Some of these problems have been solved
by substituting Mn with Co.

Co2NiGa alloys have been proposed as a possible alter-
native to Ni-Mn-Ga alloys due to their higher transformation
and Curie temperatures as well as better ductility.8 In most
ternary and higher-order FSMAs the austenite phase that
undergoes the martensitic transformation has an L21-type
ordered structure with the A2BC stoichiometry. This structure
can actually be visualized as two interpenetrating bcc lattices
with B2-type ordering, in which the majority atom (A)
occupies the body-centered sites and the minority atoms (B and
C) occupy alternate corners. In contrast to what is observed in

most Heusler-type FSMAs, the austenite phase in Co-Ni-Ga
alloys has a stoichiometry close to Co2NiGa but seems to have
B2-type ordering (β phase) as opposed to L21, although there
is no definite conclusion in this regard.9,10

Judicious manipulation of the composition and heat treat-
ment temperature in Co-Ni-Ga SMAs can introduce order
in disordered systems as well as resulting in a multiphase
microstructure composed of the transformable β phase,
accompanied by a much more ductile fcc-type (γ ) phase
as well as intermetallic precipitates (γ ′) based on the L12

structure. The γ phase greatly enhances the high-temperature
workability and room-temperature ductility of these alloys but
can also strongly affect the shape memory properties and
martensitic transformation temperatures resulting in a wide
range of operating temperatures.10–13

Atomic ordering has been known to influence the trans-
formation behavior of SMAs. The order-disorder transition,
long-range ordering, and effect of ordering on the phase
transformation temperatures in various shape memory alloys
have been studied experimentally and numerically.14–21 The
effect of atomic ordering on the transformation temperatures
has been experimentally investigated in Ni45Co5Mn36.7In13.3

(Ref. 19) and Ni55Fe20Al25 (Ref. 21) FSMAs. In the case of
Ni45Co5Mn36.7In13.3, fully ordered L21and partially ordered
B2 phases have been obtained by annealing the samples at
623 and 923 K, while for Ni55Fe20Al25 an ordered phase has
been obtained by annealing at 793 K and the site-disordered
phase by simply quenching the samples from higher temper-
atures. For the ordered systems, the Curie temperature in the
austenite phase and magnetization levels in the martensite
phase are higher but the martensite transformation temperature
is lower than in the partially ordered or disordered phase. The
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decrease in the martensitic transformation temperatures with
ordering of the austenite phase to L21 has also been reported
previously in NiMnAl FSMAs.20 In the case of Ni55Fe20Al25,
austenite and martensite phases coexist in the ordered phase
for a wide temperature range, while for the disordered phase
the martensitic transformation is well defined.21

Ordered and disordered alloys of Co2NiGa have also
been studied experimentally.9 Comparison of the magnetic
properties of ordered and disordered phases suggest that
ordering can increase the magnetization by 40%. This result
is in contrast to those reported for Ni55Fe20Al25, in which the
specific magnetization of the ordered phase is lower than that
of the disordered phase.21 The decrease in magnetization of
the disordered phase in Co2NiGa is attributed to the sharp
decrease in the magnetic moment of the Co atoms surrounded
by a large number of Co or Ni atoms in the disordered alloys.9

In previous work by the one of the authors,22 ab initio
calculations have been performed to study the phase stability,
phase transformation, and electronic properties of the stoichio-
metric ordered and disordered Co2NiGa alloys. The ordered
structure was modeled as L21 while the disordered phases
were modeled with a B2-type structure. Austenite has been
found to be less stable than martensite in both the ordered
and disordered states.22 Specifically, Bain-path studies showed
that the austenite phase is metastable (at best) with respect
to volume-conserving tetragonal distortions. It was suggested
that the relative instability of austenite can be attributed to the
decrease in magnetism due to increase in magnetic disorder
and to the increase in the volume of the system due to the
lattice thermal expansion as the temperature increases.22 On
the other hand, for the Ni-Mn-Ga alloys, the stability of the
tetragonal (martensite) vs the cubic (austenite) structure is
associated with the Jahn-Teller distortion.23 From electronic
structure calculations, instability in Ni2MnGa is due to the
lack of hybridization between 3d spin-down Mn and Ni states,
while in Co2NiGa, the instability is due to the location of
the Fermi level at the beginning of low-lying spin-down
antibonding states.22 Similar theoretical work by Siewert
et al.24 on Co-Ni-Ga Heusler alloys seems to corroborate the
results presented in Ref. 22, although in the former case the
effect of disorder on the stability of the austenite phase was
examined by exploring conventional Heusler L21 ordering as
well as so-called inverse Heusler configurations in which one
of the majority atoms—Co in this case—is replaced by either
of the minority components—Ni or Ga in this instance.

The present work has been performed to elucidate the
effect of atomic ordering on the magnetic properties of
Co-Ni-Ga alloys using experiments, ab initio calculations, and
Monte Carlo simulations. As described in previous work,22

a body-centered structure with B2-type ordering has been
used to mimic the disordered state of the system and an
L21 structure has been used to mimic the fully ordered
state. We consider the stoichiometric Co2NiGa configuration
as well as off-stoichiometric compositions that have been
widely studied experimentally. In addition, we present results
from the characterization of off-stoichiometric Co-Ni-Ga
alloys prepared by the authors. For the simulation of the
off-stoichiometric compositions, we consider different degrees
of order by varying the atomic occupation of the different
sublattices of the L21 structure as well as by considering the

fully disordered B2 configuration. We examine the effects
of configuration on magnetic properties by calculating the
magnetic exchange constants, report the calculated saturation
magnetization, Curie temperatures, and structural parameters
for all the configurations considered in this work, and compare
these results with available experimental information. For the
stoichiometric compositions, we calculate the magnetization,
magnetic susceptibility, magnetic specific heat, and magnetic
entropy by means of Monte Carlo simulations assuming
a q-state Potts Hamiltonian and using magnetic exchange
parameters obtained from ab initio calculations.

II. SIMULATION METHODS

Electronic structure calculations are carried out us-
ing the spin-polarized relativistic Korringa-Kohn-Rostoker
(SPRKKR) band structure code.25,26 This code is based
on the KKR–Green’s function formalism that makes use
of multiple-scattering theory, and the electronic structure is
expressed in terms of the corresponding Green’s function as
opposed to Bloch wave functions and eigenvalues. In this code,
configurational disorder is treated through the coherent poten-
tial approximation (CPA). The exchange-correlation potential
was modeled within the generalized gradient approximation
of Perdew, Burke, and Ernzerhof. The first step in these
calculations is to determine the optimized lattice parameter
for all the structures. These calculations were performed
using a spin-polarized scalar-relativistic Hamiltonian with full
potential using an orbital momentum cutoff lmax = 3 on a
grid of 22 × 22 × 22 k points and 30 points on the complex
energy path. All calculations converged to 0.13 meV of total
energy. For the optimized lattice parameter, the self-consistent
potential is calculated. This new self-consistent potential is
then used to calculate the Heisenberg magnetic exchange
coupling parameters J

ij
m , using the equation proposed by

Liechtenstein et al.27

The magnetic exchange parameters can be used to calculate
the Curie temperature of the system. For a multilattice system,
the Curie temperature of the system using the mean-field
approximation (MFA) can be obtained by solving the following
coupled equations:28,29

3

2
kBT MFA

c =
∑

ν

J
μν

m,0〈eν〉 (1)

and

J
μν

m,0 =
∑

R �=0 when μ=ν

J
μν

m,0R. (2)

In Eq. (2), the magnetic exchange parameter J
μν

m,0 is obtained by
summing all exchange parameters involving the sublattices μ

and ν, including all equivalent sublattices ν translated by lattice
vector R, except when μ = ν in the first unit cell (R = 0).

Rewriting these equations, we have the following eigen-
value problem:

(Θ − T I )E = 0, 3
2kBΘμν = J

μν

m,0, (3)

where J
μν

m,0 is the magnetic exchange parameter between
sublattices μ and ν, kB is the Boltzmann constant, I is
the identity matrix, Eν = 〈eν〉, and 〈eν〉 is the average z
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component of the unit vector 〈eν
R〉 in the direction of the

magnetic moment in sublattice ν. The Curie temperature of
the system corresponds to the largest eigenvalue of Θ .28–31

For disordered systems, a single sublattice may be occupied
by more than one atom with different atomic concentrations.
In this case, the effective exchange parameters are used in
the calculations of the Curie temperature. For example, for
a ternary stoichiometric B2 structure, the sublattice (0,0,0) is
occupied by Ni and Ga atoms each at 50 at. %, while the
sublattice (0.5,0.5,0.5) is occupied by Co atoms. Let us denote
an equivalent atom at sublattice (0,0,0) as x. The effective
exchange parameter between the Co atom and the x “atoms”
is given as32

J Co-X
m = 0.5J Co-Ni

m + 0.5J Co-Ga
m , (4)

where J Co-Ni
m is the exchange parameter between Co atoms

in the sublattice (0.5,0.5,0.5) and Ni atoms in the sublattice
(0,0,0) and J Co-Ga

m is the exchange parameter between Co atoms
in the sublattice (0.5,0.5,0.5) and Ga atoms in the sublattice
(0,0,0). To check the accuracy of this method and validate our
numerical technique, we calculated the Curie temperature of
the Ni2MnSn alloy. The Curie temperature was found to be
370 K which is in good agreement with the previous published
results of 362 K (Ref. 33) and 373 K (Ref. 34).

In this work, a q-state Pott’s model is used in place of the
Ising model to take into account the discrete magnetic states
of Co and Ni atoms. The Hamiltonian describing the energy
of the system is given as

H = −
∑
〈i,j〉

J ij
m (2δSiSj

− 1), δSiSj
=

{
1 if Si = Sj ,

0 else,

(5)

where δSiSj
is the Kronecker symbol, Si is the spin state of the

lattice site i, and J
ij
m corresponds to the magnetic exchange

parameters involving sites i and j .35 Magnetic ex-
change parameters are positive for atoms interacting
ferromagnetically—favoring the same spin state on neigh-
boring lattice sites—and negative for atoms interacting
antiferromagnetically—favoring opposite spin states on neigh-
boring lattice sites.

We would like to note that a modified version of the Potts
model is considered in this work36 as we replace the term
δSiSj

in the original Potts model by (2δSiSj − 1). In the original
Potts model, when a spin at a given site is flipped, the change
in the magnetic energy of the system is half of that obtained
by flipping a spin in the Heisenberg model—see Ref. 36.
Since the exchange parameters calculated using the SPRKKR
software are based on the Heisenberg model, the Potts model
has been modified to make it equivalent to the Heisenberg
model. In the modified Potts model, the change in energy of
the system, when a spin is flipped, is the same as obtained
in the Heisenberg model. The validity of this modification is
evident when comparing—see below–the good agreement in
the Curie temperatures calculated within the MFA and through
the Monte Carlo simulations.

The Hamiltonian described in Eq. (5) is solved for specific
temperatures using a Monte Carlo simulation scheme. In these
simulations, the magnetic states are randomly sampled and

accepted or rejected based on the Metropolis algorithm.37,38

The numerical procedure for the Monte Carlo simulation
consists of the following steps:

(1) Select the initial configuration in a random manner.
Since the Metropolis algorithm satisfies the condition of
ergodicity, the system will always reach the equilibrium state
regardless of the initial configuration.

(2) Choose a site, randomly select its new spin state, and
calculate the change in the energy of the system, �H .

(3) Accept or reject the new state based on the Metropolis
algorithm. If �H is negative, accept the new state and if this
is not the case calculate the acceptance probability of the new
spin state, e−�H/KBT . Generate a random number between 0
and 1 and if the random number is less than the acceptance
probability, the new state is accepted, otherwise it is rejected.

(4) Move to the next site and follow the procedure outlined
above. Once all lattice sites are swept, one Monte Carlo step
(MCS) is finished.

(5) Continue the above procedure until equilibrium is
reached, and after equilibration collect the statistics from a
sufficient number of configurations.

At any given temperature, the magnetization (m), magnetic
susceptibility (χm), and magnetic specific heat (Cmag) of the
system can be calculated as38–40

m = 1∑n
i Ni

(
n∑
i

qiN
i
max − Ni

qi − 1

)
, (6)

χm = 1

kBT 2
[〈m2〉 − 〈m〉2], (7)

Cmag = 1

kBT 2
[〈H 2〉 − 〈H 〉2], (8)

where Ni is the total number of atoms of type i, n is the total
number of different (magnetic) atom types, two in this case
(Co,Ni), qi is the total number of magnetic states of atom i,
Ni

max is the maximum number of identical magnetic states for
atom i, kB is Boltzmann’s constant, T is the temperature of the
system, 〈m2〉 is the average of the squared magnetization, 〈H 〉
is the average energy of the system, and 〈H 2〉 is the average
squared energy. The magnetic entropy can then be obtained
through integration of the magnetic specific heat.

III. EXPERIMENTAL PROCEDURE

Experiments were performed on different compositions
in order to study the effect of atomic ordering on the
magnetic properties. Since the study focuses on the effect of
disorder on the system properties, compositions other than
the stoichiometric ones have been considered. The excess or
deficiency of atoms of one type or replacement of an atom in
its sublattice by others introduces disorder in the system. The
experimental results presented here are being used to assess
the effect of configurational disorder, i.e., through deviations
from stoichiometry, on the magnetic properties of Co-Ni-Ga
alloys including their Curie temperatures. These results will
also help us set an estimate for the expected inaccuracy of
the methods used to predict the Curie temperature of CoNiGa
FSMAs.
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TABLE I. Measured Curie and stress-free transformation temperatures and both austenite and martensite lattice parameters of experimentally
investigated alloys. Mf , martensite finish, Ms , martensite start, As , austenite start, Af , austenite finish temperatures. Experimental uncertainties
of the SQUID measurements are within ±1 K. Extrinsic uncertainties due to inhomogeneities in the composition of the sample or sample-to-
sample variation are within ±10 K. Tetra, tetragonal crystal structure; Cubic, cubic crystal structure; RT, room temperature; c, lattice parameter
of tetra in z direction.

Lattice parameter (Å)

Structure TC (K) Mf (K) Ms (K) As (K) Af (K) Tetra Cubic

Co50Ni20Ga30 390 210 216 222 236 2.86 (at RT)
Co46.5Ni23Ga30.5 341 221 305 262 332 3.84 (c : 3.19) (at RT) 2.87 (at 350 K)

Two single β-phase (B2 structure) Co-Ni-Ga alloys with
nominal compositions of Co50Ni20Ga30 and Co46.5Ni23Ga30.5

(in at. %) were prepared by vacuum arc melting of 99.9%
Co, 99.95% Ni, and 99.999% Ga. Small pieces were cut and
homogenized at 1473 K for 4 h in argon followed by water
quenching. The stress-free transformation temperatures and
the Curie temperature were found using low-field thermal
cycling in a Quantum Design superconducting quantum
interference device (SQUID) magnetometer at a heating and
cooling rate of 5 K/min−1. The crystal structure of the alloys
was determined using a Bruker-AXS D8 x-ray diffractometer
with Cu Kα (0.154 06 nm) radiation.

IV. RESULTS AND DISCUSSIONS

A. Experimental results

Transformation temperatures and Curie temperatures
of the experimentally investigated Co46.5Ni23Ga30.5 and
Co50Ni20Ga30 alloys are listed in Table I. In addition to
the transition temperatures, the lattice parameters of the
constitutive phases are given in the table. Figure 1(a) presents
the x-ray diffraction pattern of the Co46.5Ni23Ga30.5 sample
after heat treatment at 1473 K for 4 h. The Co46.5Ni23Ga30.5

sample crystal structures of the phases present are determined
to be L10 for martensite and B2 for austenite. The sample is
heated above the austenite finish temperature (350 K) to get
the x-ray diffraction pattern of the austenite phase which is
determined to be B2 [Fig. 1(b)]. The lattice parameters of the
Co46.5Ni23Ga30.5 sample are determined to be a = 0.384 nm
and c = 0.319 nm for martensite and a = 0.287 nm for the B2
austenite. Figure 1(c) displays the x-ray diffraction pattern of
the Co50Ni20Ga30 sample after heat treatment at 1473 K for 4 h,
showing the B2 austenite structure at room temperature. Since
this sample transforms to martensite at a very low temperature
(216 K) only the B2 phase lattice parameter can be determined.
The lattice parameter of the B2 austenite phase is found to be
a = 0.286 nm.

B. Ab initio calculations

The Heusler (L21) structure of Co2NiGa consists of Ga
in the (0,0,0) sublattice, Ni in the (1/2,1/2,1/2) sublattice,
and Co in the (1/4,1/4,1/4) and (3/4,3/4,3/4) sublattices
as shown in Fig. 2(a). B2 is a body-centered cubic (bcc)
structure, in which it is assumed that the (0,0,0) sublattice
is randomly occupied by either Ga or Ni atoms and the
(1/2,1/2,1/2) sublattice is occupied by (the majority) Co

atoms as demonstrated in Fig. 2(b). Here we note that the
actual stable configuration in the B2-ordered structure may
be different from the configuration assumed in this work,
and in fact some further disorder involving atomic exchanges
between the Co and (Ni,Ga) sublattices is also possible. At

FIG. 1. X-ray diffraction pattern of the (a) tetragonal
Co46.5Ni23Ga30.5 at room temperature (RT), (b) cubic Co46.5Ni23Ga30.5

at 350 K, and (c) cubic Co50Ni20Ga30 at RT, indicating the structures
of the constitutive phases. L10, tetragonal martensite; B2, cubic
austenite.
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FIG. 2. Structure of (a) ordered (L21) system with
Co, Ni, and Ga atoms occupying their own sublattices,
(b) disordered (B2) system with the Co atom in sublattice I
and Ni and Ga atoms occupying the sublattice II. In ab initio
calculations (for stoichiometric compositions), the Ni and Ga atom
contribution is 50% at each site of sublattice II, while in Monte
Carlo simulations, they are randomly distributed on sublattice II of
the supercell.

the same time, the simplistic model for B2 ordering in this
ternary system may not be valid if significant short-range order
is still prevalent at elevated temperatures. For the case of the
stoichiometric alloys we compare only a fully ordered (L21)

and a partially B2-type-ordered configuration. In the case of
the off-stoichiometric alloys, we examined multiple degrees of
configurational order by considering B2-type configurations as
well as L21-type ordering with different site occupations while
the overall composition was retained.

The equilibrium lattice parameters and calculated proper-
ties are listed in Table II. We note that the SPRKKR code
is unable to correctly predict the fact that the tetragonal
structure (i.e., martensite) is more stable than the cubic
structure under shear deformations, and we have used results
obtained earlier22,24 and assumed that the martensite has a
c/a ratio of approximately ∼1.4. The reason for this is
unclear but a possible explanation may lie in rather subtle
effects related to the effect of symmetry breaking (under
the tetragonal distortion) on d electrons of Co and Ni. For
all the structures, the equilibrium lattice parameter (amin)
corresponding to the lowest energy of the system has been
calculated using the SPRKKR code. In previous calculations
the tetragonal distortions of B2 structures were fully relaxed,
while in this work the structure can only relax with constant
C/A ratio. As a result, the lattice parameters obtained in these
calculations for tetragonal distorted structures are smaller than
in previous calculations (as well as experiments). Overall,
the lattice parameters and magnetic moments per Co atom

TABLE II. Calculated data for lattice parameters, magnetic moment, and Curie temperature for Co-Ni-Ga alloys. The alloy compositions
are stoichiometric unless otherwise stated. L21 (Tetra) and B2 (Tetra) denote the tetragonal distortion of L21 and B2 structures obtained by
considering c/a = 1.4.

Structure Order Lattice parameter Magnetic moment Curie temperature (K)

CoNiGa parametera at 0 K (Å) (μB/Co atom) MFA MCS

Alloy compositionxCo = 0.5, xNi = 0.25, xGa = 0.25
L21 (Cubic) 1.0 5.62 (5.68b) 1.143 (1.262b, 1.335c) 423 445
L21 (Tetra) 1.0 3.56 (3.59b) 1.281 (1.395b, 1.46c) 510 510
B2 (Cubic) 0.0 2.81 (2.84b) 0.898 (1.083b) 252 275
B2 (Tetra) 0.0 2.52 (2.74b) 1.231 (1.133b) 413 430

Alloy composition xCo = 0.5, xNi = 0.2, xGa = 0.3
B2 (Cubic) 0.0 2.79 0.7364 169
B2 (Tetra) 0.0 2.51 (2.733d) 1.0441 262 (432e,425d)
L21

f (Cubic) 0.5 5.58 0.77 194
L21

f (Tetra) 0.5 3.546 1.049 277
L21

g (Cubic) 1.0 5.577 0.858 250
L21

g (Tetra) 1.0 3.543 1.065 297
Alloy composition xCo = 0.465, xNi = 0.23, xGa = 0.305

B2 (Cubic) 0.0 2.80 0.8095 164
B2 (Tetra) 0.0 2.514 1.0543 272 (373e)
L21

h (Cubic) 0.847 5.58 0.7523 209
L21

h (Tetra) 0.847 3.545 0.98 295
L21

i (Cubic) 1.0 5.607 0.9762 280
L21

i (Tetra) 1.0 3.548 1.0966 355

aOrder parameter (xIII
Ni − xIV

Ni )/xNi, 1 for fully ordered, 0 for fully disordered.
bArróyave et al. (Ref. 22); structure obtained by full relaxation of the tetragonal distortion of L21 structure.
cSiewert et al. (Ref. 24).
dOikawa et al. (Ref. 10); alloy composition xCo = 0.45, xNi = 0.25, xGa = 0.3.
eSarma et al. (Ref. 41).
fSublattice occupation: 100% Co on sublattices I and II, 60% Ni and 40% Ga on sublattice III, 20% Ni and 80% Ga on sublattice IV.
gSublattice occupation: 100% Co on sublattices I and II, 80% Ni and 20% Ga on sublattice III, 100% Ga on sublattice IV.
hSublattice occupation: 93% Co and 7% Ni on sublattices I and II, 78% Ni and 22% Ga on sublattice III, 100% Ga on sublattice IV.
iSublattice occupation: 93% Co and 7% Ga on sublattices I and II, 92% Ni and 8% Ga on sublattice III, 100% Ga on sublattice IV.
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FIG. 3. (Color online) Magnetic exchange interaction parameters J ij
m between an atom i and its neighbor j located at a distance of Rij for

(top) disorderedand (bottom) ordered austenite and martensite phases. The distances are normalized with respect to the lattice parameter A.
Notice the variation in the values of the vertical scale.

obtained in these calculations are in good agreement with the
previous calculations and experimental work. In agreement
with previous theoretical studies,22,24 the SPRKKR results
suggest that the total magnetic moment increases upon tetrag-
onal distortion. This observation is in agreement with general
trends observed in experimental studies of Co-Ni-Ga alloys.42

When comparing the total magnetization (normalized per Co
atom) of the ordered vs disordered stoichiometric martensite
[L21 (Tetra) and B2 (Tetra), respectively, in Table II], one can
see that increased order leads to larger magnetization, which
is also in agreement with previous calculations22 as well as
experiments.9 In fact, Dai et al.9 suggest that for stoichiometric
Co2NiGa martensite, ordering induces a significant (about
30%) increase in the magnetization.

The magnetic exchange parameters calculated for cubic and
tetragonal systems of ordered and disordered structures using
the equation proposed by Liechtenstein et al.27 are plotted in
Fig. 3 (only for stoichiometric compositions) and reported
in Table III. In all cases, magnetic exchange interactions
between nearest-neighbor Co-Co, Ni-Ni, and Co-Ni atoms are
significant (on the order of a few meV). Those between Ga
and neighboring atoms are very small as evident from the
Co-Ga interaction in Fig. 3. Thus, other magnetic interactions

TABLE III. Magnetic exchange parameters calculated in these
simulations. L21 (Tetra) and B2 (Tetra) denote the tetragonal distor-
tions of L21 and B2 structures obtained by considering c/a = 1.4.

Magnetic exchange parameters
(
J ij

m

)
Atoms Distance (Rij /a) L21 L21 (Tetra) B2 B2 (Tetra)

Co-Co 0.5 2.528 13.45
0.7 −1.58
0.707 1.212 −0.89
0.866 0.591 0.335
1.0 −0.597 −0.747 1.99 10.648
1.4 −1.364
1.414 0.1 −0.683
2.0 −0.46 −0.883

Co-Ni 0.433 4.566
0.497 4.20
0.866 3.477
0.995 4.093

Ni-Ni 0.707 −0.07 −0.01
0.86 0.336
1.0 0.206 0.095 0.634 2.88
1.732 −0.589 0.43
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involving Ga have been omitted from the graphs and are
not considered in the Monte Carlo simulations. For Co-Co
interactions, for a dimensionless distance (Rij/a) of 0.866 in
the ordered cubic structure,there are two values of magnetic
exchange parameters. The different values are due to the
different mediating atoms, as in real-space approaches the
final values are not averaged.29 To clarify this point, consider
a pair of Co atoms situated at the (0.25,0.25,0.25) and
(0.75,0.75,0.75) positions, respectively. In the L21 structure,
the atom occupying the (0.5,0.5,0.5) position can be Ni or Ga.
This atom is identified as the “mediating” atom in this work.
The large values of exchange parameters are between Co atom
pairs mediated by Ni atoms and the smaller values for Co atom
pairs mediated by Ga atoms. The calculations suggest that Ga
atoms essentially screen the magnetic interactions between
pairs of Co atoms.

In the context of considering energetic interactions in lattice
models, it is usually found that in ordered structures long-
range and in disordered structures short-range interactions
are important.18 Now, considering the magnetic exchange
parameters plotted in Fig. 3, for cubic ordered structures
next-nearest-neighbor and second-nearest-neighbor atomic
interactions between Co atoms are significant but for the
disordered cubic structures only the next-nearest-neighbor
interactions are significant, as expected.

The Curie temperatures calculated using the mean-field
approximation—Eqs. (1)–(3)and Monte Carlo simulations
for the structures are reported in Table II. In general,
the Curie temperatures for the cubic structures are lower
than for their tetragonal distortions for both L21 and B2
structures. For the stoichiometric compositions, it can be
noted that the Monte Carlo simulations and MFA calculations
agree within a few kelvin and therefore the systematic
study of the effect of ordering on the Curie temperature of
experimental compositions has been carried out using the
MFA.

For both compositions Co50Ni20Ga30 and
Co46.5Ni0.23Ga30.5, three structures with varying degrees
of ordering are considered. In both compositions, the B2
structure denotes the fully disordered structures. In the case
of Co50Ni20Ga30, the most ordered structure is created with
the L21 structure when sublattices I and II are occupied by
Co atoms, sublattice III by 80 at. % Ni and 20 at. % Ga, and
sublattice IV by Ga atoms, while a partially ordered structure
is created with sublattices I and II occupied by Co atoms,
sublattice III by 60 at. % Ni and 40 at. % Ga, and sublattice
IV by 20 at. % Ni and 80 at. % Ga. For the Co46.5Ni0.23Ga30.5

composition, in the highly ordered structure, sublattices I and
II are occupied by 93 at. % Co and 7 at. % Ga, sublattice III
by 92 at. % Ni and 8 at. % Ga, and sublattice IV by Ga atoms,
while for the partially disordered structure, sublattices I and II
are occupied by 93 at. % Co and 7 at. % Ni, sublattice III by
78 at. % Ni and 22 at. % Ga, and sublattice IV by Ga atoms.

The results in Table II show that the Curie temperature
is lowest for the disordered structures and highest for the
ordered structures. The Curie temperature for ordered systems
is expected to be higher than that for disordered systems,
since in ordered systems, due to long-range ordering, the
exchange parameters are expected to be significant up to three
or more atomic shells. In the case of disordered systems,

usually the exchange parameters are significant only between
nearest neighbors. This trend can be seen in the stoichiometric
cubic structures in Table III.

We note that the Curie temperature obtained in the exper-
iments is higher than that in the MFA calculations, in some
cases differing by about 100 K. In a similar study on NiMnGa
FSMAs, Buchelnikov et al.40 observed the same trends and
ascribed the discrepancy between experiments and calcula-
tions to the neglect of the magnetostructural coupling when
dealing with structures undergoing martensitic transitions, as
well as to the neglect of nonlocal CPA corrections as the
SPRKKR code considers only single-site CPA calculations of
the magnetic exchange parameters J

ij
m . Table II shows that for

a given composition (in the off-stoichiometry configurations)
an increase in the configurational order (simulated in this case
through changes in the site occupancy of L21 structures)
leads to an increase in the magnitude of the magnetic
exchange constants, which in turn results in higher Tc. In
fact, the calculations of Tc for the ordered structure for the
experimental compositions are close to the values obtained
in the experiments. Whether this is because the experimental
alloys are in fact not fully disordered cannot be ascertained
at the moment, and further analysis of these compositions
with varying site occupations and numerical techniques is
required.

The densities of states (DOSs) of the stoichiometric systems
have been plotted in Fig. 4. The figure shows that, as calculated
previously by one of the authors22 and other groups,24 the
electronic structure is dominated by d-electronic states. As
in previous works, the Co and Ni d states seem to hybridize.
Moreover, the plot for the ordered cubic structure suggests that
the Fermi level is located in an unstable region in which anti-
bonding states are dominant in the case of the minority states.
The electronic density of states for the disordered phases shows
the usual smearing of the electronic band structure due to
disorder. The disordered electronic DOS, however, maintains
the general trends observed for the ordered structures. The
calculations using plane waves and pseudopotentials published
previously22 suggest that the stabilization of the tetragonal
structures is due to the displacement of antibonding states
further up in the energy scale. The approximations used in the
SPRKKR method are not able to show this.43

C. Monte Carlo simulations

For the Monte Carlo simulations, the simulation domain
was created by replicating cubic and tetragonal unit cells.
The simulation domain consists of 4096 atoms of Co and
2048 atoms each of Ni and Ga. As will be seen below,
the size of the simulation domain is sufficient to simulate
the magnetic behavior of these systems.39,40 Also, since the
real crystal lattice is used, the number of neighboring atoms
will vary depending upon the atom type and the distance
between the atoms. As discussed above, the magnetic exchange
interactions between Ga and Co or Ni are very small and
are therefore neglected in the simulations. From the ab initio
calculations, the local magnetic moments for Co and Ni are
∼1μB and ∼0.5μB . Thus, in these simulations it is assumed
that Co has three discrete magnetic states while Ni has two
discrete magnetic states, estimating the number of magnetic
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FIG. 4. (Color online) Calculated density of states (DOS) for (a) disordered cubic, (b) disordered tetragonal, (c) ordered cubic, and (d)
ordered tetragonal structures. Vertical dotted lines correspond to the Fermi energy level.

states as 2S + 1. A (3-2)-state Potts model has therefore been
used in these calculations. The temperature range explored in
these calculations varies from 30 to 600 K. At each discrete
temperature step, system equilibration was performed for
50 000 Monte Carlo steps. After equilibration, the energy (H)
and magnetization (m) of the system are collected every 100
steps and averaged over 500 configurations. Periodic boundary
conditions are used in all the simulations.

The first step in performing the Monte Carlo simulations
is to study the effect of the simulation domain size on the
properties under consideration. In this regard, the normalized
magnetization and specific heat were studied for the L21 cubic
system with supercell size varying from 3 to 9 unit cells (432
to 11 664 atoms in the supercell). The results are plotted
in Fig. 5. From the figure it is clear that for systems with
3456 atoms (6 unit cells) the system size is sufficiently large
to nullify the effect of the boundary on the system properties.
As stated above, in these calculations we have considered a
supercell with 8192 atoms (8 unit cells), so our results are well
converged.

Figure 6(a) shows the variation of the normalized mag-
netization with temperature. A zero value of the normalized
magnetization means paramagnetic behavior of the system,
while a value of 1 is an indication of ferromagnetic behavior.

At high temperatures, all the systems behave paramagneti-
cally. As the temperature decreases, the magnetization starts
increasing, initiating the magnetic transformation from the
paramagnetic to the ferromagnetic state. To ascertain the exact
temperature of the magnetic transformation, the magnetic sus-
ceptibility is plotted as a function of temperature in Fig. 6(b).
The peak in the susceptibility is located at the transition
temperature.

The transition temperatures for the disordered systems
are significantly lower than the transition temperatures of the
ordered systems. The difference is the consequence of the
long -range ordering (LRO) in ordered systems and short-range
ordering (SRO) in disordered systems. At higher temperatures,
the spin states of the atoms are aligned in a random direction.
With decrease in temperature, the spin states start aligning
in the same direction as their neighbors. As a result, for
LRO systems the spin alignment is completed at much higher
temperatures as compared to SRO systems.

The above findings are in good agreement with the
experimental results obtained by studying the dependence of
magnetization on the magnetic field. The higher the Curie
temperature, the higher the saturation magnetization of the
system. The saturation magnetization of the ordered system
in Co2NiGa alloys (69.3 emu/g) has been found to be
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FIG. 5. (Color online) Effect of simulation domain size on the magnetization and specific heat of the system. A supercell with 3456 or
more atoms is sufficiently large to nullify the effect of boundary conditions. A supercell with 8192 atoms (equivalent to replicating the L21 unit
cell eight times or the B2 unit cell 16 times in all three directions) is considered in this work.

40% greater than in the disordered systems (50.1 emu/g).9

Moreover, Co-rich alloys have been found to have higher
saturation magnetization12,44 since Co atoms—having higher
magnetic moment—tend to introduce more order into the
systems. Also, annealing of Co-Ni-Ga alloys results in higher
saturation magnetization,8,12 and this is consistent with an
increase in the degree of order of the alloys, even with full
ordering into an L21-type configuration.

The magnetic specific heat of the system calculated using
Eq. (8) is plotted in Fig. 6(c). As evident from the figure,
the specific heat of the systems increases with decreasing
temperature. Near the magnetic transition temperature, the
specific heat increases at a very high rate, reaching a peak
value at the transition temperature. With further cooling the
specific heat decreases at a very fast rate. The magnetic entropy
of the systems as a function of temperature is calculated
using

Smag(T ) =
∫ T

0

Cmag

T
dT . (9)

From Fig. 6(a), at low temperatures all the systems have
very low entropy. In close vicinity to the magnetic transition
temperature, the entropy increases and saturates once the
transition temperature is reached. The saturation value of
the entropy is consistent with the results for the saturation
magnetic entropy obtained using40

Smag,sat = R
∑

i

Ni

N
ln(2S + 1), (10)

where i represents a magnetic atom (Co or Ni), N is the total
number of magnetic atoms (Co and Ni), S is the spin state of the
ith atom, and R is the universal gas constant. The theoretical
saturation entropy is calculated to be 8.01 J mol−1 K−1. This
value is in good agreement with the results of the Monte
Carlo simulations shown in Fig. 6(d). The difference between
the entropy of ordered and disordered structures is shown in
Figs. 6(e) and 6(f). From these figures, for the ordered systems,
the difference between the entropy of the cubic structure and
that of its tetragonal distortion is small, owing to the small

difference in the magnetic transition temperatures. In the case
of the disordered structure, the entropy difference is large due
to the large difference in the transition temperatures. Thus,
in the case of disordered structures, the magnetic entropy
has a significant effect on the stability of the structures. This
observation is rather important as the relative stability of the
cubic and tetragonal structures determines the transformation
temperature Ms . The Ms temperature depends on the energy
difference between the two crystal structures as well as on the
difference in their entropies. For the same energy difference,
a higher entropy of the cubic phase results on a lower
Ms . Assuming that vibrational contributions to the entropy
difference of the cubic and tetragonal structures remain the
same regardless of the order state, large differences in the
magnetic entropies of the cubic and tetragonal states will play
a dominant role in controlling the Ms . The effect of ordering
on the magnetic thermodynamic properties of the cubic
(austenite) and tetragonal (martensite) structures can therefore
explain the effects of aging on the martensitic transformation
temperatures observed in many Heusler FSMA systems.

V. CONCLUSION

In this work, we have investigated the effect of atomic
ordering on the magnetic properties of Co2NiGa alloys at
stoichiometric and off-stoichiometric compositions. Theoret-
ical calculations and experiments have been performed with
different compositions to simulate ordering and disordering
effects. The results for the magnetic exchange parameters
show that ordered structures possess long-range ordering while
disordered structures are short-range ordered. This trend can
also be deduced from the Curie temperatures calculations
using the MFA, with ordered structures having higher Curie
temperatures than disordered structures. The results for the
Curie temperatures of experimental compositions agree with
numerical calculations for ordered structures. These results
suggest atomic ordering in the alloys during annealing; further
work is required on the effect of heat treatment on the atomic
ordering and site occupations.
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FIG. 6. (Color online) Results of the Monte Carlo simulations for ordered and disordered systems: (a) magnetization, (b) magnetic
susceptibility, (c) magnetic specific heat, (d) magnetic entropy, and (e),(f) entropy difference between (e) the ordered (L21) cubic structure and
its tetragonal distortion and (f) the disordered (B2) cubic structure and its tetragonal distortion.

Further analysis of the magnetic properties (including
Curie temperature, magnetic susceptibility, specific heat, and
entropy) of stoichiometric Co2NiGa alloys with L21- and
B2-type ordering has been carried out using Monte Carlo
simulations. These results suggest that ordering seems to
screen ferromagnetic interactions when the alloys have B2-
type ordering. This screening is accompanied by a decrease in
the saturation magnetization as well as the Curie temperature
of the alloys, in accordance with empirical evidence obtained
from investigations on Co-Ni-Ga as well as other FSMAs.

B2-type ordering results in a higher magnetic entropy contri-
bution for the martensitic transformation than L21 ordering in
Co2NiGa. Future investigations on the quantitative effect of
the magnetic entropy on the martensitic transformation char-
acteristics can provide important insights into the structural
transformation and stability in these alloys.
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