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Tight-binding study of hcp Zn and Cd
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We have developed tight-binding Hamiltonians for the hcp transition metals zinc and cadmium based on the
Naval Research Laboratory tight-binding method. The Hamiltonians have a nonorthogonal basis and are derived
by fitting to band structures and total energies of first-principles linearized augmented plane-wave calculations.
We have applied this approach to compute the ground-state behavior, phase stability, band structures, densities
of states, elastic moduli, and phonon frequencies for both Zn and Cd, and have found good agreement with
available experimental and theoretical data in most cases. This approach also enables us to perform large-scale
molecular dynamics simulations to calculate the vacancy formation energies, atomic mean-square displacements
and coefficients of thermal expansion, at a small fractional cost of computational times compared with first-
principles techniques.
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I. INTRODUCTION

The Naval Research Laboratory tight-binding (NRL-TB)
method is based on the two-center Slater-Koster1,2 formulation
of tight binding with a nonorthogonal basis, taking advantage
of the fact that the density functional theory3,4 allows an
arbitrary shift in the potential,5,6 which makes it possible to fit
the total energy without employing an empirical potential. The
form of the NRL-TB parameters allows excellent transferabil-
ity to different crystal structures and atomic configurations, and
has been successfully applied to examine various structural,
electronic, energetic, and dynamical properties of many
transition and noble metals,5–18 semimetals,19 heavy metals,20

semiconductors,21–23 alloys,24–27 carbon nanostructures,28–30

and metal oxides,31–33 etc. In particular, NRL-TB Hamilto-
nians have been previously developed for all the transition
metals, except for column IIB. Here we applied the NRL-TB
method to the hcp transition metals zinc and cadmium. Both Zn
and Cd differ significantly from the typical transition metals
that have a low-lying s band and another five d bands that
progressively fill up so that the Fermi level (Ef ) is either
within the d bands or just above for the noble metals. On the
contrary, Zn and Cd have deep d bands which fall between the
first predominantly s-like band and a seventh band with s-p
character crossed by Ef . The situation is also different from
some free-electron metals such as Al that have no occupied d

bands. In contrast to most hcp metals, Zn and Cd have unusu-
ally large axial ratios which are well above the ideal hcp ratio34

and thus have some unique material properties such as the
lowest melting points in transition metals aside from mercury.
In Sec. II we detail the theoretical methods used to develop the
NRL-TB Hamiltonians and perform tight-binding molecular
dynamics simulations. In Sec. III we present the results and
related discussions on various tight-binding derived properties
obtained from both the static calculations and molecular
dynamics simulations, and conclude with a brief summary in
Sec. IV.

II. THEORETICAL METHODS

In the two-center nonorthogonal NRL-TB scheme, the
Slater-Koster terms include both the environment-dependent
on-site parameters and the bond-length-dependent hopping
parameters.5,35 The on-site terms are assumed to be diagonal
and have a polynomial form as a function of the atomic
density. For a single element, the density of atom i is defined
as

ρi =
∑

j

exp(−λ2Rij )FC(Rij ), (1)

where the sum is over all the neighboring atoms j within
a range of cutoff distance Rc of atom i, λ is a fitting
parameter, and FC(Rij ) is a smooth cut-off function. The
angular-momentum-dependent on-site terms are defined by

h� = a� + b�ρ
2/3 + c�ρ

4/3 + d�ρ
2, (2)

where � represents the s, p, and d orbitals, and a�, b�, c�, and
d� are our fitting coefficients.

We construct the two-center spd Slater-Koster (SK) hopping
integrals from the ten independent SK parameters, which are
assumed to all have polynomial times exponential forms in
terms of neighbor distance

Py (R) =
∑

j

(ey + fyR + gyR
2) exp

[−q2
yR

]
Fc(R), (3)

where γ indicates the type of interactions, including ssσ ,
ppσ , spσ , ddσ , sdσ , pdσ , ppπ , ddπ , pdπ , and ddδ. R

is the distance between the atoms, and eγ , fγ , gγ , and qγ

are our fitting coefficients. We define the Slater-Koster overlap
functions in a nonorthogonal calculation to have the same form
as the hopping parameters. Overall, there are in total 93 fitting
coefficients for a single element in the on-site, hopping, and
overlap terms in the NRL-TB Hamiltonians with s, p, and d

orbitals, and the values of these fitting coefficients for Zn and
Cd are listed in Table I.
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TABLE I. Tight-binding coefficients for Zn and Cd, generated by fitting to the first-principles LAPW total energies and band structures of
bcc, fcc, hcp, and simple cubic structures.

Zn

On-site parameters (λ = 1.469991 a.u.−1/2)
ρi = ∑

j exp(−λ2Rij )FC(Rij )
h� = a� + b�ρ

2/3 + c�ρ
4/3 + d�ρ

2

� a� b� c� d�

s 0.22328 33.46771 −5376.929237 530223.036806
p 0.697637 10.633128 −4414.114916 858194.489409
d −0.032554 −1.145394 339.451793 −73547.97693

Hopping terms
Py(R) = ∑

j (ey + fyR + gyR
2) exp

[ − q2
yR

]
Fc(R)

γ eγ fγ gγ qγ

ssσ 2.630211 −1.072291 0.049662 0.800106
spσ 1.702888 0.371463 0.119067 1.022335
ppσ −0.138547 0.077519 0.001158 0.660035
ppπ −3.547105 0.662968 0.02738 0.788917
sdσ −0.088475 −0.139397 0.00354 0.834245
pdσ −0.480234 0.082434 0.004016 0.839235
pdπ 9.892114 0.247499 −0.585076 0.981195
ddσ 1.573334 0.054652 −0.204651 1.042584
ddπ 5.528614 −0.835957 0.046933 1.037825
ddδ −160.313912 −9.176101 7.146619 1.358961

Overlap terms
Sy(R) = ∑

j (δy + tyR + ryR
2) exp

[ − u2
yR

]
Fc(R)

γ δγ tγ rγ uγ

ssσ −40.426164 13.824170 0.064994 1.063141
spσ 8.349221 −3.406862 −0.124509 0.895341
ppσ −0.758428 −0.047789 0.002815 0.549763
ppπ 1.905233 −0.050823 −0.008351 0.666625
sdσ 5.482247 −1.123358 −0.072468 0.848286
pdσ 1.096869 0.443588 −0.23008 0.860846
pdπ 317.522047 −47.939737 −6.193006 1.188616
ddσ 2179.46986 466.04847 −186.821306 1.442683
ddπ −2.729519 0.11063 −0.093612 1.041364
ddδ 20.891994 0.38954 −0.571871 1.00681

Cd
On-site parameters (λ = 1.605663 a.u.−1/2)

ρi = ∑
j exp(−λ2Rij )FC(Rij )

h� = a� + b�ρ
2/3 + c�ρ

4/3 + d�ρ
2

� a� b� c� d�

s 0.363794 86.10881 −76791.192088 108436393.485
p 0.867613 −127.036573 133590.464111 124813010.82
d −0.06385 15.238177 −20740.893262 −2843236.2717

Hopping terms
Py(R) = ∑

j (ey + fyR + gyR
2) exp

[ − q2
yR

]
FC(R)

γ eγ fγ gγ qγ

ssσ 5.724943 −6.601102 0.015762 1.061474
spσ 0.245014 −0.02487 0.000418 0.542236
ppσ −31.355628 5.972695 −0.038353 0.894364
ppπ 18.204678 −0.142384 −0.550664 1.01025
sdσ −380.682071 88.930014 −0.168741 1.212736
pdσ 15.707529 −3.273015 0.003657 0.890509
pdπ 2.011892 0.250708 0.027848 1.073848
ddσ 58.263161 −19.937689 0.347991 1.163757
ddπ 11.827992 −1.5099 0.017756 1.013595
ddδ −4.736575 0.623097 −0.001169 1.073331
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TABLE I. (Continued.)

γ eγ fγ gγ qγ

Overlap terms
Sy(R) = ∑

j (δy + tyR + ryR
2) exp[−u2

yR]FCR

γ δγ tγ rγ uγ

ssσ −0.392718 0.470493 −0.033283 0.667106
spσ 59.630549 −15.443898 −0.204783 0.973806
ppσ 6.28926 −3.547458 −0.134306 0.90149
ppπ 4.911012 −0.602315 0.006926 0.754477
sdσ 11.256193 −0.07029 −0.410407 1.030123
pdσ 133.598176 −11.940802 −3.109452 1.097928
pdπ −33.085745 3.64351 1.411897 1.047261
ddσ 4.848817 0.438177 −0.121407 1.031423
ddπ −7.338715 −0.233211 0.021357 1.002701
ddδ −26.229872 2.851133 0.782012 1.096638

For both Zn and Cd, we used the full-potential linearized
augmented plane-wave (LAPW) total energy calculations36,37

within the local density approximation (LDA)4 to generate
total energies and band structures for bcc, fcc, hcp, and simple
cubic crystal structures with varying atomic volumes, and,
in the case of the hcp structure, we fitted only selected total
energy values and not a full range of values and c/a ratios. The
total energy is usually weighed at around 200–300 times over
a single band energy. We are able to obtain fitting rms error of
less than 5 mRy and 0.2 mRy for the energy bands and total
energy, respectively.

We calculate the finite-temperature dynamical properties
from tight-binding molecular dynamics simulations, which are
performed in the microcanonical ensemble by integrating the
equations of motion using Verlet’s algorithm38 and a time
step of 2 fs. The forces on each atom are calculated from
the eigenvectors of the TB Hamiltonian of the system using
the Hellmann-Feynman theorem.39 The supercells used in our
molecular dynamics simulations contain 288 atoms, and we
typically are able to approach equilibrium in the tight-binding
molecular dynamics simulations within 2000 time steps (4 ps).

III. RESULTS AND DISCUSSION

A. Equilibrium structure and phase stability

The NRL-TB method’s combination of computational
efficiency and transferability to different crystal structures and
atomic configurations enable us to examine low-symmetry
crystal structures and defect structures, in addition to the
high-symmetry bcc, fcc, hcp, and simple cubic phases used in
the Hamiltonian fitting. In Table II, we list the calculated tight-
binding total energies of Zn in 26 different crystal structures.
Among all the structures examined, we find that the hcp
structure is lowest in energy, consistent with experiment.34 In
Fig. 1(a) we show the volume dependence of the tight-binding
total energies for fcc, bcc, simple cubic, hcp, and diamond
structures. The tight-binding calculations successfully repro-
duce the first-principles LAPW data of the fcc, bcc, and
simple cubic structures that are used in the development of
the tight-binding Hamiltonians. For the hcp structure, we
minimize the tight-binding total energies as a function of the

c/a ratio at each given volume, thus the tight-binding results
are not directly comparable with the LAPW energies used in
the tight-binding fitting due to the different c/a ratios. The
equilibrium volume for hcp Zn is somewhat underestimated
in tight-binding (91.23 Bohr3/atom), in comparison to the
experiment at 102.56 Bohr3/atom.34 This discrepancy is
mainly due to the use of the LDA in our input database,
which usually underestimates the equilibrium volume of the
3d transition metals.40 In contrast, previous first-principles
calculations using generalized-gradient approximation (GGA)
predict an equilibrium volume of 97.32 Bohr3/atom,41 in
closer agreement with experiment. The tight-binding calcu-
lated c/a ratio at the equilibrium (c/a = 1.828) is in good
agreement with experiment (c/a = 1.856), similar to previous
first-principles calculations.41 Our tight-binding calculations
find no significant anomaly in the c/a ratio for hcp Zn
under compression, consistent with hydrostatic high-pressure
powder x-ray diffraction experiments42 and first-principles
calculations.43

The tight-binding predicted equilibrium properties of Cd
are quite similar to those of Zn. The hcp structure also
has the lowest energy among the 26 different crystal struc-
tures examined, as shown in Table III and Fig. 1(b). The
tight-binding calculations underestimate the hcp equilibrium
volume by ∼6.5%, in comparison with the experimental value
of 145.63 Bohr3/atom at ambient conditions, again due to the
fitting of the Hamiltonians to LAPW calculations using the
LDA approximation. The tight-binding calculations predict a
c/a ratio of 1.883 in close agreement with the equilibrium
experimental value of 1.885, similar to the Zn results.

The fact that the LDA results, to which our TB fit was
based, are in better agreement with experiment for Cd than Zn
is consistent with previous findings. Indeed, the LDA results
for the 4d metals better agree with the experiment than those
for the 3d metals.44

B. Electronic structure

At the ambient experimental equilibrium volume, the tight-
binding calculated band structure and electronic density of
states are in excellent agreement with first-principles LAPW
results for both hcp Zn and Cd, as shown in Figs. 2 and 3.
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TABLE II. The calculated tight-binding total energies of Zn in 26 different crystal structures. Tight-binding calculations correctly predict
that hcp is the equilibrium structure, and its energy E0 is the lowest among all the structures examined.

Structure Name No. of atoms V (Bohr3/atom) E−E0 (Ry/atom)

A3 hcp 2 91.23 0.00000
C19 α-Sm 3 91.75 0.00063
A3′ dhcp 4 91.62 0.00079
A13 β-Mn 20 93.97 0.00093
Aa α-Pa (c/a = 0.77) 1 93.47 0.00129
A10 α-Hg (51.5◦) 1 93.77 0.00246
A1 fcc 1 90.45 0.00247
A12 α-Mn 29 92.60 0.00418
Ab β-U 30 91.46 0.00458
A7 α-As 2 98.39 0.00481
A15 A15 8 91.70 0.00539
A11 α-Ga 4 99.14 0.00550
A16 α-S 32 97.89 0.00745
Af Simple hexagonal 1 101.96 0.00760
A8 γ -Se 3 101.99 0.00769
A2 bcc 1 91.90 0.00848
C32 ω 3 93.34 0.00913
bct5 bct5 2 99.34 0.00968
A5 β-Sn 2 104.43 0.01705
Ah Simple cubic 1 108.63 0.02181
hR12 α-B 12 122.10 0.02199
d2h 2H diamond 4 123.53 0.02990
A9 Graphite 4 119.08 0.03511
A4 Diamond 2 140.29 0.04553
E21 Perovskite 5 128.76 0.05067
D09 ReO3 4 173.36 0.06615

TABLE III. Same as Table II, but for Cd.

Structure Name No. of atoms V (Bohr3/atom) E−E0 (Ry/atom)

A3 hcp 2 136.23 0.00000
C19 α-Sm 3 136.74 0.00059
A3′ dhcp 4 136.78 0.00080
Aa α-Pa (c/a = 0.76) 1 139.19 0.00133
A10 α-Hg (53.0◦) 1 137.69 0.00202
A1 fcc 1 136.33 0.00323
A15 A15 8 138.05 0.00342
A13 β-Mn 20 141.25 0.00379
Ab β-U 30 137.76 0.00423
A12 α-Mn 29 139.59 0.00518
A7 α-As 2 143.71 0.00711
A11 α-Ga 4 145.29 0.00756
A2 bcc 1 137.99 0.00837
bct5 bct5 2 148.61 0.00840
A16 α-S 32 146.31 0.00849
C32 ω 3 141.34 0.00869
A8 γ -Se 3 149.32 0.01157
Af Simple hexagonal 1 149.38 0.01160
A5 β-Sn 2 151.81 0.01399
hR12 α-B 12 158.72 0.01408
Ah Simple cubic 1 157.49 0.01591
d2h 2H diamond 4 190.37 0.02893
A9 Graphite 4 177.19 0.03081
A4 Diamond 2 209.54 0.04040
E21 Perovskite 5 187.21 0.05024
D09 ReO3 4 298.49 0.06042
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FIG. 1. (Color online) The tight-binding total energies (lines) of
fcc, bcc, hcp, simple cubic, and diamond structures of Zn (a) and Cd
(b) as functions of atomic volume, in comparison to the first-principles
LAPW results (symbols) of fcc, bcc, and simple cubic structures used
in the development of tight-binding Hamiltonians. The tight-binding
hcp results here are not directly comparable to the LAPW values used
in the fitting due to different c/a ratios.

For hcp Zn, the 3d bands are centered at ∼0.58 Ry below
the Fermi level and mostly confined within a narrow range
of ∼0.15 Ry. The 4d bands are located deeper in hcp Cd, at
∼0.66 Ry below the Fermi level with a narrow distribution of
∼0.15 Ry. For both hcp Zn and Cd, most bands around the
Fermi level have mixed s and p character. Since the d bands
are occupied and located far below the Fermi level, Zn and
Cd should be viewed more like free-electron metals such as
Mg, instead of as a typical transition metal, where d bands are
generally close to the Fermi surface and play an important role
in bonding.

The tight-binding calculated Fermi surfaces of hcp Zn at
the ambient experimental equilibrium volume are in close
agreement with first-principles LAPW results, as shown in
Fig. 4. There are three major bands shown in the Fermi
surfaces: one forming pockets around the upper and lower
parts of each corner (the H point in the Brillouin zone)
(green/yellow); the second (purple/blue) filling the entire
corner (along the K-H line) and possibly connecting the
corners (it is hard to be certain even using 11 000 k points); and
the third, in light blue, filling the zone center. One noticeable
difference between the tight-binding and LAPW surfaces can
be found in the purple necks. In tight binding the neighboring

necks tend to connect to each other, while in LAPW there are
no connections. Such differences can be also seen in the band
structure, where the tight-binding band goes just above the
Fermi level and the LAPW band goes just below it in the �

direction. For hcp Cd, the tight-binding and LAPW-calculated
Fermi surfaces show better agreement, as shown in Fig. 5.
There is no observable trend to connect the purple necks, and
both tight-binding and LAPW predict the band energy below
the Fermi level in the � direction.

C. Elastic moduli

To calculate the elastic moduli, we impose volume-
conserving external strains on the structure, relax any internal
parameters to obtain the energy as a function of the strain,
and numerically calculate the second derivative of the energy-
strain curves.45 As shown in Table IV, in hcp Zn our
tight-binding calculations significantly underestimate the bulk
modulus and some of the elastic moduli (C13, C33, and C44),
all by over 20 GPa, in comparison to the experiment.46 The
significant underestimation of C13 and C33 has been previously
reported in density-functional theory calculations using both
GGA and hybrid functionals for Zn.47 The calculated bulk and
elastic moduli of hcp Cd show much better agreement with the
experiment; all agree within 8 GPa.46

D. Phonon dispersion

Using the frozen phonon approximation,48 we calculate
the phonon dispersion curves along several high-symmetry
directions in the Brillouin zone for both hcp Zn and Cd, as
shown in Fig. 6. The phonon spectra were calculated using
supercells generated by the PHON code49 and Stokes’s FROZSL

code,50 the calculations agreeing well with each other. Since
these calculations are performed at the equilibrium volume and
c/a ratio predicted by the tight-binding Hamiltonians and the
tight-binding equilibrium volume is significantly smaller than
the experimental value, it is not surprising to see that the tight-
binding calculated phonon frequencies for hcp Zn and Cd are
mostly 10%–20% higher than the inelastic neutron-scattering
measurements.51 Phonon frequencies generally increase sig-
nificantly with volume compression (increase of the pressure)
in transition metals, as shown in many previous experimental
and first-principles calculations.45,52–54

E. Atomic mean-square displacements

Atomic mean-square displacement (MSD) is an important
materials parameter to describe the lattice vibrational proper-
ties at finite temperatures.38 We calculate the MSDs based on
the time-dependent atomic coordinates obtained through tight-
binding molecular dynamics simulations at several selected
temperatures.38 The calculated MSDs for both hcp Zn and
Cd show a linear increase with the increase of temperature,
as shown in Fig. 7. Cd has a larger atomic MSD than Zn at
all the temperatures we examined. We only report MSDs for
Zn and Cd up to 500 K due to the low melting points of Zn
(693 K) and Cd (594 K), and the fact that our tight-binding
molecular dynamics simulations break when the temperature
approaches the melting point. Our high-temperature tight-
binding molecular dynamics simulations break at 750 K
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FIG. 2. The tight-binding band structure and electronic density
of states of hcp Zn at the ambient experimental equilibrium volume
agree well with first-principles LAPW results.

for Zn and 525 K for Cd, which are both close to the
experimental melting points. The calculated MSD values of
Cd agree well with the experimental data derived from the
Debye-Waller factor measurements,55,56 especially at around
the ambient temperature. The increasing differences between
the calculated and experimental values at higher temperatures
are partially due to the fact that we perform all the molecular
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FIG. 3. Same as Fig. 2, but for hcp Cd.

dynamics simulations at constant volume. The tight-binding
calculations underestimated the MSD values of Zn, partially
due to the underestimation of ambient equilibrium volume.

F. Coefficient of thermal expansion

The thermal expansion coefficient is a thermodynamic pa-
rameter that can also be obtained from our volume-conserving

TABLE IV. The tight-binding calculated bulk and elastic moduli for hcp Zn and Cd at the ambient experimental equilibrium volume are in
reasonable agreement with experimental measurements (Ref. 46).

Elastic moduli (GPa)
hcp Zn hcp Cd

TB Experiment TB Experiment

C11 168.52 179.09 134.37 129.23
C12 27.99 37.50 47.35 39.99
C13 28.92 55.40 33.66 40.95
C33 43.17 68.80 62.45 56.68
C44 24.04 45.95 22.24 24.20
C66 70.27 70.80 43.51 44.62
B 40.74 66.09 52.81 52.51
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FIG. 4. (Color online) The tight-binding (a) and LAPW
(b) calculated Fermi surfaces for hcp Zn. There are three bands,
one forming pockets around the upper and lower parts of each corner
(the H point) (green/yellow); the second (purple/blue) filling the
entire corner (the K-H line) and maybe connecting the corners; and
the third, in light blue, filling the zone center.

tight-binding molecular dynamics simulations at finite
temperatures,11

α = 1

3B

(
∂P

∂T

)
V

, (4)

where B is the bulk modulus, P is the temperature-dependent
pressure, and T is the temperature. We calculated P using
the usual virial definition11,18 by adding up both the potential
and kinetic contributions, and found a linear temperature
dependence for both Zn and Cd, similar to that previously
reported in several bcc transition metals.18 Zn and Cd are both
highly anisotropic, due to the unusually large c/a ratios at their
equilibrium hcp structures, so the experimentally measured
linear thermal expansion coefficients vary significantly along
the a and c axes. Our tight-binding calculated linear thermal
expansion coefficients are in reasonable agreement with the
average experimental values57 (having the same order of
magnitude), as shown in Table V.

G. Vacancy formation energy

The computational efficiency of our tight-binding method
enables us to examine large supercells, such as defect struc-
tures with minimal defect-defect interactions. Point defects
such as monovacancies are intrinsic at high temperatures and
have significant impact on a materials’ thermal and mechanical
properties. The thermal concentration of vacancies is usually

L
A(a)

(b)

H

M
K

L
A

H

M
K

FIG. 5. (Color online) Same as Fig. 4, but for hcp Cd.

associated with the vacancy formation energy Evac, which can
be obtained from our tight-binding calculations using5

Evac(V ) = Esc(N − 1,1; V ) − (N − 1)Ebulk(V/N ), (5)

where Esc(M ,Q;V ) is the total energy of a supercell with vol-
ume V containing M atoms and Q vacancies, and Ebulk(V /N )
is the total energy per atom for a bulk supercell of N atoms
with volume V . When calculating the total energy for the
vacancy-contatining supercell, we ensure that the supercell is
large enough to avoid the vacancy-vacancy interactions, and
fully relax all the atoms using the conjugate gradient method
while keeping the lattice symmetry. The calculated values are
very sensitive to the supercell size and the number of k points
used in the tight-binding calculations. Using a supercell of
5 × 5 × 5 which contains 249 metal atoms and one vacancy,
we are able to obtain well-converged results of Evac for both
Zn and Cd when using 72 k points in the tight-binding
calculations, as shown in Table VI. In comparison to the
experimental data measured from positron annihilation,58 our

TABLE V. The tight-binding calculated linear coefficients of
thermal expansion for hcp Cd and Zn both agree with experiment
(Ref. 57).

Linear thermal expansion coefficient
(×10−5 K−1)

Element TB Experiment

Zn 1.50 3.01 (a: 1.30, c: 6.43)
Cd 2.43 3.13 (a: 1.98, c: 5.43)
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FIG. 6. The calculated phonon dispersion of hcp Zn (a) and Cd
(b), in comparison to the inelastic neutron-scattering measurements
(Ref. 51).

tight-binding calculation overestimated the Evac for Cd and
underestimated the value for Zn, by ∼0.3 eV. Both hcp Zn and
Cd have very low vacancy formation energies, roughly one
order of magnitude smaller than many of the transition metals
we previously studied.5,18 As shown in the band structure,

FIG. 7. (Color online) The temperature dependence of the atomic
mean-square displacements for hcp Zn (solid line) and Cd (dashed
line) calculated from tight-binding molecular dynamics simulations,
in comparison to the experimental data derived from the Debye-
Waller factor measurements (Zn, filled circles, Ref. 55; filled
triangles, Ref. 56; Cd, open squares, Ref. 56).

the occupied d bands in Zn and Cd are located deep below
the Fermi level, and most bands around the Fermi level have
mixed s and p character. Thus Zn and Cd have electronic
structures more similar to free-electron metals than transition
metals. Aluminum, one of the free-electron metals which is
not far from Zn in the periodic table, is reported to have a
vacancy formation energy of 0.6 eV,59 similar to the values of
Zn and Cd.

IV. CONCLUSIONS

In summary, we have developed NRL-TB Hamiltonians
for Zn and Cd by fitting to first-principles LAPW band

TABLE VI. The tight-binding calculations underestimate the vacancy formation energy for hcp Zn and overestimate the value for hcp Cd,
both by ∼0.30 eV, in comparison to the positron annihilation measurements (Ref. 58).

Vacancy formation energy (eV)
hcp Zn hcp Cd

Supercell No. of atoms No. of k points Unrelaxed Relaxed Unrelaxed Relaxed

4 × 4 × 4 128 32 0.428 0.218 0.951 0.617
48 0.475 0.272 0.971 0.643
72 0.494 0.295 1.032 0.708
108 0.491 0.291 1.033 0.709

5 × 5 × 5 250 32 0.447 0.214 1.100 0.740
48 0.480 0.248 1.086 0.732
72 0.454 0.222 1.049 0.689
108 0.487 0.258 1.049 0.690

Experiment 0.39 0.52
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structures and total energies within the LDA, and applied the
Hamiltonians to compute the ground-state behavior and phase
stability, band structures, densities of states, elastic moduli,
phonon frequencies, vacancy formation energies, mean-square
displacements, and thermal expansion coefficients. We exam-
ined the tight-binding energies of 26 different crystal structures
including many low-symmetry and defect systems, and find
that hcp has the lowest energy for both Zn and Cd. The tight-
binding calculated band structure, density of states, and Fermi
surfaces agree well with first-principles LAPW results. The
tight-binding bulk and elastic moduli of hcp Cd are in excellent
agreement with experiment, and tight-binding calculations
underestimate the bulk modulus and several elastic moduli
for hcp Zn. The phonon spectra, calculated using the frozen
phonon approximation, are in reasonable agreement with

experiment. The calculated atomic mean-square displacements
increase linearly with temperature, and hcp Cd has a larger
MSD value over Zn at all temperatures, in good agreement
with the Debye-Waller factor measurements. The calculated
linear thermal expansion coefficients agree with experiment.
The vacancy formation energies of Zn and Cd are roughly one
order of magnitude lower than most transition metals, but close
to the formation energy of aluminum.
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