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Current state-of-the-art thermodynamic calculations using approximate density functionals in the quasi-
harmonic approximation (QHA) suffer from systematic errors in the prediction of the equation of state and
thermodynamic properties of a solid. In this paper, we propose three simple and theoretically sound empirical
corrections to the static energy that use one, or at most two, easily accessible experimental parameters: the
room-temperature volume and bulk modulus. Coupled with an appropriate numerical fitting technique, we show
that experimental results for three model systems (MgO, fcc Al, and diamond) can be reproduced to a very high
accuracy in wide ranges of pressure and temperature. In the best available combination of functional and empirical
correction, the predictive power of the DFT + QHA approach is restored. The calculation of the volume-dependent
phonon density of states required by QHA can be too expensive, and we have explored simplified thermal models
in several phases of Fe. The empirical correction works as expected, but the approximate nature of the simplified
thermal model limits significantly the range of validity of the results.
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I. INTRODUCTION

The reliable and inexpensive determination of equations of
state (EOS), thermodynamic properties, and phase stability of
solids is one of the fundamental problems in condensed matter
physics, materials science, and geophysics. The first-principles
method of reference for the calculation of such objects is the
density functional theory1,2 (DFT), the main component (the
exchange-correlation functional) of which is unknown. On top
of DFT, in order to access the properties of a solid at relatively
low temperatures, the approach commonly employed consists
of assuming a harmonic potential for the atoms at any
crystal structure: the quasiharmonic approximation (QHA).3,4

In this paper, we show how the systematic errors induced by
the approximate exchange-correlation functional at the DFT
level preclude accurate thermodynamic calculations in the
framework of QHA (Refs. 5–7) and how simple empirical
corrections of the static energy improve the theoretical predic-
tions to experimental accuracy.

The suitability of different approximate exchange-
correlation functionals for the calculation of thermodynamic
properties and other tasks has been examined in a long list
of articles benchmarking their performance (for instance, see
Refs. 6 and 8–12,), mainly in terms of the equilibrium volumes,
bulk moduli, and cohesion energies of simple solids. From
these works, clear trends are apparent: local density approxi-
mation (LDA) tends to overbind, that is, it yields equilibrium
volumes too small and equilibrium bulk moduli too large com-
pared to experimental results, and generalized gradient approx-
imation (GGA) functionals tend to the opposite effect. Unfor-
tunately, current state-of-the-art DFT calculations are unable to
predict, without further experimental confirmation, the p-V -T
equation of state, let alone more complex thermodynamic
properties of a solid.5,7 Although LDA and GGA functionals
usually bracket the correct volume and bulk modulus,5,12 not
even this well-known behavior holds for every crystal.7,11

There have been insights in the literature about how these
systematic deviations can be corrected. For instance, van de

Walle and Ceder13 noted that LDA bulk moduli and elastic
properties computed at the experimental geometry compare
better with experimental results than those obtained at the
equilibrium geometry. Kunc and Syassen14 showed that p/B0

versus V/V0 curves are transferable, nearly independent of the
functional, and close to their experimental counterpart (V0 and
B0 being the static equilibrium volume and bulk modulus).
Grabowski et al.12 performed a careful benchmark of LDA
and GGA in the computation of thermodynamic properties of
elemental nonmagnetic face-centered-cubic (fcc) metals and
reached the conclusion that LDA and Perdew-Burke-Ernzerhof
(PBE) functionals bracket the correct experimental results,
and that LDA performs better than PBE in the computation
of heat capacities and thermal expansivities. In addition, it
is well known that phonon densities of states as well as
other properties related to derivatives of the static energy
agree better with experimental observations if calculated at
the experimental volume, but only at the GGA level,5,6,15–19

and that the agreement of LDA, PBE, and experimental results
is better for cell shapes and atomic positions than for volumes
themselves.6 The GGA and LDA phonon density of states
are, for nonmagnetic materials, a scaled version of each other
with minor differences (for magnetic materials, however, the
comparison is not so simple7).

Because the correct functional is unknown, and given
the difficulty in climbing the metaphoric “Jacob’s ladder,”20

we propose a method that uses a few experimental data to
correct the observed systematic deviations: using empirical
energy corrections21 (EEC). The EEC are expressions that
replace the static energy, thus modifying the pressure and
temperature-dependent equilibrium volumes, but not the vibra-
tional properties associated to each volume. The corrections
require a thermal model to introduce the information contained
in the experimental parameters. We use the complete version
of the QHA: on a fixed grid of volumes, the phonon density
of states g(ω; V ) are calculated at the relaxed geometry. The
g(ω; V ) are associated to volumes, and are independent of how
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the static energy and its derivatives are corrected. We examine
three EECs in Sec. II.

To test the performance of the EECs, we have carried
out QHA calculations on three simple solids with different
bonding patterns, MgO (B1 phase), fcc Al, and diamond,
using plane-wave basis sets and ultrasoft pseudopotentials in
the framework of the density functional perturbation theory22

(DFPT) with LDA and GGA functionals. We have chosen these
systems not only because of their simplicity and popularity,
which warrants the abundance of experimental data to compare
with, but also because of their cubic symmetry: volumetric
temperature effects manifest through a diagonal thermal stress
(that is, a thermal pressure), simplifying the analysis of
the error sources in the corrections.23 This does not imply,
however, that the EECs are limited to cubic systems. The
correction can be used on crystals of arbitrary shape and
complexity. An account of the calculation details is given in
Sec. III.

A fundamental property of materials is the pressure-
volume-temperature equation of state V (p,T ). In Sec. IV, we
analyze how the application of EECs allows us to predict
V (p,T ) with accuracy comparable to experiment and with
independence of the functional, provided the (functional-
dependent) limit of validity of QHA is not exceeded. The six
functional plus EEC combinations examined are compared and
we observe that the temperature range of validity of the LDA
equation of state is more restricted than PBE due to the earlier
onset of the intrinsic anharmonic regime. Using the best EEC
and functional choice found, we propose a V (p,T ) expression
fitted to our ab initio results on a pressure-temperature grid
spanning a wide range of conditions for the three systems
under study.

The application of EECs also influences other thermody-
namic properties. In Sec. V, we analyze these effects on a
collection of properties at ambient conditions, and on the
adiabatic bulk modulus, heat capacity, and thermal expansivity
on a range of pressures and temperatures. The Gibbs free
energy plays an essential role in phase stability and the
computation of phase diagrams, so the impact of the static
energy correction on G is carefully examined. The analysis
shows that the use of EEC improves the consistency of
the calculations and the agreement with experiment, and
insight regarding the relative performance of LDA and PBE
functionals can be extracted.

Finally, in Sec. VI, we present an application of the new
techniques in a more complex material: body-centered-cubic
(bcc) iron. We show how the use of EECs is simplified by
approximate thermal models and generalize the correction
equations to arbitrary pressures and temperatures. The results
for iron also hint that, for magnetic materials, the EECs only
correct part of the discrepancies. The approximate models
allow applying EECs with a cost comparable to that of
calculating the static energy curve, but the results are not as
good as using the full QHA.

II. DEFINITION OF THE EMPIRICAL ENERGY
CORRECTIONS

In a previous paper,21 we proposed a systematic procedure
to obtain the EOS of magnesium oxide from raw QHA data

with accuracy comparable to experiment. This method is
based on (i) the use of averages of strain polynomials to
robustly represent the E(V ) function and its derivatives and
(ii) an empirical correction of the static energy. Part one
of the procedure has been thoroughly explored in previous
papers,24,25 while it is the second part of the procedure with
which we are mainly concerned in this paper.

Several authors have tackled the problem of the systematic
errors in DFT volumes and elastic properties in different ways.
The simplest method is using a magic bullet: exploring the
available functionals and turning the knobs of the calculation
(pseudopotentials, basis set, . . . ) until a satisfactory agreement
with experimental data is obtained. Of course, this method
is computationally awkward, theoretically doubtful, and not
systematic. Another option is selecting a good-quality exper-
imental data set and fitting the ab initio results to it by using
some functional form, with the purpose of extrapolating to
regions unexplored by experiment. This is, for instance, the
approach used by Wu et al.26,27 to calculate the equation of
state of MgO. In their work, they correct the raw V (p) curve
with an additive term

�V = �V0 exp(−p/pc), (1)

where �V0 and pc are parameters chosen to fit an experimental
equation of state. Generalizing this method is problematic: the
correcting expression is ad hoc, requires a good experimental
data set, which limits the applicability of the method to very-
well-studied solids, and presents the uncertainties typical of a
fitting procedure.

Another popular approach is applying a constant pressure
shift12,13 in a manner similar to the PSHIFT correction proposed
below. In this paper, we enhance this simple scheme by
(i) taking into full account the thermal effects on the solid and
(ii) proposing more involved corrections that improve upon
the simple pV shift.

In this section, we present practical procedures to scale the
ab initio E(V ) = Esta(V ) data for the calculation of thermo-
dynamic properties by using an empirical approach involving
one or at most two accurate and easily accessible experimental
parameters. These data are the experimental volume and bulk
modulus at ambient conditions, henceforth labeled V 0

expt and
B0

expt (the room temperature is T 0 = 298.15 K). The EEC
coefficients are calculated using the uncorrected data, which
we refer to using the subscript “sta” (for static). For future
reference, the static uncorrected equilibrium volume and bulk
modulus are labeled V0 and B0, respectively.

The starting point is the nonequilibrium or generalized
Gibbs free energy

G∗(x,V ; p,T ) = Esta(x,V ) + pV + F ∗
vib(x,V ; T ), (2)

where Esta is the static energy and F ∗
vib is the nonequilibrium

vibrational Helmholtz free energy. The cell volume V together
with the rest of free-cell coordinates x determine completely
the geometry of the crystal. For a given pressure and temper-
ature, the equilibrium configuration is given by the x and V

that minimize G∗. The value of G∗ at that minimum is the
equilibrium Gibbs free energy G(p,T ). If, for a fixed volume,
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the internal coordinates are relaxed, x(p,T ) is obtained by
minimization of Eq. (2), resulting in

G∗(V ; p,T ) = min
x

G∗(x,V ; p,T )

= Esta(V ) + pV + F ∗
vib(V,T ). (3)

As our test systems do not present degrees of freedom related
to the atomic positions or the cell shape, we use the latter ex-
pression. The same EEC expressions apply straightforwardly
to arbitrary symmetry solids.

In the quasiharmonic approximation, the nonequilibrium
vibrational Helmholtz free energy is

F ∗
vib(x,V ; T ) =

∫ ∞

0

[
ω

2
+ kBT ln(1 − e−ω/kBT )

]
× g(ω; x,V )dω. (4)

In a similar way, the equilibrium vibrational Helmholtz free
energy is given by F (V,T ) = F ∗

vib[V (p,T ); T ], where V (p,T )
is the equilibrium volume at the given conditions.

If the static energy is replaced by a corrected energy Ẽsta(V ),
the resulting modified static pressure p̃sta = −dẼsta/dV af-
fects the equilibrium volumes through the equilibrium condi-
tion

−∂G̃∗

∂V
(V ; p,T ) = 0 = p̃sta − p + pth, (5)

but the phonon density of states (phDOS) at a given volume
F ∗

vib and the thermal pressure pth = −∂F ∗
vib/∂V are not

affected. This is important because phDOS are affected to a
lesser extent by systematic errors at DFT level than equilibrium
volumes.

We examine three different empirical energy correction
methods:

(1) The PSHIFT correction shifts the energy by a constant
pressure �p:

Ẽsta(V ) = Esta(V ) + �pV . (6)

This approach is by far the most popular12,28 and has been
given theoretical justification by van de Walle and Ceder13 as
a modification of the LDA functional. The correction shifts
the static equilibrium volume by adding �p to the equilibrium
equation (5), without affecting the bulk modulus or higher
derivatives of the energy. In their work, van de Walle and
Ceder proposed calculating �p as a weighted average of
atomic pressures, obtained in turn in some elemental phase. In
contrast, we use the experimental datum V 0

expt to find the �p,
which gives

−∂G̃∗

∂V

(
V 0

expt; 0,T 0) = 0. (7)

Solving this equation leads to

�p = p(Vexpt,T
0) = psta

(
V 0

expt

) + pth
(
V 0

expt,T
0
)
. (8)

The value of the �p parameter is calculated using the
uncorrected data alone, and the resulting static energy yields
a T 0 and 0 GPa equilibrium volume exactly equal to the
experimental datum V 0

expt. In a naı̈ve implementation of this
correction, the thermal model would be missing and the static
volume would be fit to the experimental volume by neglecting

pth. This is a fundamental error because the thermal pressure is
of the same order as the static pressures (and possibly larger!).

(2) In the same style, we can develop an EEC based on
the correction proposed by Alchagirov et al.,28 which we
call APBAF, after the initials of the authors. In that and
subsequent works,8 it recognized the need of a correction
for the description of the core-valence interaction in DFT
calculations. The authors argue that such error is contained
in a term of the form V −1, so the corresponding EEC can be
formulated as

Ẽsta(V ) = Esta(V ) + α

V
. (9)

Using a procedure similar to the previous EEC, we obtain the
value of α that exactly fits the experimental V 0

expt value:

α = −p
(
V 0

expt,T
0
)(

V 0
expt

)2
. (10)

(3) The last EEC we propose (called BPSCAL) uses two
experimental data: V 0

expt and B0
expt. This correction is inspired

on the observation by Kunc and Syassen14 that static p/B0

versus V/V0 curves closely match for LDA and GGA
functionals, and also for the experimental curve. In terms of
a correction of the static energy, this translates into finding a
Ẽsta such that

Ẽ′
sta(V )

Bexpt
=

E′
sta

(
V V0

Vexpt

)
B0

, (11)

where the primes indicate volume derivatives and Vexpt and
Bexpt are the experimental static volume and bulk modulus
extrapolated to static conditions (cf. the experimental room-
temperature equivalents V 0

expt and B0
expt). Integrating the above

equation leads to the expression of the EEC

Ẽsta(V ) = Esta(V0)

+BexptVexpt

B0V0

[
Esta

(
V

V0

Vexpt

)
− Esta(V0)

]
. (12)

The arbitrary integration constant Ẽsta(Vexpt) is made equal to
Esta(V0) so that the correction vanishes in the limit Vexpt = V0

and Bexpt = B0, thus keeping the energy footing of the original
data. This is useful in case the correction is used in the context
of the determination of phase equilibria. The energy derivatives
of the corrected energy are

Ẽ′
sta(V ) = Bexpt

B0
E′

sta

(
V

V0

Vexpt

)
, (13)

Ẽ′′
sta(V ) = BexptV0

B0Vexpt
E′′

sta

(
V

V0

Vexpt

)
, (14)

so the condition given by Eq. (11) is met. In addition,
Vexpt is the corrected static equlibrium volume [Ẽ′

sta(Vexpt) =
E′

sta(V0) = 0] and Bexpt = VexptE
′′
sta(Vexpt) is the corrected

static equilibrium bulk modulus. The cohesion energy is
modified according to

Ẽcoh = BexptVexpt

B0V0
Ecoh. (15)

The missing piece of this EEC is the procedure to obtain the
extrapolated static experimental data Vexpt and Bexpt from their
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TABLE I. Calculation parameters for the examined cases: MgO, diamond, and fcc Al. The V s column corresponds to the number of data
points forming the volume grid, Ecut is the plane-wave cutoff energy (Ry). Following this column, the electronic meshes and vibrational meshes
(Monkhorst-Pack) are shown. The last two columns correspond to the electron configuration used to generate the pseudopotentials and the
number of core electrons they represent.

V s Ecut k point q point Elec. config. Core

MgO 174 80 4 × 4 × 4 8 × 8 × 8 Mg:1s22s22p63s1 2
O:1s22s22p5 2

C 31 60 6 × 6 × 6 6 × 6 × 6 1s22s22p2 2
Al 43 50 16 × 16 × 16 6 × 6 × 6 1s22s22p63s23p1 10

room-temperature counterparts. Imposing the equilibrium
condition at V 0

expt yields

Bexpt = −B0
pth(f V0,T

0)

psta(f V0)
, (16)

where the volume factor f is

f = V 0
expt

Vexpt
, (17)

which is greater than 1 except in the rare solids with negative
thermal expansion from static conditions to 300 K. The
corrected isothermal bulk modulus at T 0 must be B0

expt, so

B0
expt =

(
V

∂2F ∗

∂V 2

)(
V 0

expt,T
0
)

= Bexpt

B0
Bsta(f V0) + BT

(
V 0

expt,T
0
) − Bsta

(
V 0

expt

)
. (18)

Combining Eqs. (16) and (18),

Bsta(f V0)

psta(f V0)
= −B0

expt − BT

(
V 0

expt,T
0
) + Bsta

(
V 0

expt

)
pth

(
V 0

expt,T
0
) . (19)

The right-hand side of the last equation is readily calculated
using the uncorrected energy. Given V 0

expt and B0
expt, a search

is performed in the V > V0 region (if the right-hand side
is negative) or the V < V0 region (if positive) for a factor
f such that Bsta/psta fulfills Eq. (19). This factor yields the
experimental static volume and bulk modulus using Eqs. (17)
and (16). In this EEC, both the experimental volume and bulk
modulus are exactly matched to within the numerical precision
allowed by the volume derivatives.

The three EECs assume that a temperature model is
available to calculate the equilibrium volume at ambient
conditions from first-principles data, but we make no as-
sumption regarding the details of this model. In the most
straightforward implementation, used in this work, this model
is the quasiharmonic approximation (QHA). However, in cases
where the computation of phonon dispersion relations on a
grid of volumes is unfeasible, simplified models29,30 of QHA
(Debye,31 Debye-Grüneisen,32 . . . ) can be used as well. In
such cases, the correction also reflects the quality of the thermal
model. A simple application of approximate thermal models
to iron is presented in Sec. VI.

Nevertheless, the use of a thermal model is essential in order
to capture the temperature and zero-point effects necessary
for a sensible comparison to experimental room-temperature
data.12 Indeed, these effects convey a correction to equilibrium

volume and bulk modulus of the order of the LDA and
GGA deviations,15 although smaller, so exchange-correlation
functional benchmarks can be misinterpreted if they are not
accounted for.

III. CALCULATION DETAILS

With the purpose of testing the performance of the energy
corrections, we have calculated three systems with different
bonding schemes: a typical ionic solid (MgO, B1 phase),
a covalent solid (diamond), and a metal (fcc Al). All three
systems are cubic, and their behavior is experimentally well
known.

A sufficiently fine volume grid was chosen and the
energy and phonon density of states (phDOS) were calculated
at each of those volumes using a pseudopotentials plus
plane-waves approach and the density functional perturbation
theory22 (DFPT), as implemented in the QUANTUM ESPRESSO

package.33 Ultrasoft pseudopotentials34 were generated for all
the atoms involved using the USPP program by Vanderbilt. The
convergence of the calculation parameters was checked against
the phDOS. The configurations and number of core electrons
of the pseudopotentials, together with the final parameters
used, are given in Table I.

We have chosen two widely used exchange-correlation
functionals to check the performance of the EECs: LDA
in the parametrization of Perdew and Zunger35 and the
Perdew-Burke-Erzenhof version of GGA.36 Although the
EECs apply equally well to any functional, we have selected
those functionals not only because of their popularity, but
also because they coarsely represent an error bar that usually
brackets the correct experimental results.11

An important topic in the accurate treatment of thermo-
dynamic data is the use of an adequate equation of state.
Very recently,24,25 we have shown that averages of strain
polynomials up to a high degree provide the robust treatment
of first-principles data for thermodynamic calculations: the
derivatives of the energy are accurate and the method provides
a statistical way of estimating the errors in the calculated
properties. Consequently, we have used an average up to
twelfth-order polynomials in the Eulerian strain, fitted using
the procedures described in Ref. 24. The second version of the
GIBBS program29,30 and the ASTURFIT octave interface24 were
used to process the data. The experimental volumes and bulk
moduli used in the corrections are shown in Table II.

In the case of Al, there is a contribution to the ther-
modynamic properties due to the conducting electrons. We
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TABLE II. Experimental data used in the correction of the ab
initio static results for the three systems under study.

V 0
expt (bohr3) B0

expt (GPa) Ref.

MgO 126.03 161.3 37
Diamond 76.58 446 38
Al 111.84 72.7 39,40

have used the Sommerfeld model of free and independent
electrons to include its electronic contributions to the free
energy.41 The results are roughly equivalent to those calculated
using the finite-temperature DFT formalism,42 as is expected
for a typical free-electron-like metal such as Al, and their
effect on the calculated thermodynamic properties (except
for the high-temperature heat capacity) is negligible for the
temperatures considered.

IV. CORRECTED EQUATIONS OF STATE

A. Comparison to experimental results

The effects of the empirical energy corrections on the ab
initio static energy of MgO are shown in Fig. 1. The three EEC
schemes correct the static energy in a similar but not identical
way. The energy minimum is displaced to a smaller value in
PBE and to a larger value in LDA, correcting the well-known
behavior of these functionals. The corrected static equilibrium
volume is within a range of 0.36 bohr3 for the three EECs.

The effects on the curvature of E(V ) are more subtle. By
definition, the PSHIFT correction does not modify the second
and higher derivatives of E(V ) and, therefore, it amounts to
a horizontal translation of the uncorrected graph. In contrast,
APBAF modifies the static bulk modulus

B̃sta = Bsta + α

2V 2
, (20)

and for BPSCAL, the static equilibrium bulk modulus is made
to be equal to the calculated Bexpt, higher than B0

expt because of
the thermal and especially the zero-point effects. The resulting
correction of the shape of E(V ) is similar for APBAF and
BPSCAL: the solid is stiffer for LDA and softer for PBE.

Surprisingly, the curvature correction is opposite to the effect
on the volume. When the volume is corrected using the PSHIFT

EEC, it is actually LDA that is underbinding and PBE that
is overbinding with respect to the bulk modulus. This is
consistent with previous observations in the literature12 and
is present in the LDA and PBE trends for all thermodynamic
properties considered. The effects of the EECs on the static
energy are similar in diamond and fcc Al, the larger the more
the predicted room conditions volume (and bulk modulus)
deviate from the experimental result.

In addition, APBAF and BPSCAL, even though the former
uses one adjustable parameter and the latter uses two, almost
match for PBE, so it is to be expected that they yield
similar results. This is indeed the case for MgO, while for
Al and diamond, the divergence is slightly more pronounced.
The APBAF correction is therefore a good alternative if the
experimental bulk modulus is not available. The good results
of this one-parameter correction support the conclusions in
Ref. 28.

It is interesting to consider how the correction modifies
the infinite pressure (V → 0) and infinite volume limits of
the crystal. The contribution of the energy correction vanishes
for PSHIFT and APBAF on infinite compression and expansion,
respectively. Conversely, the energy contribution diverges
unphysically on expansion for the PSHIFT and on compression
for the APBAF corrected energies, although in the latter the
divergence on compression is slower than that of the raw static
energy. Therefore, the correction effects of APBAF essentially
vanish in both compression and expansion limits. In the case
of BPSCAL, the behavior of the energy and the pressure is that
of a scaling on both compression and expansion:

p̃sta(V ) = Bexpt

B0
psta

(
V

V0

Vexpt

)
(21)

and the cohesion energy is modified according to Eq. (15).
The energy footing (that is, the energy at the equilibrium

volume) of the corrected energies is made to be the same as
in the original E(V ) curve by adding a constant energy term
when necessary. This precaution is important if the EECs are
used in the context of comparing energies of different phases
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FIG. 1. Uncorrected and corrected static energy curves of magnesium oxide for the LDA (left) and PBE (right) exchange-correlation
functionals.
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FIG. 2. (Color online) The pressure dependence of equilibrium volume at T 0 = 298.15 K (left) and the thermal expansion curve at zero
pressure (right) are shown for the three systems under study. Relevant experimental data (or fits to experimental data) are included. The
labels correspond to the first author and year of publication of Refs. 37,38,40,43–52. The insets show a zoom on the high-temperature and
high-pressure regions of the graph. The room temperature is marked by a vertical line in the right pane plots.

of the same solid, as is the case in the computation of phase
diagrams.

Figure 2 shows the performance of the EECs in the
calculation of the equation of state of the examined solids. As a
reference, we use some of the latest experimental results. The

uncorrected LDA and PBE curves bracket the experimental
V (p) and V (T ) with the typical overbinding and underbinding
behaviors. A direct conclusion of these results is that, because
of the systematic errors caused by the choice of the exchange-
correlation functional and the lack of a systematic way of
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improving the results, it is not possible to blindly predict
the equation of state of a simple solid using the uncorrected
data alone. This observation extends to other thermodynamic
properties, as shown below and in the literature.6

Regarding the corrected EOS, all the EECs yield ap-
proximately the same result in the low-temperature–low-
pressure regions, and deviate for more extreme conditions.
This observation is easily explained: all EECs correct the
V (p = 0,T 0) datum to V 0

expt, which corresponds to the leftmost
point of the V (p) graph, and to the point represented by a
vertical dotted line in the V (T ) graph. In the case of the BPSCAL

correction, the slope of V (p) at the same point is also fixed by
the experimental bulk modulus.

The V (p) plots show that the transferability of p/B0 versus
V/V0 among LDA and PBE functionals is preserved when
zero-point and thermal effects up to 298.15 K are included.
The BPSCAL corrected isotherms for both functionals agree to
less than 0.09 bohr3 in a range that extends up to 250 GPa.
This coincidence worsens on increasing the temperature due
to anharmonic effects. The PSHIFT correction is, in general,
the EEC whose agreement with experimental results is worse.
The PSHIFT corrected volumes show the same tendency to
systematic overbinding and underbinding errors than the
source LDA and PBE functionals, respectively, although on
a much smaller scale. The APBAF LDA result is slightly
overbinding. Also, it is not possible to choose from APBAF

PBE and both BPSCAL results on grounds of a comparison to
experimental data alone in these solids. The volumes predicted
by APBAF PBE are systematically (although only slightly)
smaller than both BPSCAL results.

The zero-pressure thermal expansion curves V (T ) provide
a more critical test for the EECs, not only because the
volume range spanned is smaller, but also because of the
inevitable breakdown of the quasiharmonic approximation
at high temperatures.53 In this sense, the volume expansion
curves shown in Fig. 2 are the worst-case scenario26 because
the relevance of anharmonic effects decreases on increasing the
external pressure. This observation is important in the context
of generating reliable results for geophysical applications
where, because of the extreme pressure and temperature
conditions, no direct experimental confirmation is possible.
The corrected V (T ) results are coincident to experimental
accuracy at low temperatures, with the PSHIFT correction
roughly bracketing the other curves.

In the high-temperature region, the calculated EOS, with
independence of the correction, show a marked deviation
from the experimental result at a given temperature, readily
explained by the lack of intrinsic anharmonic contributions.
The temperature at which this effect starts to become impor-
tant, however, depends slightly on the EEC and heavily on
the functional and the solid. For the systems studied, MgO
(T 0

m = 3125 K) shows the anharmonic effect at the lowest
temperature.53 In the case of diamond (T 0

m = 3820 K), these
contributions are relatively unimportant up to 2000 K. The
case of aluminum is particularly surprising because of the
agreement with experimental V (T ) up to temperatures very
close to the melting point T 0

m = 933.47 K. The temperature
for the onset of intrinsic anharmonic effects seems to be
higher for the PBE functional than for LDA, an effect that is
observed for other thermodynamic properties as well (Sec. V).

The APBAF EEC shows the deviation effect slightly sooner
than BPSCAL. The PSHIFT PBE curve has the wider temper-
ature range of agreement with experiment thanks to error
cancellation.

Summarizing, the results of Fig. 2 show that, at least for the
studied systems, it is possible to generate reliable equations
of state that rival in accuracy with experimental results using
first-principles calculations corrected with one or two easily
accessible experimental data. Of course, the calculated EOS
are valid as long as the prediction is not extended beyond
the limit of validity of the quasiharmonic approximation. In
our opinion, this is an important result because it makes it
possible to generate reliable V (p,T ) data for pressures and
temperatures that can not be accessed experimentally, and not
merely a bracket of the correct result. The unsolved problem
of selecting or designing an accurate exchange-correlation
functional is avoided in practice by a simple and feasible
scaling. Furthermore, the correction schemes are applicable
to any regular solid and to any functional.

We can extract some insights about the suitability of
functionals in the calculation of equations of state. The results
of Fig. 2 show that LDA meets the limit of validity of QHA
sooner than PBE. This conclusion and the fact that, according
to Fig. 1, corrections to the exchange-correlation functionals
present systematic trends, suggest that there is an underlying
physical explanation at DFT level, and that the static energy
corrections presented here can be reformulated as an additional
term of the DFT Hamiltonian.13 We will not delve further into
theoretical considerations in this paper, but a more detailed
study examining the variation of the correction parameters
with chemical environment in crystals is, in our opinion,
definitely worthwhile.

B. Pressure-volume-temperature equations of state

Given the excellent agreement with experimental V (p) and
V (T ) data, we can now propose p-V -T equations of state
based on our theoretical predictions for MgO, diamond, and
Al using the PBE results corrected with the BPSCAL EEC,
the best scheme according to Fig. 2. The analytic formulation
of the p(V,T ) we use is one of the Mie-Grüneisen-Debye
expressions proposed in the work by Tange et al.44:

p(V,T ) = pT0 (V ) + �pth(V,T ), (22)

with pT0 (V ) the reference isotherm at temperature T0 and �pth

the thermal pressure. The former can be chosen as one of the
usual low-order EOS popular in the literature. The latter is
defined as

�pth(V,T ) = 3nRγ

V
[D3(θD/T ) − D3(θD/T0)] , (23)

where n is the number of atoms per cell, Dn(x) is a Debye
integral

Dn(x) = n

xn

∫ x

0

tn

et − 1
dt , (24)

and the Debye temperature and Grüneisen parameter depend
on volume according to

γ (V ) = γ0{1 + a[(V/V0)b − 1]}, (25)
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θD(V ) = θ0

(
V

V0

)γ0(a−1)

exp

[
γ0 − γ (V )

b

]
. (26)

The adjustable parameters in the equations above are those of
the reference isotherms θ0, γ0, a, and b.

Although the functional form of this p(V,T ) equation is
equivalent to that of Tange et al., the intent is different. In their
work, the parameters were obtained by a careful fitting to the
available V (p), V (T ), BS(p), and BS(T ) experimental data,
with the purpose of extrapolating the behavior of the crystal
to any pressure and temperature. In this work, we generate
a V (p,T ) grid for the fitting procedure using the PBE results
and the BPSCAL energy correction for a wide range of pressures
(0 to 500 GPa) and temperatures (0 to 3000 K, except for Al,
where the upper limit is 800 K). Given an arbitrary volume
and temperature within the explored range, our expression
interpolates the pressure using the actual calculated values.

Regarding the technical details of the fit, we find that the
EOS described by Eqs. (22)–(26) is the p-V -T equation,
which best represents our results of the three options proposed
in Ref. 44. Our numerical tests indicate that the reference
isotherm pT0 (V ) is better represented using a third-degree
polynomial in the Eulerian strain (f ):

p(f ) =
3∑

k=0

ckf
k , (27)

where f is defined as

f = 1

2

[(
Vref

V

) 2
3

− 1

]
, (28)

and Vref is a reference volume, possibly but not necessarily the
static equilibrium volume. The fitting of the p-V -T equation of
state is much improved by using the coldest isotherm available
(T0 = 0.0001 K) rather than the room-temperature isotherm,
the sensible choice for an experimental study. The quality of
the fit is insensitive, up to physical precision, to the fineness
and shape of the grid.

As expected from the previous analysis, we find that it is
necessary to exclude the regions where anharmonic effects are
important. To this end, we use an exclusion criterion based on
the approximate Debye temperature of a crystal, calculated as
in Refs. 31 and 29:

�D(V ) = 1

kB

(6π2V 1/2n)1/3f (σ )

√
Bsta

M
, (29)

where M is the cell molecular mass and σ is the Poisson
ratio, which, for simplicity, we assume to be 0.25, the value
of a Cauchy solid. For a given pressure p and temperature
T , a point of the fitting grid is excluded if 1.5 times the
Debye temperature at the volume associated to p via the cold
isotherm [V (p,T0)] is smaller than T . The ablated regions are
represented in Fig. 3. Because of its sound physical foundation,
we expect the p-V -T equation to correctly extrapolate to the
high-temperature regions.

The fitted p-V -T EOS parameters are presented in Table III.
The mean error and the maximum deviation in the predicted
pressure are always smaller than 0.1 and 0.5 GPa, respectively.
The fitted p(V,T ) expression is a faithful representation of
the original first-principles data in the fitted region, and the
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FIG. 3. Pressure-dependent temperature limit where the fitting
grid for the p-V -T equation of state is sectioned. The region above
the curves is not fitted for the corresponding system.

interpolation error is expected to be of the order of, and
approximately bound by, these values.

In the particular case of the equation of state of MgO
(Ref. 21 and references therein), relevant because of its use
as pressure calibrant, Tange et al.44 use as an additional
criterion a comparison of the predicted adiabatic bulk moduli
BS(p,T = T 0) and BS(p = 0,T ) from previous experimental
studies on MgO. For the sake of comparison, Fig. 4 presents
the calculated and experimental BS(p) and BS(T ) curves for
magnesium oxide. Again, the coincidence with the experimen-
tal results is very good, considering that only two experimental
data are used for the empirical correction. We must note that,
from the technical point of view, BS is a quantity considerably
more difficult to access than the isothermal bulk modulus BT :

BS = BT + Cvγ
2T

V
, (30)

with Cv the constant volume heat capacity. The reason is that
it involves the Grüneisen parameter, which is calculated as a
volume derivative of the entropy

γ = V

Cv

(
∂S

∂V

)
T

. (31)

V. CORRECTED THERMODYNAMIC PROPERTIES

A. Calculated properties at ambient conditions

We now turn to the analysis of the effect that the empirical
corrections have on the calculated thermodynamic properties.
Table IV presents the properties obtained at ambient conditions
from the raw and corrected QHA data. Given the abundance
of experimental data, we extend the comparison to 0 GPa and
1000 K conditions for MgO. The error bars calculated by using
strain polynomial statistics24,25 are included in the comparison.
We must note, however, that these error bars measure only the
precision of the predicted values regarding the fit, not the
underlying DFT calculation itself.
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TABLE III. Fitting parameters of the p-V -T equation of state expression given by Tange et al. (Ref. 44) [Eqs. (22)–(26)]. Because of the
strong correlation between the thermal pressure coefficients (θ0, a, b, γ0), it was not possible to fit the complete expression to the diamond
EOS, so we chose to fix a = 1. The maximum and average absolute deviations in the predicted pressure are shown in the last two entries. The
reference temperature is T0 = 0.0001 K for the three systems.

MgO Aluminum Diamond

Vref (bohr3) 125.4823 110.5957 76.5627
c0 (GPa) 2.9756546 × 10−2 −6.1364390 × 10−2 1.6119952 × 10−3

c1 (GPa) 4.9563449 × 10+2 2.3967089 × 10+2 1.3369808 × 10+3

c2 (GPa) 2.5844813 × 10+3 1.4144945 × 10+3 6.2102976 × 10+3

c3 (GPa) 4.1650008 × 10+3 1.6937468 × 10+3 5.8403959 × 10+3

θ0 (K) 857.8250 410.7608 2241.0368
γ0 1.5302605 2.1956944 1.0141375
a 0.48012896 0.69482331 1 (fixed)
b 2.2555157 1.9957874 0.92715790
|�p|max (GPa) 0.292 0.275 0.437
|�p|avg (GPa) 0.0754 0.0487 0.0923

As in the case of the equation of state, the BPSCAL

correction to PBE obtains an excellent agreement with the
experimental properties of the three systems under consid-
eration, shifting the calculated properties in the direction
of the experimental results and eliminating the systematic
trend in the uncorrected PBE. We show later that this
agreement extends to wider regions of pressure and temper-
ature. Let us examine the various properties presented in the
table.

Regarding the calculated equilibrium volume and bulk
modulus, the uncorrected results show the typical overbinding
and underbinding behaviors of LDA and PBE, respectively.
In the corrected results, the parameters are chosen so that
the room-temperature volume is reproduced. The match is
not exact because of numerical errors caused by the fitting
procedure, but the room-temperature volumes agree with
experiment within the range of physical significance. In the
case of MgO at 1000 K, the corrected LDA and PBE results
diverge, although the gap between both figures is smaller if a
correction is applied.

An important observation is that, when the volume is
corrected, LDA tends to overestimate the volume of MgO at
1000 K while PBE underestimates it, the exact opposite of the
uncorrected tendency. The table shows that this inversion of the
relative behavior of LDA and PBE and the reduction of the gap
between them is a general feature of the corrected results and
extends to higher temperatures at zero pressures, according to
the figures in the next section. The corrected PBE results tend
to be closer to experiment than LDA, which, depending on the
property, slightly overestimates (volume) or underestimates
(bulk modulus) the correct result. These observations agree
with previous results on the pressure shift correction, where
the LDA and PBE inversion were observed.12

For the isothermal bulk modulus, only the BPSCAL corrected
values are forced to agree with the experimental datum. The
inversion of the LDA and PBE bulk moduli on the correction
described above is observed again: LDA predicts smaller BT

than PBE, the latter being, in general, in closer agreement with
experiment.

It is interesting to note that when the PSHIFT EEC is
considered, the corrected PBE results offer a much better

prediction of the BT of the three systems than the LDA result.
This is in sharp contrast to van de Walle and Ceder arguments in
favor of the corrected LDA.13 The discrepancy may tentatively
be ascribed to the lack of zero-point and thermal effects in their
work, which cause a non-negligible softening of the isothermal
bulk modulus, and are therefore essential to compare with
experimental data. The APBAF correction tends to predict an
isothermal bulk modulus smaller than the experimental result,
slightly higher and in better accordance to the latter in the case
of PBE, except in diamond.

Similar considerations apply to the adiabatic bulk modulus,
closely related to BT , and to the pressure derivatives B ′

T and
B ′′

T . The inversion of the LDA and PBE results is still observed,
and the BPSCAL result is closer to the experimental result as
a consequence of having fixed the BT , except in diamond,
where due to the extremely high bulk modulus, errors in the
experimental data cause it to be inconsistent. Indeed, according
to Eq. (30), it must hold that BS > BT and, similarly, Cp > Cv ,
but experimental errors in different experimental sources make
the data of diamond in Table IV violate these inequalities. On
the other hand, B ′

T and B ′′
T quantities can be calculated robustly

thanks to our fitting technique.24,25 The calculated error bars
allow us to conclude that B ′

T and B ′′
T can be reliably predicted,

but that successive pressure derivatives of the bulk modulus are
not available using the raw static volume grid.28 We observe in
the table that the general tendency for all the properties is that
PBE error bars are slightly smaller than LDA ones. In the case
of MgO, increasing the temperature enlarges the error bars of
all calculated properties.

The volumetric thermal expansivity is mainly dependent
on the product of volume and isothermal bulk modulus (its
physical hardness, see Ref. 28 and references therein):

α = Cvγ

V BT

. (32)

The raw LDA results closely agree to the experimental α

values, and all the corrections go in the wrong direction causing
a significant overestimation. This is different from the PBE
behavior, where all the corrections and, in particular, BPSCAL,
effectively correct the error in the raw values, resulting in a
good agreement with the measurements.

184103-9
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FIG. 4. (Color online) The dependence of the adiabatic bulk modulus (BS) with pressure at room temperature (left) and with temperature at
zero pressure (right) for MgO, diamond, and Al, calculated using different functionals and empirical energy corrections. Experimental results,
when available, are included and labeled using the first author and year (Refs. 37,46,54,58–62).

Uncorrected LDA and corrected PBE predict that values of
α are close to the experimental result, while LDA results cor-
rected to the experimental volume overestimate the quantity.

In contrast to volume and elastic properties, the effects of
the empirical corrections on the thermodynamic quantities that

do not depend directly on the static energy are more subtle,
namely, Fvib and S, their volume derivatives pth and γ , and
the heat capacities Cv and Cp. For these quantities, thermal
effects at 300 K are small enough to give a good agreement
with experiment, irrespective of functional and correction.
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TABLE IV. Thermodynamic properties of MgO, diamond, and fcc Al at ambient conditions. In the case of MgO, also p = 0 GPa and
T = 1000 K conditions are considered. Except where noted, the sources of experimental data are Anderson and Zou (Ref. 54) for MgO and
the fit to experimental data by Jacobs et al. (Ref. 55) for Al. The empirical data used for the corrections are emphasized in boldface. The values
for the thermal pressure in italics have been calculated indirectly (Ref. 54).

Uncorrected PSHIFT APBAF BPSCAL Expt. Ref.
LDA PBE LDA PBE LDA PBE LDA PBE

MgO, 298.15 K, 0 GPa
V (bohr3) 123.156(50) 132.389(34) 126.027(63) 126.022(11) 126.025(55) 126.025(21) 126.024(54) 126.024(18) 126.025 37
Fvib (kJ/mol) 11.2266(122) 9.9572(71) 10.5571(143) 11.4267(29) 10.5575(125) 11.4259(53) 10.5578(122) 11.4263(46)
S (J/mol K) 27.345(23) 29.920(16) 28.680(31) 27.008(6) 28.679(27) 27.010(10) 28.679(27) 27.009(9) 27.18
pth (GPa) 2.725(69) 2.554(44) 2.706(77) 2.631(14) 2.706(68) 2.627(27) 2.704(67) 2.626(23) 0.717
BT (GPa) 161.77(67) 140.99(59) 146.44(69) 172.92(51) 153.52(66) 157.54(54) 161.33(68) 161.47(57) 161.3 37
BS (GPa) 164.18(67) 143.56(59) 149.04(69) 175.20(51) 156.12(66) 159.81(54) 163.93(68) 163.75(57) 163.9
α (1 × 10−5 K) 3.226(14) 3.744(17) 3.689(19) 2.886(9) 3.519(16) 3.168(11) 3.348(15) 3.091(11) 3.12
Cv (J/mol K) 36.9192(121) 38.1831(80) 37.6329(169) 36.6902(34) 37.6325(150) 36.6912(62) 37.6321(147) 36.6908(54) 36.9
Cp (J/mol K) 37.4708(143) 38.8793(108) 38.3011(197) 37.1732(43) 38.2698(176) 37.2213(74) 38.2385(171) 37.2080(62) 37.409
B ′

T 4.255(45) 4.296(49) 4.401(67) 4.026(27) 4.292(57) 4.218(34) 4.285(56) 4.202(38)
B ′′

T (GPa−1) −0.0369(51) −0.0474(108) −0.0474(86) −0.0272(28) −0.0416(74) −0.0355(38) −0.0393(69) −0.0336(36)
γ 1.5534(10) 1.6332(6) 1.6144(14) 1.5297(1) 1.6143(12) 1.5298(3) 1.6143(11) 1.5298(2) 1.54

MgO, 1000 K, 0 GPa

V (bohr3) 126.972(177) 137.076(172) 130.538(219) 129.444(84) 130.291(205) 129.819(100) 130.053(193) 129.719(95) 129.6
Fvib (kJ/mol) −32.269(113) −36.154(106) −34.707(149) −31.460(49) −34.539(141) −31.701(67) −34.370(135) −31.633(64)
S (J/mol K) 83.471(104) 87.191(101) 85.791(147) 82.730(50) 85.625(138) 82.953(59) 85.464(130) 82.894(56) 82.24
pth (GPa) 7.327(201) 7.078(163) 7.462(213) 6.976(104) 7.456(203) 6.968(121) 7.441(192) 6.965(116) 4.96
BT (GPa) 137.17(226) 116.79(170) 118.89(217) 152.94(202) 126.76(215) 136.52(209) 134.79(217) 140.53(215) 141
BS (GPa) 148.40(223) 128.36(168) 130.99(214) 163.37(202) 138.79(212) 146.99(201) 146.75(214) 150.99(215) 151.1
α (1 × 10−5 K) 5.058(87) 5.816(87) 5.980(116) 4.329(58) 5.598(100) 4.853(75) 5.255(89) 4.714(73) 4.47
Cv (J/mol K) 48.5866(20) 48.7516(36) 48.6831(101) 48.5653(54) 48.6713(87) 48.5718(13) 48.6649(62) 48.5731(12) 47.61
Cp (J/mol K) 52.563(77) 53.584(82) 53.637(115) 51.876(50) 53.291(98) 52.297(59) 52.985(86) 52.188(58) 50.87
B ′

T 4.935(184) 5.168(378) 5.413(291) 4.348(104) 5.194(269) 4.633(122) 5.122(247) 4.594(120)
B ′′

T (GPa−1) −0.106(30) −0.170(88) −0.168(55) −0.064(22) −0.141(48) −0.088(28) −0.126(41) −0.082(27)
γ 1.6181(39) 1.7044(35) 1.7013(55) 1.5747(14) 1.6953(12) 1.5803(16) 1.6893(48) 1.5787(15) 1.54

Al fcc, 300 K, 0 GPa

V (bohr3) 107.744(59) 112.701(49) 111.840(77) 111.840(47) 111.840(69) 111.840(48) 111.836(69) 111.834(46) 111.840 40
Fvib + Fel(kJ/mol) −0.2069(99) −0.5159(77) −0.8890(136) −0.3814(74) −0.8890(123) −0.3814(76) −0.8882(123) −0.3805(71)
S (J/mol K) 27.914(28) 28.807(23) 29.865(40) 28.409(22) 29.865(36) 28.409(22) 29.862(36) 28.406(21) 28.234
pth (GPa) 1.862(23) 1.782(12) 1.890(22) 1.779(16) 1.890(18) 1.779(16) 1.887(20) 1.775(12)
BT (GPa) 75.50(62) 69.44(78) 62.41(79) 72.10(73) 67.55(78) 71.01(73) 72.72(69) 72.69(66) 72.7 51
BS (GPa) 79.00(62) 72.84(78) 66.31(79) 75.43(73) 71.45(78) 74.34(73) 76.62(69) 76.02(66)
α (1 × 10−5 K) 7.042(58) 7.404(83) 8.883(116) 7.077(71) 8.207(97) 7.185(74) 7.624(76) 7.019(65) 6.986
Cv (J/mol K) 23.1549(46) 23.3024(38) 23.4466(50) 23.2357(37) 23.4466(45) 23.2357(38) 23.4463(45) 23.2352(35) 23.288
Cp (J/mol K) 24.2282(119) 24.4440(147) 24.9121(237) 24.3102(122) 24.8006(200) 24.3266(126) 24.7039(170) 24.3009(121) 24.285
B ′

T 4.874(126) 4.936(104) 5.354(101) 4.847(117) 5.099 4.890(91) 5.005(73) 4.920(86)
B ′′

T (GPa−1) −0.143(18) −0.174(36) −0.244(50) −0.157(29) −0.197(43) −0.163(30) −0.172(31) −0.158(24)
γ 2.2078(20) 2.2191(16) 2.3600(30) 2.1917(15) 2.3600(27) 2.1917(15) 2.3598(27) 2.1915(14) 2.14

Diamond, 300 K, 0 GPa

V (bohr3) 75.1502(32) 77.6898(52) 76.5804(31) 76.5805(55) 76.5809(33) 76.5809(58) 76.5807(28) 76.5826(61) 76.581 38
Fvib (kJ/mol) 34.7745(15) 33.8764(23) 34.0881(15) 34.3763(27) 34.0879(16) 34.3761(29) 34.0880(13) 34.3753(30)
S (J/mol K) 4.7361(4) 4.9954(7) 4.9224(4) 4.8501(7) 4.9225(4) 4.8502(8) 4.9225(4) 4.8504(8) 4.7240 56
pth (GPa) 5.344(7) 5.116(42) 5.194(5) 5.232(48) 5.197(6) 5.235(46) 5.196(8) 5.244(49)
BT (GPa) 454.64(20) 424.11(53) 423.89(27) 446.84(32) 440.43(24) 434.37(29) 445.98(25) 445.92(42) 446 38
BS (GPa) 454.97(20) 424.48(53) 424.25(27) 447.18(32) 440.79(24) 434.72(29) 446.34(25) 446.27(42) 444.8 57
α (1 × 10−5 K) 0.3135(2) 0.3567(4) 0.3534(2) 0.3268(2) 0.3402(2) 0.3362(2) 0.3359(2) 0.3275(3) 0.3051 49
Cv (J/mol K) 12.2959(10) 12.8737(15) 12.7224(9) 12.5459(17) 12.7225(10) 12.5460(18) 12.7225(8) 12.5465(18) 12.321 49
Cp (J/mol K) 12.3049(10) 12.8849(15) 12.7332(9) 12.5556(17) 12.7329(10) 12.5560(18) 12.7327(8) 12.5563(19) 12.218 56
B ′

T 3.676(14) 3.668(63) 3.759(14) 3.618(57) 3.691(13) 3.662(57) 3.677(11) 3.674(57)
B ′′

T (GPa−1) −0.0090(5) −0.0094(18) −0.0108(11) −0.0075(20) −0.0097(10) −0.0081(21) −0.0094(10) −0.0071(29)
γ 0.777547(6) 0.81464(9) 0.80475(6) 0.79538(9) 0.80476(6) 0.79539(10) 0.80476(5) 0.79542(10)

From Table IV, we can therefore conclude that the accuracy
in the calculated properties is dominated by volume and static
energy effects, either directly (V , BT , BS , B ′

T , B ′′
T , α) or

indirectly via the correction on the p-V -T equation of state
(Fvib, S, Cv , Cp). When the correct room-temperature volume
is enforced by modifying the static energy in any of the EEC
schemes, the deviations from the experimental results are
smaller and have sign opposite to the uncorrected deviations:
if the uncorrected result underestimates a property, then the

corrected value overestimates it, and vice versa. The corrected
PBE results improve, in general, over LDA, and the agreement
to experiment using PBE plus BPSCAL is excellent.

B. Pressure and temperature dependence of selected
thermodynamic properties

In this section, we examine the effects of the EECs
on some important thermodynamic properties by analyzing
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their evolution with pressure at room temperature and with
temperature at zero pressure. Our objective is inferring the
behavior of these properties at arbitrary temperatures and
pressures by extrapolation.

Figure 4 shows the pressure and temperature dependence
of the calculated adiabatic bulk modulus. The corrected and
uncorrected BS(p) curves are almost parallel to each. They
are also nearly linear with pressure, the behavior expected of
this quantity. As a consequence, in the case of the calculation
of BS(p), it is essential to fix the correct bulk modulus in the
empirical correction, i.e., using BPSCAL, to obtain an accurate
result at an arbitrary pressure. If the BPSCAL correction is used,
the curves for LDA and PBE match almost exactly.

In magnesium oxide, where the experimental BS(p) is
available, uncorrected LDA and both BPSCAL coincide with
the low-pressure data by Li et al.37 and with Zha et al.,58

although the experimental error in the latter is larger and
encompasses all the predicted results. No experimental data
were found for the pressure dependence of the BS in aluminum
and diamond, but consistence is maintained: in all three
systems, the BPSCAL correction brings LDA and PBE to
coincidence.

The inset of Fig. 4 shows the pressure evolution of the
quotient between the corrected BS and the one obtained with
the uncorrected data. The correction on BS is maximum
at zero pressure and decays slowly on compression for all
the EECs considered. The correction works systematically
yielding smaller bulk moduli in LDA and larger BS in PBE,
hence, correcting their systematic trends. The corrections
imposed by the EECs that do not explicitly fix the isothermal
bulk modulus (PSHIFT and APBAF) are in the same direc-
tion as BPSCAL, although their predicted values are slightly
different.

The BS(T ) curves corresponding to different EECs are
widely different, but again the two BPSCAL corrected curves are
very close to each other, diverging only at high temperatures.
The most striking feature of the BS(T ) plots is the spectacular
agreement between the BPSCAL plus PBE results and the
experimental predictions. Again, in the case of diamond,
no reliable experimental sources for the comparison exist
given the difficulty involved in obtaining accurate bulk moduli
for a system of such hardness. Indeed, the low-temperature
BS(T ) data by McSkimin et al.60 could be reproduced by
using a different BT as a parameter for the BPSCAL EEC,
although we have chosen to maintain the parameter in Table II
for consistency. The high-temperature BS(T ) by Zouboulis
et al.59 is calculated by combining the cS

ij (T ) obtained using
a Brillouin scattering technique, the results showing strong
experimental noise. Indeed, the fitting coefficient for the
T 2 term of BS(T ) cited by the authors contains less than
two significant digits. Given the excellent agreement in the
prediction of the other thermodynamic properties, we can
conclude that the cited data are suspicious, and more accurate
experiments to determine the high-temperature adiabatic bulk
modulus of diamond are required in order to perform a sensible
comparison.

Regarding the rest of the EECs, the empirical corrections
push the curves in opposite directions: they make the crystal
softer for LDA and stiffer for PBE, the same as observed for
BS(p). However, only when BPSCAL is used, the experimental

BS(T ) curve is predicted accurately, thanks to the additional
correction parameter.

A further feature, especially visible in the case of MgO, is
the unphysical softening of BS(T ) at high temperatures. This
deviation from the expected physical behavior is caused by
the lack of intrinsic anharmonic effects, and can be observed
as well in Cp(T ) and α(T ) (Fig. 5) and in the deviations
of the experimental Cv(T ) data from the classical Dulong-
Petit limit predicted by the quasiharmonic theory (Fig. 6).
The temperature at which the lack of anharmonic effects is
apparent is lower for LDA than for PBE and depends on a
smaller scale of the EEC used, effectively extending the range
of applicability of PBE to higher temperatures than LDA. This
effect is also observed for the thermal expansion (Fig. 2),
although on a smaller scale.

Figure 5 represents the calculated and experimental con-
stant pressure heat capacity and thermal expansivity. It is
clear from these plots that the application of EECs affects the
temperature region where the quasiharmonic approximation
can be applied. A temperature limit of this range has been
proposed by Wentzcovitch et al.74 as the temperature at
which the thermal expansivity acquires superlinear (that is,
unphysical) behavior, and the curvature d2α/dT 2 changes
from negative (low T ) to positive (high T ). In our test systems,
this effect is observed clearly in MgO and Al, although in the
latter, only at temperatures close to the melting point. We
should note, however, that the temperature range where the
calculated volumes are accurate is larger than for α, which,
being related to the temperature derivative of the volume, is
more sensitive to anharmonic effects on the thermal expansion
of the crystal. The quality of the predicted Cp(T ) and α(T )
is excellent, rivaling with the experimental accuracy within
the validity range of QHA. We note, again, that this range
is larger for the PBE than for the LDA functional and that
the effect of the EECs is opposite on both. In the PBE
results, EECs flatten the α(T ) and Cp(T ) curves at higher
temperatures, in the order APBAF< BPSCAL < PSHIFT, while
the behavior for LDA is exactly the opposite: the corrected
LDA results deviate sooner from the correct behavior than
the uncorrected ones, restricting its temperature range of the
functional.

An important word of caution is necessary at this point.
If uncorrected BS(T ), Cp(T ), and α(T ) are considered
alone,6,12 the impression one receives is that LDA offers a
better prediction of those quantities according to experiment,
which perhaps explains the puzzling popularity of LDA
in first-principles calculations for geophysics.53,76 From the
figures above, it is clear that this apparent agreement stems
from the cancellation of the LDA overbinding with the
softening caused by the breakdown of the QHA. When
volume corrections are applied, the good performance of
LDA vanishes and corrected PBE improves even on the
original uncorrected LDA. The EECs we propose avoid relying
on dangerous error cancellations, when, as in the case of
geophysical applications, the theoretical predictions need to
be used in regions of pressure and temperature uncharted by
experiments.

When the PBE functional is considered alone, Figs. 2
to 5 show that the APBAF correction performs slightly worse
than BPSCAL owing to the reduced number of parameters,
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FIG. 5. (Color online) The calculated temperature dependence of the constant pressure heat capacity (Cp , left) and the thermal expansivity
(α, right) at zero pressure for the three systems under study. Experimental results correspond to Refs. 45, 47, 54, and 63–73. The Dulong-Petit
limit is represented as a dotted horizontal line in the left pane.

but much better than PSHIFT. This is not surprising because
the APBAF correction is designed to correct systematic errors
in approximate density functionals.28 The good results ob-
tained confirm the soundness of this correction. In summary,
APBAF is a good alternative when only the experimental

room-temperature volume, but not the bulk modulus, is
known.

Finally, Fig. 6 compares the constant volume heat capacity
of the three systems with experimental results. The coincidence
at low temperatures is excellent. At higher temperatures, the
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FIG. 6. (Color online) The calculated and experimental constant
volume heat capacity (Cv) for MgO, diamond, and Al at zero pressure.
Experimental results were obtained from Refs. 49,54,75.

experimental results exceed the Dulong-Petit limit due to
intrinsic anharmonicity and, in the case of aluminum, also
because of the electronic contribution. Because of the limits
imposed by the harmonic approximation on the shape of
Cv(T ), there is little difference in using different functionals
or empirical corrections. The Cv(T ) of aluminum contains the
electronic contributions that allow it to overstep the classical
limit.

C. Impact of the empirical energy corrections on phase stability

An important application of QHA is the calculation of
phase diagrams. Phase stability is controlled by the value of
the Gibbs free energy G of the different phases of the same
solid. The calculation of accurate values of G is therefore
an important task in order to obtain reliable phase diagrams,
especially considering the minute energy differences often
separating the stable geometry from the metastable phases.
Typically, there is a relative abundance of data for the stable
phase, but metastable phases may or may be not accessible to
current experimental techniques. In this situation, it is possible
that experimental data to feed the EECs are not available, or
available at pressures and temperatures different from ambient
conditions. In the second case, we note that the empirical
corrections analyzed in this paper can be easily extended to
fit experimental data at arbitrary pressure and temperature
conditions. On the other hand, if there is absolutely no data
from which to draw the correction coefficients, then these
coefficients can be transferred from the stable phase. Although
a proper validation of this transfer is necessary, van de Walle
et al.13 found that the correction pressure in the PSHIFT

scheme can be approximated as a weighted average of atomic
pressures. We are currently studying the viability of EECs in
the determination of transition pressures and phase diagrams.
We have shown in a previous paper21 that the BPSCAL EEC
corrects the transition pressures and the phase diagram of
MgO, bringing LDA and PBE results to coincidence within
5 to 10 GPa, in contrast with the ≈ 40 GPa uncorrected gap.
This result is encouraging, although more adequate systems
need to be studied.

A precise value of G(p,T ) is essential for a correct ordering
of the stability of the different phases entering a phase diagram.
Figure 7 shows the corrections to the calculated Gibbs free
energy as determined by the three EEC schemes �GEEC. This
�GEEC is composed of three terms:

�GEEC(p,T ) = �Esta + p�V + �Fvib, (33)

where

�Esta = Esta[VEEC(p,T )] − Esta[Vraw(p,T )], (34)

�Fvib = F ∗
vib[VEEC(p,T ); T ] − F ∗

vib[Vraw(p,T ); T ], (35)

p�V = p[VEEC(p,T ) − Vraw(p,T )]. (36)

The EEC subscript designates the volume calculated via the
corrected static energy, while raw is the uncorrected result. The
three contributions to G depend on the volume and, therefore,
on the accuracy of the equation of state. In the case of the third
term p�V , this contribution is directly volume dependent. In
the other two cases, the volume correction enters the equation
indirectly, via Esta or Fvib. The three contributions are shown
in Fig. 7, together with the total �GEEC.

The figure shows that the empirical energy corrections
applied to LDA and PBE have opposite signs on all the
examined pressure-temperature ranges, which is consistent
with the observations for other thermodynamic quantities.

Regarding the �GEEC(p) curve at room temperature, the
corrections increase monotonically for LDA and decrease for
PBE, crossing zero at the point, around 5 GPa for the three
systems, where p�V balances the other two contributing
terms. At higher pressures and T = T 0, the correction is
dominated by the p�V term, is larger in absolute value, and
the three EEC schemes diverge. For the systems considered,
the ordering of the magnitude of �GEEC is the same: BPSCAL >

APBAF > PSHIFT in the case of LDA and APBAF > BPSCAL >

PSHIFT for PBE.
The situation with �GEEC(T ) at zero pressure is the

opposite: �GEEC is positive for PBE and negative for LDA.
The correction increases with temperature, with sign opposite
to the effect of increasing the pressure, and in this case with
a value determined mainly by �Fvib. The three EECs provide
almost the same correction as a result of the cancellation of
�Esta with �Fvib.

Because �G(p) is dominated at low temperatures by the
p�V term, it is essential to choose an empirical energy
correction that describes adequately the equation of state in
order to obtain accurate values of the Gibbs free energy and,
as a result, a faithful phase diagram and transition pressures.
Note that even the static transition pressures are affected by
the static energy corrections, although only through the �Esta

and the p�V terms. The thermal �Fvib and the static energy
contributions are comparatively small, the former being almost
independent of pressure. As a consequence of both diagrams,
for an arbitrary pressure and temperature, the correction
to G is explained by a competition between the pressure
(p�V ) term and the thermal (Fvib) contribution, with opposite
effects.

The relevance of the EECs on static or room-temperature
transition pressures is currently under study. From the lit-
erature, it is clear that the choice of exchange-correlation
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FIG. 7. (Color online) The difference between the corrected Gibbs free energy using the three EEC schemes and the uncorrected G, and the
additive terms [Eqs. (34), (35), and (36)] contributing to it are shown. The total �GEEC is represented with thick lines, while points have been
added to mark each of the curves corresponding to different terms: �Fvib (squares), p�V (circles), and �Esta (triangles). The functionals are
represented by line colors: blue for PBE and light gray for LDA. Different line styles correspond to the three empirical corrections used. The
left pane contains the pressure evolution of these quantities at room temperature, while the right pane represents their temperature dependence
at null pressure. Results are presented for MgO (top), diamond (middle), and aluminum (bottom).

functional affects significantly these quantities,19,21 and we
firmly believe that an appropriate correction to the static energy

is in order to improve the agreement with experiment and the
predictive power of the DFT quasiharmonic approach.
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VI. APPROXIMATE THERMAL MODELS
AND COMPLEX SOLIDS

Correcting the static energy using phonon frequencies at
each volume can be too onerous in complex solids. In this
section, we show how the EECs can be applied with an
approximate thermal model to systematically improve the
computed EOS, using iron as a test system. In this case,
the only piece of information used in the correction will be the
static E(V ) curve and the experimental parameters, drastically
reducing the computational cost of the calculation.

Iron is one of the most studied elements because of
its technological and geophysical relevance. Seismological
evidence suggests that the Earth’s core is composed primarily
of iron: liquid in the outer core and solid in the inner core. The
actual phase in which iron is present in the inner core is still a
subject of debate.77–80

Regarding its phase diagram, ferromagnetic body-centered-
cubic iron (α-Fe) is stable at room temperature and pressure.
At around 15 GPa and with a large hysteresis,81 the bcc
structure transforms into nonmagnetic hexagonal close-packed
(hcp) (ε-Fe), which is stable up to the Earth’s core pressure.
The hcp phase is stable also at high temperatures, but the
question of whether it is hcp, double hcp, or a combination of
stacking faults that dominates the structure of the inner core

still stands.80 At low pressures and higher temperatures, the
γ -Fe phase is found, with face-centered-cubic (fcc) structure.

A challenge in the study of iron is its magnetic structure.7,82

The bcc phase is stabilized by magnetic interactions,7,83

which are well reproduced by GGA functionals but not by
LDA. Indeed, GGA correctly predicts bcc ferromagnetic to
be the stable structure at zero pressure and its transition to
nonmagnetic hcp. On the contrary, the energy of the bcc
phase in LDA is too high to even compete with closed-packed
fcc and hcp structures. The changes in the static energy
caused by EECs conserve the energy of the minimum, so the
stability order of the magnetic phases is not altered. This is
the appropriate behavior because the focus is on correcting
volume-related faults of the functional, not errors in the
electronic or magnetic treatment of materials.

In the calculations, we use an ultrasoft pseudopotential for
Fe with nonlinear core correction and valence configuration
3d64s2 with LDA and PBE exchange-correlation functionals.
The studied phases are bcc, fcc, and hcp in their ferromagnetic,
antiferromagnetic, and nonmagnetic configurations with both
functionals, totaling 18 energy-volume curves. The plane-
wave energy cutoff was 40 Ry and k-point meshes were
20 × 20 × 20 for cubic structures and 14 × 14 × 14 for hcp,
ensuring a convergence to the mRy or better in the total energy.
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FIG. 8. (Color online) The left-pane graphs depict the calculated static energies and magnetic moments of ferromagnet. The right pane
shows the evolution of the bulk modulus with respect to the last point in the volume grid used in the fit, and the associated error bars. The upper
plots correspond to LDA and the lower to PBE.
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Cold smearing84 was applied, with smearing parameter equal
to 0.01 Ry. The calculated energy ordering at p = 0 reproduces
results in the literature (see Ref. 85 and references therein). In
the calculation of EOS that follows, we use only ferromagnetic
bcc and nonmagnetic hcp phases, in accord with experimental
results.

The application of the EECs requires a very accurate
description of the static energy curve. Achieving this in α-Fe
is troublesome because of the magnetic transition at volumes
slightly higher than the equilibrium volume. This effect was
recently studied by Zhang et al. (Ref. 86): the magnetic
transition induces a subtle change in the behavior of E(V ) that
affects the fitted equation of state, which justifies the spread
of reported bulk modulus values in the literature.

The problem can be dealt with the strain polynomial aver-
aging technique.24,25 Figure 8 shows the calculated energies
and magnetic moments. The PBE results clearly show the
aforementioned magnetic transition on expansion, while the
same feature is not present in LDA in the volume range studied.
The impact of the transition can be seen in the right pane, where
the calculated bulk modulus (and its error bars) are shown
against the last volume of the grid used for the fit. Irrespective
of the functional, if too few points around the energy minimum
are included, the bulk modulus shows that wide variations and
error bars are very large, which is consistent with the poor
behavior of high-order strain polynomials on extrapolation.
The B0 error bars decrease steadily when considering more
points in LDA, where there is no magnetic anomaly, and the
phase has “predictable” physical behavior. In PBE, the bulk
modulus is affected by including in the fit the volumes where
the magnetic transition is taking place, although on a much
smaller scale than in the literature.86 The change in physical
behavior of the phase is readily detected by an increase in the
size of the error bars. In comparison, the r2 coefficient of the fit
fails to identify the problematic volumes, being monotonically
closer to 1 as more points are removed from the end of the
grid.

To overcome this situation, we have removed the volumes
higher than those of the stable fit zone, and extended the E(V )
grid by extrapolation using a low-order strain polynomial.

To avoid the computation of phonon frequencies, we use
the Debye-Grüneisen thermal model,30,32 where the phonon
DOS is approximated by (atomic units)

g(ω) =
{

9nω2

ω3
D

if ω < ωD,

0 if ω � ωD,
(37)

�D = 1

kB

(6π2V 1/2n)1/3f (σ )

√
Bsta

M
, (38)

f (σ )=
{

3

[
2

(
2(1 + σ )

3(1 − 2σ )

)3/2

+
(

(1 + σ )

3(1 − σ )

)3/2]−1}1/3

, (39)

where kB is the Boltzmann constant, σ the Poisson ratio, M the
molecular mass, n the number of atoms per cell, and �D the
Debye temperature, directly related to the Debye frequency
ωD . The Poisson ratio of Fe is taken to be 0.3679 (Ref. 87) for
the bcc phase and the Cauchy solid value (0.25) for the hcp
phase. This thermal model can be applied without information
apart from the E(V ) curve and possibly the Poisson ratio.
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FIG. 9. (Color online) Calculated and experimental equation of
state of α-Fe (up) and ε-Fe (down). The experimental data correspond
to Refs. 88–91.

A consequence of the appearance of Bsta in Eq. (38) is
that, contrary to what happens when using the exact phonon
DOS, the EECs affect the thermal model. This problem is
easily solved by applying the EEC correction iteratively until
convergence. In practice, convergence is achieved in less than
six iterations.

The ε-Fe phase has only been observed at high pressure.
In order to apply the EECs, it is necessary to generalize
Eqs. (6)–(19) to the case where experimental volumes and
bulk moduli are provided at arbitrary external pressures (pext)
and temperatures (Text). It is easily found that the general form
of these equations still applies in this case, but replacing the
thermal pressure with pth − pext and the room temperature
with Text.

The calculated equations of state of α-Fe and ε-Fe are
shown in Fig. 9. In the α phase, we used the APBAF

(V 0
expt = 79.4818 bohr3) and the BPSCAL (B0

expt = 169 GPa86)
corrections. Iron is a particular system in that LDA and PBE
results do not bracket the correct equilibrium volume.7 In
Fig. 9, we can see that the PBE equation of state is barely
affected by the correction because the uncorrected value is
close to experimental data. However, the poor LDA equation
of state is effectively corrected by APBAF and BPSCAL. As it
happened with aluminum, diamond, and MgO, the BPSCAL
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correction brings LDA, PBE, and experimental results into
close agreement.

This agreement with experiment is slightly worse in the case
of ε-Fe. Lacking the bulk modulus data, we use only the APBAF

correction at p = 17.7 GPa (V 0
expt = 69.4809 bohr3).91 The

EOS agree with experimental values close to the correction
point and up to around 100 GPa in the case of PBE, but
systematically overestimate the volume past this zone.

The phase transition in uncorrected PBE is 24.7 GPa, and
upon correction with BPSCAL, the corrected value is 42.8 GPa.
The uncorrected and especially the corrected result compare
poorly with experiment [the transition takes place between
13.8 and 16.2 GPa (Ref. 81)]. Again, this effect can be
ascribed to the problems in the treatment of the hcp phase,
the limitations of the thermal model, or the importance of an
adequate treatment of magnetism.7,92

Several reasons can account for the deviations in ε-Fe EOS:
(i) the Debye-Grüneisen model employed is too simple to
reproduce the phase behavior over a very wide pressure range;
(ii) the experimental error in the volume used in the correction
may affect the behavior of the curve; and (iii) the error caused
by the exchange-correlation functional can not be traced back
solely to static energy. The latter has been studied by Hatt et al.7

and is likely to apply to other magnetic materials as well, where
LDA and GGA yield very different magnetic and vibrational
properties. The exchange-correlation functional errors in these
systems are, therefore, not limited to volumetric effects, and
the EECs correct only part of the problem.

VII. CONCLUSIONS

In this paper, we have shown how, under current practice,
DFT calculation of thermodynamic properties and equations
of state in the quasiharmonic approximation fail to reliably
predict equations of state and thermodynamic properties. To
solve this problem, caused by the systematic error trends
displayed by exchange-correlation functionals, we propose
modifying the calculated static energy by using empirical
energy corrections (EECs).

The EECs described modify the static energy, but not
the volume-dependent vibrational properties obtained as
derivatives of the static energy. The corrections make use
of one (PSHIFT, APBAF) or two (BPSCAL) experimental data.
In the version presented in this paper, these data are the
ambient conditions volume and, optionally, the isothermal
bulk modulus. By proper application of the temperature
model, the experimental data are exactly reproduced by the
corrected calculation, modulo uncertainties caused by the
fitting procedures.

The comparison of the predicted equations of state and
thermodynamic properties with experimental results show
an improvement that corrects the systematic deviations of

LDA and PBE functionals. In the particular case of PBE
combined with BPSCAL corrections (and, depending on the
objective property, the APBAF EEC), all properties examined
are predicted within experimental accuracy for wide ranges
of pressure and temperature, i.e., from very low to very high
values of p and T . As a simple application of this methodology,
we propose a very accurate p-V -T equation of state for MgO,
diamond, and fcc aluminum using a Mie-Grüneisen-Debye
expression.

The analysis of thermodynamic properties related to higher
derivatives of the energy show that the validity range of the
quasiharmonic approximation is functional dependent: the
temperature upper bound is consistently higher for uncorrected
LDA than for PBE, and even higher for any corrected PBE.
This result casts a doubt on the usability of LDA for geophys-
ical studies, as high-temperature uncorrected LDA results can
be subject to large errors or fortuitous cancellations between
the well-known overbinding and the unphysical softening
caused by the lack of anharmonic corrections. In such a case,
a positive comparison to experiment in a pressure-temperature
region where this cancellation happens can lead to a disastrous
extrapolation to other conditions, where no experimental data
are available and it is necessary to have a reliable prediction.

Furthermore, having a correct equation of state is fun-
damental when comparing with the experimental results of
properties that depend critically on volume such as the phonon
density of states or the frequencies at the � point. The
improvement extends to other properties (electronic, magnetic)
as well, provided they are correctly treated at DFT level.

We have examined the correction of the Gibbs free energy
G(p,T ), a key component of the calculation of phase diagrams.
We conclude that the correction is important when different
phases of the solid are compared, and that it is driven by the
p�V term at high pressures and by the �Fvib term at high
temperatures, both depending critically on the correctness of
the underlying equation of state.

Finally, we have shown how a simplified correction scheme
is possible using an approximate thermal model such as the
Debye-Grüneisen scheme. The systematic deviations in the
equations of state are partially corrected, but the accuracy
achieved is less than in the extraordinary results provided by
the full QHA calculation. The extreme computational cheap-
ness of the approximate models might justify considering its
results as a provisional first test.
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