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First-principles study of dislocations in hcp metals through the investigation
of the (1121) twin boundary
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Herein, we use first principles calculations to study the energy of the (112̄1) twin boundary in Zr, Zn, Mg, Ti,
and Be. This boundary is important for understanding the microyielding and damping of hexagonal close-packed
metals. The (112̄1) twin boundary is unique in that it is composed of—and can form by the glide of—basal
dislocations nucleating at every c lattice parameter. The effect of the number of atoms between boundaries on
the boundary energy, and the resulting lattice strains of the relaxed structures are quantified. It is shown that
the energies obtained converge within 32–64 atoms/supercell. The structures with a higher second-order elastic
constant term, c44, also have higher boundary energies. It is further shown that the critical resolved shear stresses
of the basal dislocations at 0 K, which make up the (112̄1) twin, are so low as to be below the threshold of the
first principles calculations.
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I. INTRODUCTION

Hexagonal metals (HM) have been studied for decades due
to their technological importance. While their mechanisms for
plastic deformation under high strains are widely accepted,
their low-strain (ε < 1%) behavior has, until recently, not
been very well understood. The deformation of HM under
low strains is a crucial piece of the deformation puzzle
for HM, especially when considering phenomena such as
microyielding and damping. A breakthrough toward under-
standing the early deformation of HM came about recently
when we showed that they are kinking nonlinear elastic (KNE)
solids.1–3 Macroscopically, KNE solids are characterized by
the formation of fully, and spontaneously, reversible closed
hysteresis stress-strain loops. The size of these loops, which
corresponds to the energy dissipated per unit volume, scales
with the maximum applied stress squared and is a strong
function of grain size.

It is currently postulated that the deformation mechanism
that leads to these characteristic stress-strain loops involves
the nucleation, growth, and annihilation of incipient kink
bands (IKBs).4 IKBs [Fig. 1(a)] are concentric dislocation
loops that nucleate and grow under an applied load, and they
are spontaneously annihilated when the load is removed. A
sufficient condition for a solid to be KNE is plastic anisotropy,
where the dislocations are confined to two dimensions—
usually the basal planes in hexagonal metals. Characteristics
that often lead to this include a high c/a ratio and low c44,
where c and a are the lattice constants of the unit cell, and c44

is the second-order elastic shear constant. Most layered solids,
graphite, the Mn+1AXn phases, and mica can also be classified
as KNE solids, among others.1,5–7

Macro- and microscale models for the deformation of KNE
solids have been developed and agree well with experimental
results.6,7 However, modeling at the atomic level is still
lacking. To fully describe the nucleation and growth of IKBs
[Fig. 1(a)], and their transformation to mobile dislocation
walls (MDWs) [Fig. 1(a)], and ultimately kink bands (KBs)
[Fig. 1(b)], it is essential to understand the structure of the
MDWs [Fig. 1(c)].

The ultimate goal of this work is to model IKBs and
their nucleation from an atomistic point of view. The goal
of this paper, however, is much more modest and represents
a first step towards our ultimate goal, in that we chose to
study the atomistics of the (112̄1) twin in HM. The (112̄1)
twin is of particular interest because it is a special kink
boundary in which a basal plane dislocation is nucleated
every c lattice parameter [Fig. 1(d)]. The (112̄1) twin stands
out as the only twin in which all lattice sites are correctly
sheared to their twin positions, and lattice shuffles are thus
not required.8 Said otherwise, this twin can form solely by
basal dislocation glide. Study of this twin can be traced back
to Palache,9 who reported the twinning features in graphite
as (112̄1) twins. A full description of the structure of all
twinning elements of this boundary was first provided by
Freise and Kelly,10 who identified the (112̄1) twin bound-
ary as a wall of basal dislocations in graphite. Based on
Shockley and Read’s model for the energy of dislocations
along a grain boundary,11 they proposed that the (112̄1)
twin was composed of alternating partial dislocations along
the boundary. Minonishi et al.12 also found that the stable
relaxed structure at the interface leads to a change in stacking
sequence across the boundary [see Fig. 2(a) and 2(b)], which
renders it effectively shuffleless. Similar results were obtained
by Serra and Bacon.13 Since this kink boundary is, at first
approximation, a boundary of edge and screw dislocations, it
follows that investigation of the energy and structure of the
(112̄1) twin would be useful for enhancing our understanding
of dislocations, KBs, and ultimately KNE solids. To our
knowledge, the (112̄1) twin has to date not been investigated
using first principles calculations in the way it is dealt with
herein.

Among atomistic modeling approaches, emphasis is put
on first principles, or ab initio, calculations based on full
electronic structures for obtaining accurate energies. However,
the study of dislocations is not a well-tested territory for ab
initio calculations since the supercells needed to adequately
account for the long-range elastic fields can be quite large.
With a supercell approach, it is difficult to isolate the effects
of the dislocations, or defects within the cell, from the surface
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FIG. 1. (Color online) Schematic of (a) an IKB, (b) KBs, and
(c) the dislocation structure of the IKB and MDWs shown in (a). The
(1100) plane view of the (112̄1) twin is shown in (d), showing the
(112̄1) plane (dotted line), the twin angle θ , and edge dislocations
every c lattice parameter. Inset (bottom left) shows the (112̄1) plane.

effects caused by its periodicity. To eliminate surface effects,
full periodic boundary conditions must therefore be satisfied,
which is only possible if the Burgers vector of the supercell is
zero. This approach has been employed for dislocation cores in
cubic systems14–16 and boundary surface energies in Mg,17 but
generally the use of ab initio calculations to study boundaries
and dislocations has still been few and far between. The main
reason for this is the computational limitations for the large
number of atoms required, along with the boundary conditions,
which impose limitations on the special boundary structures
that can be simulated.

The purpose of this study is to report on the energy
and structure of the (112̄1) twin in the HMs Mg, Ti, Zn,
Zr, and Be, through the supercell approach using ab initio
calculations. The effects of supercell size on the boundary
energies, for each element, are considered. We also calculate
the unit cell parameters and c44 and explore how these
parameters relate to our results on the twin boundary energies.
The critical resolved shear stresses of the dislocations are
also estimated to be below the threshold of the ab initio
calculations.

II. CALCULATIONS

Ab initio calculations based on density functional theory
(DFT) were performed using the projector-augmented wave
(PAW)18,19 method, as implemented in the VASP code.20–23

The exchange-correlation function used was the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation
(GGA).24 The potential for Zr included 4s semicore states.
The boundary energy calculations involved calculating the
total energy of twinned and perfect crystal structures, with
the same number of atoms per unit cell. For each set of
calculations, a supercell of the perfect crystal structure, with
the required number of atoms, was used to converge the

FIG. 2. (Color online) (a) (1100) plane view of relaxed atom
positions of repeating structure with two (112̄1) twin boundaries
for a 32 atom, unit cell, showing (112̄1) planes (red lines) and
the boundaries for the unit cell (dotted lines). (b) The structure
of the (112̄1) twin in an hcp material in the (1126) plane pro-
jection. (c) (1100) plane projection of the (1121) twin, illustrating
stacking sequence. Red line represents the (112̄1) plane. For (b)
and (c), green, yellow, and pink atoms correspond to A, B, and C
stacking, respectively (see inset, bottom right); solid and striped
atoms correspond to matrix (ABAB) and twin (ACAC) lattice,
respectively.

k-point mesh and plane wave cutoff with respect to the
c/a ratio, compressibility (bulk modulus), and equilibrium
volume relaxation. This led to a plane wave cutoff of 210 eV,
178 eV, 276 eV, 230 eV, and 247 eV for Mg, Ti, Zn,
Zr, and Be, respectively, and �-centered k-point grids of
25 × 25 × 25 for 2 atoms, 9 × 9 × 9 for 32 atoms, and
5 × 5 × 5 for 64 and 80 atoms. For each structure, the total
energy was converged to 10−6 eV/cell at fixed volumes while
relaxing the c/a ratio and atomic positions. The equilibrium
structure and energy were determined by fitting the total energy
as a function of volume to the modified Morse equation of
state.25

For the twin boundary calculations, supercells with two
(112̄1) twin boundaries consisting of 32, 64, and 80 atoms were
constructed. This was accomplished by shifting the hexagonal
coordinates to orthogonal axes, with the x direction normal
to the (112̄1) plane and the y and z directions parallel to the
plane. Figure 2(a) shows a unit cell with 32 atoms, consisting
of rows of undistorted hexagonal close-packed (hcp) crystals
with 7 atomic planes between the boundaries. Supercells with
64 and 80 atoms (not shown) consist of 15 and 20 atomic
planes, respectively, between the boundaries. After slicing the
cell along the (112̄1) plane and mirroring the structure about
the plane, a shift from ABAB to ACAC stacking sequence
across the boundary is necessary, resulting in the structures
shown in Fig. 2(b) and (c).
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TABLE I. Interfacial energies and angles of the (112̄1) twin boundary in selected hcp metals for different supercell sizes, compared to
values obtained in previous work.

Interfacial energy (mJ/m2)

Metal Supercell size This work Previous work θ (degrees)

Mg 32 122.3 147a,480b 31.7
64 127.3
80 125.6

Ti 32 238.0 150a, 180.8c 32.4
64 234.9
80 233.2

Zr 32 235.1 169a 32.0
64 228.7

Zn 32 230.7 480b 27.5
64 196.3

Be 32 1034.4 1810b 32.4
64 1073.3

aFrom Reference 27, Finnis–Sinclair (FS) embedded-atom potential technique.
bFrom Reference 28, based on pseudopotential theory.
cFrom Reference 12, from Lennard-Jones potential fitted to Ti truncated between sixth and seventh nearest neighbors.

The boundary interfacial energy, E(1121), was extracted from
the energy of the supercell and the energy of a perfect hcp
crystal, assuming,

E(1121) = n(Esupercell − Ehcp)

2 · A
, (1)

where n is the number of atoms in the supercell, and Esupercell

and Ehcp are the energies per atom of the supercell with the
twin boundary and the perfect hcp crystal, respectively. A is
the area of the boundary given by the cross product of the axes
in the x and z directions.

As noted already, and for reasons discussed later herein,
our analysis also involves c44. This was calculated by applying
lattice distortions and deriving the elastic constants from the
stress-strain relationship,26 as implemented in VASP 5.2.

III. RESULTS AND DISCUSSION

The results of the interfacial energy calculations on the
(112̄1) boundary are summarized in Table I, along with values
previously calculated using other methods12,27,28 and the twin
boundary θ . With the exception of Zn, increasing the number
of atoms to 64 atoms only changes the energy of the boundary
by less than 5% compared to 32 atoms. The larger differences
for Zn are most likely due to the distortion from ideal packing
indicated by the anomalously large c/a structure. In general,
however, the fact that the boundary energy contribution to the
total cell energy does not change significantly with the number
of atoms implies that there is no considerable interaction
between the boundaries, and thus the dislocations along them,
at these supercell sizes. Therefore, for most of the hcp metals
studied herein, the small number of atoms was considered
sufficient for the purposes of calculating boundary/dislocation
structures.

Since there are no previous ab initio calculations on the
(112̄1) boundary for comparison, we can only judge the values
obtained against other techniques, such as the embedded atom

method (EAM)29 and Finnis-Sinclair (FS)30 method. Both of
these are considered less accurate than ab initio calculations,
especially for materials where covalent bonding is important,
such as Ti, Zr, or, especially, Be. Previous work on hcp twins
has shown that while structures produced by empirical models
are fairly close to those obtained from ab initio calculations,
the energies can be quite different.31 Generally, EAM and
FS methods lead to a wide range of energy values that vary
significantly in either direction, demonstrating the need for
accurate potentials. For example, in Zr, the (1012) twin,
which is morphologically similar to the (112̄1) twin, yields
a boundary energy of 150 mJ/m2 32 and 151 mJ/m2 33

from ab initio studies, while the results from FS simulations
lead to 262 mJ/m2 31 and 123 mJ/m2.33 For the same twin
in Mg, ab initio calculations lead to a boundary energy of
114 mJ/m231,33 and 118 mJ/m2,17 while the results from FS
simulations lead to 188 mJ/m2,27 and EAM results lead to 800–
1010 mJ/m2.28

A more useful evaluation of our results comes from an
assessment of them in relation to c44. It is well established in
classical dislocation theory that the energy of a dislocation, its
core, and the Peierls stress all scale with the shear modulus,
G.11 It is therefore reasonable to assume that the (112̄1)
boundary energy should scale with c44. As a benchmark for
evaluating the relative values, our results—as calculated from
VASP as outlined in Sec. 1—are listed in Table II. Values
also listed in Table II are the ground state parameters for the
crystal structures of all HM studied herein, compared with
experimental values. All values for the lattice parameters are
within 2% of the experimental values, and the bulk moduli are
within 6% of the experimental values, lending credibility to
the potentials used.

Figure 3 shows that a correlation between the boundary
energy and c44 indeed exists, with a linear fit having R2 =
0.99. This result is taken as indirect evidence for the validity
of our methodology. It is significant to note that the twin
boundary energy of Be is approximately an order of magnitude
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TABLE II. Calculated lattice parameters, bulk moduli, B, and c44

values for HM.

Metal a (Å) c (Å) c/a B (GPa) c44 (GPa)

Mg Calc. 3.198 5.174 1.618 37 17.9
Calc.a 3.138 5.107 1.627 37 17.7
Exp.b 3.209 5.211 1.624 36 16.4

Ti Calc. 2.926 4.612 1.576 116 40.6
Calc.a 2.900 4.671 1.611 123 50.4
Exp.b 2.951 4.684 1.587 110 46.7

Zr Calc. 3.236 5.171 1.598 96 26.0
Calc.a 3.229 5.166 1.600 101 43.0
Exp.b 3.232 5.148 1.593 97 32.1

Zn Calc. 2.643 5.087 1.925 58 38.8
Calc.d,e 2.648 5.085 1.921 60 23.2
Exp.b 2.665 4.947 1.856 60 39.6

Be Calc. 2.264 3.573 1.578 122 159.7
Calc.c 2.294 3.608 1.573 122 160.2
Exp.b 2.287 3.583 1.567 114 162.5

aFrom Reference 60.
bFrom Reference 61.
cFrom Reference 62.
dFrom Reference 63.
eFrom Reference 64 for c44.

higher than the other metals studied. Its bulk modulus and total
energies, however, are comparable to Ti, and thus the higher
boundary energy of Be cannot be related to its compressibility
or be an artifact of the energy relaxations. The fact that c44

of Be is also about an order of magnitude higher than the
other metals studied is thus significant and consistent with the
notion that the boundary energy is related to the energy of the
dislocations.

The way dislocations move is contingent on the energetics
of bonding related to the dislocation core. As a loose definition,
one can define the core as the region of crystal lattice around
the dislocation line in which the relative displacement of the

FIG. 3. (Color online) Twin boundary energy vs c44 calculated
for Ti, Zr, Zn, Mg, and Be. Inset shows plot zoomed into lower-left
region. Least squares fit of the results yields a correlation coefficient,
R2, of 0.99.

neighboring atoms exceeds the elastic limit (for example,
2% in terms of local shear strain).34 Because core structure,
under zero stress, has been given importance for its connection
to mechanisms of dislocation motion,31,35–38 the equilibrium
structure of the bonding in and around the boundary should
be considered as well. Figure 4 shows the variations of inter-
atomic distances within the basal planes in the 80 atom (112̄1)
supercell of Mg, as compared to the equilibrium structure
obtained herein (Table II). All atomistic configurations are
visualized using Atomeye software.39 Consistent with the
limited effect of the number of atoms on the boundary energies,
the size of the distorted regions is similar for all supercell sizes
studied.

Figure 5 shows the von Mises shear strain invariant,
which is a way of representing the strain fields of each
atomic environment compared to the system average, or the
overall local distortion as compared to the perfect crystal,
as implemented in Atomeye.40 Here again, the von Mises
strains on the atoms away from the boundary are close to
zero. Along the basal planes, the absolute effective “strain”
falls below 1.5% at a distance of approximately 1.5a from
the boundary. Similar results (not shown) were obtained
for the other elements explored herein, regardless of their
boundary energies. Because the relative displacements of the
atoms outside of the strained regions, or effective core, do
not contribute much to the energy of dislocation transla-
tion, the small deviation in the core size implies that for
solids with higher boundary energies, such as Be, the bond
stretching and bending involved are much more energetically
expensive.

We can go further in our assessment of the mobility of
this boundary by not only identifying the regions where atom
distances deviate from equilibrium, but also by assessing the
dislocation structure within this region. As noted already,
not only is the structure of the (112̄1) twin composed of
dislocations, but the latter are glissile. Freise and Kelly10 and
Minonishi et al.12 found that the stable relaxed structure at
the interface leads to a change in stacking sequence across
the boundary [see Figs. 2(a) and 2(b)], which enables the
boundary to move, within the basal planes, with effectively
no atomic rearrangements. We note in passing that the work
of Serra and Bacon,13 on the same boundary, is so different
from our approach that no meaningful comparisons can be
made. For example, they identified the twin dislocations
as being mixed with edge and screw components in the
(1126) direction and pointed out that despite the small
magnitude of the Burgers vector, ∼a/7, the core registry is
spread over a region 50–100 times this in width, suggesting
that the step may be very mobile.41 Herein, we treat the
boundary as a low-angle grain boundary with a Burgers vector
equal to a.

Experimentally, the mechanical damping effect due to
reversible (112̄1) twin boundary movement was found in
Zr42–44 as well as Co,45 which is also consistent with the fact
that dislocations along the (112̄1) twin are mobile and result in
reversible crystal slipping on a single glide. To investigate this
further, we explored the atomic shifts and energies involved
in shifting the boundary by a Burgers vector along the basal
planes in 32 atom supercells [Fig. 6]. The structures with the
original [Fig. 6(a)] and shifted [Fig. 6(b)] boundaries were
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FIG. 4. (Color online) Relative interatomic distances of structure obtained from the ab initio energy relaxations of the (112̄1) twin
supercell for Mg with 80 atoms. Deviations of interatomic distances are represented as strains compared to r0, the interatomic distances
in the unit cell from ab initio calculations. For clarity, (a) shows only strains along the a direction, (b) shows only strains in the
c direction, and (c) shows interatomic distances between all nearest neighbors. Boundary of repeating supercell is shown as dark
rectangle.

first relaxed as described in Sec. II, and a chain of seven
images was generated by linear interpolation between the two
end structures. We used the nudged elastic band method,46,47

as implemented by VASP, to simultaneously optimize the
intermediate images and calculate the energy barrier to move
the atoms into the atomic positions of the shifted boundary.
For both Mg and Be, the energy is extremely small; at
<0.1 mJ/m2, the difference in boundary energy as a barrier
is below the resolution of the ab initio calculations, indicating
that factors beyond detection of modeling at the atomic scale

must be dominant for dislocation glide. As far as we are
aware, this is the first time such a conclusion has been reached
using ab initio calculations for basal plane dislocations in HM.
This conclusion is in agreement with the fact that Tinder and
Washburn48 were unable to measure a threshold stress for the
motion of dislocations in pure Cu. They also clearly showed
that plastic deformation commences from almost zero stress
in copper and zinc.49 These findings are also in line with the
results reported by Roberts and Brown50,51 for zinc and the
results of Brydges,52 who later showed that the critical resolved
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(a) (b)

(c)

FIG. 5. (Color online) Von Mises shear strain maps of atomistic
configurations from relaxed (112̄1) twin structures with repeating unit
cells containing (a) 32 atoms, (b) 64 atoms, and (c) 80 atoms.

shear stress (CRSS) in pure Cu single crystals continuously
decreased with decreasing dislocation density.

This work on Zn and Cu is also consistent with results
by Roberts and Hartman53,54 on Mg. In 1964, they published a
paper on the temperature dependence of microyielding stresses
in Mg single crystals.54 In that work, they reported that at
shear stresses, τ higher than about 0.04 to 0.07 MPa, fully
and spontaneously reversible, closed stress-strain loops were
observed. At about 0.35 MPa, the loops were no longer closed.
In Fig. 3 of their paper, they published the loops for one of their
samples—tested at room temperature—that was pre-deformed
to a shear strain of 0.66% prior to cycling. More importantly,
they noted that initial loading of annealed samples to any stress
level always resulted in permanent strain. In other words, the
yield point for as-received samples was below the detectability
limit of their equipment, i.e., < 0.01 MPa. Recently, we
showed that damping and microyielding in Mg were due to the
nucleation and growth of IKBs.55,56 When we apply our IKB
model to their results, we obtain CRSS values of the order of
0.02 MPa for the crystals that were pre-deformed to 0.66%.

As noted by Agnew and Nie in a recent review of Mg,57 it
is still not known what exactly dictates the nucleation and
growth of twins nor what dictates the CRSS. Hutchinson
and Barnett58 have also emphasized the disparate nature of

FIG. 6. (Color online) Illustration of the movement of the
dislocation boundaries (dashed lines) by one Burgers vector:
(a) initial positions and (b) positions after the boundary has shifted
one Burgers vector, shown by the red arrow. Original atom positions
are also shown by the hatched circles to illustrate the movement of
individual atoms.

the data for CRSS from tensile or compressive testing of
single crystals, and the fact that the CRSS values used for
polycrystal modeling have a much narrower distribution. For
hcp metals, it is likely that the mobility of dislocation walls
is dictated by extrinsic barriers such as other dislocations,
defects, or precipitates, which would also explain the disparate
nature of CRSS when grain boundaries are introduced (i.e.,
for polycrystalline materials). However, given the fact that
dislocation glide is generally observed as the easiest system
for accommodating stresses59 and that the (112̄1) twin has
been observed to be mobile,11,27,41 as confirmed herein, these
results are consistent with the IKB model when considering
the ability of dislocations to move reversibly at the atomic
scale. Directions for future calculations in analyzing the full
reversible motion of dislocation walls lie in identifying the
extrinsic factors, perhaps at other length scales, that may play
a role during IKB formation and annihilation.

Overall, the results on the convergence of energy with
supercell size show us that the difference in total energy
is indeed introduced by the boundaries and not the atoms
in between them, nor the interactions between boundaries.
Furthermore, the energy convergence with supercell size
indicates that the smallest number of atoms (i.e., 32) is, for
these materials, sufficient for investigating the energy effects
of the dislocation structures. Thus, this is a sound method for
calculating the energy induced by dislocations without having
to go to extremely large numbers of atoms.

IV. CONCLUSIONS

The energy and atom arrangements of the (112̄1) twin
boundary in Mg, Ti, Zr, Zn, and Be were determined from ab
initio calculations. The boundary energies scale linearly with
c44. The dislocation energy and core structure for the supercell
with 32 atoms are sufficient and provide similar results as the
supercell with 80 atoms. The study of the core arrangement
and energetics of the (112̄1) boundary through ab initio
methods can shed light onto the dislocation motion through
basal slip, and thus the deformation of hcp solids through
kinking.
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