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Evidence for Dirac nodes from quantum oscillations in SrFe2As2
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We present a detailed study of quantum oscillations in the antiferromagnetically ordered pnictide compound
SrFe2As2 as the angle between the applied magnetic field and crystalline axes is varied. Our measurements were
performed on high-quality single crystals in a superconducting magnet, and in pulsed magnetic fields up to 60 T,
allowing us to observe orbits from several small Fermi-surface pockets. We extract the cyclotron effective mass
m� and frequency F for these orbits and track their values as the field is rotated away from the c axis. While a
constant ratio of m�/F is expected for a parabolic band, we observe deviations from this behavior. We conclude
that this observation points to orbits derived from a band with Dirac dispersion near the Fermi level.
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Electrons with Dirac-like dispersion have been invoked to
explain many phenomena in materials. Arising in systems
where the low-energy states are governed by the relativistic
Dirac equation, they are characterized by an energy which
depends linearly on the wave vector, and possess high
velocities and a zero effective mass. Dirac electrons determine
the electronic properties of graphene,1 and in topological
insulators they may give rise to spin-textured states through
strong spin-orbit coupling.2 Recent experimental work has
established a body of evidence for the existence of such
electrons—in graphene3,4 and graphite,5 for instance, and in
topological insulators such as Bi2Se3.6

In this Rapid Communication we report evidence from
quantum oscillation experiments for the existence of Dirac
fermions arising in SrFe2As2, an antiferromagnetically or-
dered metal which becomes superconducting by the appli-
cation of hydrostatic pressure7,8 or by chemical substitution.9

SrFe2As2 possesses a Fermi surface of several small pockets,
formed due to the reconstruction of a larger paramagnetic
Fermi surface by magnetic ordering in the FeAs planes along
the Q = (π,π,0) direction.10 Our study tracks the effective
mass m� of cyclotron orbits11 with frequency F that arise
from these pockets, as the angle between the applied magnetic
field and crystalline axes is varied. When the orbits enter the
polar regions of one Fermi surface, we observe a decrease in
the ratio m�/F from the value expected for a parabolic band.

We successfully model this decrease in terms of a Dirac
dispersion at the Fermi level, arising in an effective two-
band model parametrized by only the interlayer hopping
t and chemical potential μ. This approach was suggested
previously,12 but until now, to the best of our knowledge,
complete angular data was not available to confirm it. The
broad agreement between our measurements and this simple
model establishes the existence of massless excitations and
constrains their properties.

Quantum oscillatory studies offer an extremely sensitive
bulk probe of electronic structure. Unlike transport mea-
surements, which take into account a weighted average of
contributions from various bands, quantum oscillation studies
are able to selectively access information about each band

individually. The presence of such particles in our mea-
surements strongly suggests a topologically protected nodal
spin-density-wave state,13 which occurs due to a crossing of
hole and electron bands near the Fermi level resulting from
the magnetic reconstruction of the Fermi surface. Intriguingly,
Dirac fermions arising in this manner are proposed to be
fundamentally different than those in graphene. In the pnictide
case, the presence of non-Dirac electrons leads to two Dirac
cones with the same chirality, with distinct implications for
transport properties.14

Our samples were grown using a self-flux technique,15

yielding high-quality platelet-like single crystals with di-
mensions of ∼1.5 × 1.5 × 0.05 mm3 that were free of flux
inclusions. To improve sample quality, single crystals were
annealed at 800 ◦C for 24 h under argon gas, with subsequent
annealing for 2 h at 300 ◦C in some instances to remove a
superconducting signal near 20 K (Ref. 16) without otherwise
altering the ρT curve. Annealed single crystals were of high
quality, with ρ300 K/ρ4 K values of up to 17 being reached. Over
20 annealed samples were then screened for best quantum
oscillations. Quantum oscillations at low fields down to 12 T
[Fig. 1(a)] were measured for a crystal with ρ300 K/ρ4 K ≈ 9.

Oscillations were studied using two techniques, via resis-
tivity measurements conducted on superconducting cryomag-
netic systems in Cambridge, with fields as high as 16 T, and
with a contactless tunnel diode oscillator (TDO) technique15

using the 60-T short pulse magnet at Los Alamos National
Laboratory at temperatures from 0.5 to 5 K. In both systems
we are able to vary the orientation of the crystal by use of a
mechanical rotator.

Figure 1 shows examples of our data, with θ defined as the
angle between the applied magnetic field and the crystalline
c axis. The top panel shows results of a four-wire resistivity
measurement in a 16-T superconducting magnet, while the
bottom panels show the resonance frequency of a TDO circuit
which was coupled inductively to a sample subjected to a
pulsed magnetic field. In both cases oscillations arise due to
changes in the magnetoresistance of the crystal, described
by the Shubnikov–de Haas (SdH) effect. A fourth-order
polynomial has been used to subtract the field-dependent
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FIG. 1. (Color online) Quantum oscillations in SrFe2As2, plotted
against inverse field. (a) shows resistivity data in arbitrary units taken
in a superconducting magnet, while (b) and (c) show the oscillatory
component of the resonance frequency of a TDO circuit in a pulsed
magnetic field. Data is shown for different orientations of the field
to the crystalline c axis, defined by θ . The solid lines are a fit to
a two-frequency model, described in the text. The insets show the
Fourier spectra, dominated by two peaks which we identify as Fα

and Fβ .

background, which arises due to the magnetoresistance of the
sample. Our data is plotted in units of 1/B, indicating an
oscillatory component of the signal that is periodic in inverse
field.

At the lowest angles, we observe oscillations down to
B ∼ 12 T, whose amplitude is exponentially dependent on
the field. The data is well described by a simple fit to a
model with two frequencies Fα and Fβ , with amplitudes
A, and phases δ. The total oscillation amplitude is then
Ã = Aα sin(2πFα/B + δα) + Aβ sin(2πFβ/B + δβ), and the
results of this fit are shown by the solid lines through the data.
A Fourier transform of each data set is shown in the insets
of Fig. 1, showing a spectrum dominated by two frequencies
which are evident at all angles.

We identify these frequencies as corresponding to or-
bits about small pockets of the reconstructed Fermi sur-
face. In keeping with convention for the pnictide “122”
compounds,10,15,17 we label these as β and α for the lower and
higher frequencies, respectively, with Fβ = 160 T and Fα =
400 T for θ = 10◦. At higher angles the overall amplitude
of the oscillations is reduced, however, we are still able to
resolve the α and β frequencies. For the highest angles, a third
frequency, F = 200 T at θ = 74◦, becomes resolvable, which
we ascribe to the γ orbit. A recent quantum oscillation study
on detwinned crystals of BaFe2As2 has proposed a different
assignment of the orbits,18 however, this would not affect the
main conclusions of our study.

The magnetic field dependence of the amplitude for the θ =
10◦ data yields Dingle temperatures of TDα = 0.7 K and TDβ =
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FIG. 2. (Color online) Amplitude of oscillations as a function
of temperature, defined by the height of the peaks in the Fourier
spectrum. The amplitudes are normalized to the low-temperature
values. The lines through the data represent fits to the Lifshitz-
Kosevich damping factor used to extract m�.

2.7 K. From these we deduce mean free paths of 2700 and
800 Å, respectively, using Fermi-surface averaged velocities of
vα = √

2 h̄eFα/m� = 5 × 104 ms−1 and vβ = 6 × 104 ms−1.
These long mean free paths are comparable to those reported
in BaFe2As2.10

In Fig. 2 we show how the amplitude of the oscillations
depends on temperature. We plot the height of the peak in the
Fourier spectrum as a function of temperature, normalized
to the low-temperature value. This data is then fit with
the Lifshitz-Kosevich (LK) thermal damping factor, RT =
X/ sinh(X), where X = 14.69m�T/B.11 For the high-field
data set, we worked with Fourier windows between 22 and
60 T, and define B−1 as the average inverse field taken over
the width of a window. For the low-field data set the Fourier
window was 12.5–16 T.

For both the α and β frequencies good quality fits are
obtained for high and low angles, with effective masses m�

α =
2.35 ± 0.05 and m�

β = 1.22 ± 0.05 at θ = 10◦, expressed in
units of me and with error bars set by uncertainties in the
least-squares fit. The top panel shows data taken in the
superconducting magnet systems, giving a value for m�

α of
2.0 ± 0.3 at θ = 0◦, which is in agreement with the high-
field data, serving as a useful check of consistency between
measurement techniques and systems. In Fig. 2(c) data at
higher angles is shown, demonstrating an increase in m� for
both orbits.19

We collect m� and F for all angles together in Fig. 3,
with fitting errors reflecting the signal-to-noise ratio, which
is limited at higher angles by the shorter field range of
the oscillations. The top panel shows data for the α orbit,
which shows that the increase in Fα is closely mirrored by
a concomitant increase in m�

α . Intriguingly, the same cannot
be said for the β orbit in the bottom panel, where Fβ rises
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FIG. 3. (Color online) (a) The upper panel shows frequency (F )
and effective mass (m�) as a function of angle for the α electron
pocket. The lines are fits assuming conventional orbits about an
ellipsoid formed from a parabolic band. The lower panel shows the
same data for the β orbit. (b) Cartoon showing extremal orbits of the
Fermi surface near the Dirac point arising from Eq. (3). k′

y and kx lie
in the plane of the orbit, while kz lies along the c axis of the reciprocal
lattice. The β (γ ) orbit originates from the larger (smaller) pocket,
while the α orbit encompasses a separate Fermi pocket derived from
parabolic bands (not shown).

faster with angle than m�
β . It is from these observations that

the presence of Dirac fermions in SrFe2As2 can be inferred.
To interpret our data we now consider two different

scenarios. First, that the small Fermi-surface pockets are
ellipsoids derived from conventional parabolic bands, and
second, that the pockets originate from bands with a linear
dispersion near EF . In the first case, we would expect the
frequency as a function of angle to be given by11

F (θ ) = m�
0μ

eh̄
√

cos2 θ + ξ 2 sin2 θ
, (1)

where μ is the chemical potential, ξ is the ratio of major to
minor axes of the extremal elliptical cross section, and m�

0 is
the effective mass measured at θ = 0. m�(θ ) has the same θ

dependence as F (θ ), with m�(θ ) = (eh̄/μ)F (θ ). Figure 3(a)
shows the results of a best fit to this model. While a fit
with parameters with μ = 21 meV, m�

0 = 2.2, and ξ = 0.58
captures the angular dependence of the frequency and mass for
the α orbit, it fails to explain the experimental data for the β

orbit. The best fit to Fβ(θ ) yields μ = 15 meV, m�
0 = 1.2, and

ξ = 0.25, which rises too fast with angle to account for the
angular dependence of m�

β . We are thus forced to look beyond
a conventional model to describe this pocket.

In the 122-pnictide materials, Dirac points are proposed to
arise due to degenerate electron and hole bands that meet at EF .
The existence of a small amount of interlayer hopping provides
access to these points, by creating a series of stacked pockets
along the kZ axis that touch at their extrema. The influence

(a) (b)

FIG. 4. (Color online) Ratio of the effective mass to cyclotron
frequency as a function of angle for the α and β orbits. The solid
line shows the fit to a model arising from the Dirac-like dispersion
relation in Eq. (2), while the dotted line shows the expected behavior
for conventional ellipsoids.

of massless charge carriers originating from these regions of
the Fermi surface on quantum oscillatory phenomena has been
captured in a minimal model,12 which predicts a dip in the ratio
m�(θ )/F (θ ) at higher angles consistent with our observation
for the β orbit. The starting point is a dispersion relation of the
form

ε = ± h̄v�|k| + 2t cos (ckz/2) + μ, (2)

where c is the bilayer spacing for the body-centered-tetragonal
crystal structure (12.3 Å), v� is the characteristic Dirac veloc-

ity, t is the interlayer hopping parameter, |k| =
√

k2
x + k2

y , and
μ is the chemical potential. For simplicity, the characteristic
velocity v� is taken to be isotropic, although there is evidence
for a small anisotropy from angle-resolved photoemission
(ARPES) measurements.20 As the angle θ between the c axis
and the applied magnetic field is varied, the extremal orbits
take approximately elliptical forms. Defining kx and k′

y as
vectors lying in the planes of these orbits, as illustrated in Fig.
3(b), gives

k∓
x =

√[
2t

h̄v�
cos

(
ck′

y sin θ

2

)
− ε ∓ μ

h̄v�

]2

− k′2
y cos2 θ. (3)

This allows calculation of the expected angular variation of the
cyclotron effective mass and extremal cross-sectional areas
Ak,θ , which are directly related to the quantum oscillation
frequencies via the Onsager relation Fθ = (h̄/2πe) Ak,θ .

Taking the ratio m�(θ )/F (θ ) provides a straightforward
test of the predictions of this model. For Fermi-surface
pockets originating from bands with a parabolic dispersion,
we would expect a ratio which does not vary with angle,
as has, for example, been shown in two-dimensional (2D)
organic metals.21 For bands with the dispersion parametrized
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by Eq. (2), a striking effect occurs—as θ is increased, the
orbits begin to encompass regions of the Fermi surface close
to the Dirac point, where velocities are high and masses very
light.12 Thus, the orbitally averaged cyclotron masses are
smaller than those expected from parabolic bands, and the ratio
m�/F is correspondingly reduced, providing an explanation
for observation of the same.

Figure 4 confirms this effect for the β orbit. In Fig. 4(a)
m�

α/Fα is shown to be nearly constant over a wide range of
angles, as expected for a Fermi surface with conventional
parabolic bands.22 Figure 4(b) shows the same ratio for the
β orbit, where a dip in m�

β/Fβ is clearly observed, with the
solid line representing a fit to a Fermi surface parametrized
by Eq. (3) with v�

β = 6.75 × 104 ms−1, t = 15.2 meV, and
μ ≈ 0 meV. We conclude that this is direct proof of the
presence of Dirac nodes sampled by the β orbit.23

It is worth noting that a model combining a quadratic
in-plane dispersion with a cosine out-of-plane dispersion is
poorly fit by our data. Such a model produces a ratio of
m�(θ )/F (θ ) that instead increases at higher angles, which
is incompatible with our measurements. While it may be
possible to propose an alternative form of c-axis dispersion
which results in a downturn in m�(θ )/F (θ ), our approach is
to take the simplest, minimal model which explains the data
and captures the essential physics. This leads to the conclusion
that a linear in-plane dispersion, modulated by an out-of-plane
cosine term is the simplest way to account for our results.

Despite the relative simplicity of the Fermi-surface model
derived from Eq. (3), the extracted v�

β agrees rather well with
that measured with ARPES,20,24 where a linear dispersion of
bands in the vicinity of the Brillouin zone M point is observed.
Through our observation of the angular dependence of quan-
tum oscillations, we can confirm the observation of linearly
dispersing bands that cross the Fermi energy near a Dirac
node. Recent evidence from magnetotransport measurements
on a similar material interpret a linear magnetoresistance at
intermediate fields as evidence of Dirac excitations,25 although
these appear to arise from a pocket much smaller than we
observe.

Having established the presence of Dirac nodes in the parent
compounds of pnictide high Tc superconductors, an interesting
question remains as to the role they play in superconductivity
in this system, and their influence across the doping or pressure
phase diagram. Recent theoretical work has suggested that the
physical symmetry of the 122-pnictides and the topology of
their band structure lead to an unusual robustness of the nodal
spin-density-wave state,13 with important consequences for
the nature of the unconventional superconductivity induced by
pressure or doping.
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