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Single-ion anisotropy in Haldane chains and the form factor of the O(3) nonlinear sigma model
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We consider spin-1 Haldane chains with single-ion anisotropy, which exists in known Haldane chain materials.
We develop a perturbation theory in terms of anisotropy, where the magnon-magnon interaction is important
even in the low-temperature limit. The exact two-particle form factor in the O(3) nonlinear sigma model
leads to quantitative predictions on several dynamical properties, including the dynamical structure factor and
electron-spin-resonance frequency shift. These agree very well with numerical results, and with experimental
data on the Haldane chain material Ni(C5H14N2)2N3(PF6).
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One-dimensional quantum spin systems are an ideal subject
to test sophisticated theoretical concepts against experimental
reality.1 One of the best examples is the Haldane gap problem.
Haldane predicted in 1983 (Ref. 2) that the standard Heisen-
berg antiferromagnetic (HAF) chain H = J

∑
j Sj · Sj+1 has

a nonzero excitation gap and exponentially decaying spin-spin
correlation function for an integer spin quantum number S.
It has been long known that the HAF chain with S = 1/2 is
exactly solvable by a Bethe ansatz, and that it has gapless
excitations and the power-law spin-spin correlation function.
While the same model cannot be solved exactly for S � 1,
Haldane’s prediction was rather unexpected and surprising at
the time.

Haldane’s argument was based on the mapping of the HAF
chain to the O(3) nonlinear sigma model (NLSM), which is a
field theory defined by the action

A0 = 1

2g

∫
dt dx

[
1

v
(∂t n)2 − v(∂xn)2

]
+ iθQ, (1)

where g = 2/S is coupling constant, v is the spin-wave
velocity, θ = 2πS, and Q = (1/4π )

∫
dt dx n · ∂t n × ∂xn is

an integer-valued topological charge. The field n(x) is related
to the spin Sj via Sj ≈ (−1)j

√
S(S + 1) n(x) + L(x), where

L(x) = n × ∂t n/g. The field n has a constraint n2 = 1. For
a half integer S, the topological term iθQ should be kept.
However, for an integer S, the topological term iθQ = 2πi ×
(integer) is irrelevant and it suffices to drop iθQ in Eq. (1). The
O(3) NLSM without the topological term is a massive field
theory, which implies that the integer S HAF chain (Haldane
chain) has a nonzero gap and a finite correlation length. The
Haldane’s conjecture is now confirmed by a large body of
theoretical, numerical, and experimental studies.3 Moreover,
the O(3) NLSM is also useful in describing integer S HAF
chains.

There are various complications in real materials. A
Haldane chain material generally has a single-ion anisotropy
(SIA): H′ = ∑

j [D(Sz
j )2 + E{(Sx

j )2 − (Sy

j )2}]. This interac-
tion is important, for example, for electron-spin-resonance
(ESR) measurements. ESR is a useful experimental probe
which can detect even very small anisotropies. In other words,
the anisotropic interaction is the key to understanding a rich

store of ESR experimental data. However, the theory of ESR
is not sufficiently developed for many systems, including
Haldane chains, leaving many experimental data not being
understood. In order to fully exploit the potential of ESR,
accurate formulation of the SIA in Haldane chains is required.

The SIA can be treated as a perturbation since it is usually
small compared to the isotropic exchange interaction J . In
O(3) NLSM language, the perturbation is written as

H′ = S(S + 1)
∫

dx[D(nz)2 − E{(nx)2 − (ny)2}], (2)

which spoils the integrability of the O(3) NLSM. Several
simple calculations have been done based on the Landau-
Ginzburg (LG) model.4,5 When the elementary excited par-
ticles (magnons) are dilute, the interaction between magnons
may be ignored. If this is the case, the system is effectively
described by a much simpler theory of free massive magnons
(the LG model).4 However, the description by the LG model is
not accurate and, furthermore, it is phenomenological.6 Even
in the low-energy limit, where the free-magnon approximation
is supposed to be exact, it is not the case with respect to the
evaluation of Eq. (2). This is because the perturbation (2)
creates and annihilates two magnons at the same point; in such
a situation, interaction among the magnons is indeed important
even when the average density of magnons in the entire system
is infinitesimal. Therefore, correct handling of the SIA in the
O(3) NLSM framework requires a proper inclusion of the
magnon interaction.

In this Rapid Communication, we present such a formu-
lation utilizing the integrability of the O(3) NLSM. The
effects of interaction are encoded in the form factors of
operators. The form factors in integrable field theories can be
determined by the consistency with the exact S matrices and
several additional axioms.7–9 Form factor expansion (FFE) is
particularly powerful in massive field theories such as the O(3)
NLSM, because the higher-order contributions survive only
above the higher-energy thresholds.10 The leading contribution
to the FFE of Eq. (2) is given by the two-particle form factor.
The FFE shows an excellent agreement with the correlation
function of (Sz)2 numerically obtained in the S = 1 HAF
chain, demonstrating the importance of the interaction. At
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the same time, the renormalization factor for the SIA (2) is
determined by the fitting of the numerical data. Furthermore,
we discuss two applications to physical problems of interest:
the split of triplet magnons in the dynamical structure factor
and the ESR shift in the S = 1 HAF chain with SIA. We
find very good agreement with numerical results in both
applications, and with experimental data on the ESR shift,
without introducing any extra fitting parameter.

A single-magnon excitation can be parametrized by
the rapidity θ , so that its energy and wave number are
given, respectively, as �0 cosh θ and (�0/v) sinh θ , where
�0 = 0.41J is the Haldane gap. Because of interactions
among magnons, the S matrix of O(3) NLSM has a
complicated structure.11 The one-particle form factor of an
operator O is defined as a matrix element which connects the
ground state |0〉 to a one-particle state |θ1,a1〉 (a1 = 1,2,3),
namely, FO(θ1,a1) ≡ 〈0|O|θ1,a1〉. And the n-particle
form factor is defined as FO(θ1,a1; θ2,a2; . . . ; θn,an) ≡
〈0|O|θ1,a1; θ2,a2; . . . ; θn,an〉, where this n-particle state
is normalized as 〈θ ′

1,a
′
1; . . . ; θ ′

n,a
′
n|θ1,a1; . . . ; θn,an〉 =

(4π )nδa′
1,a1 . . . δa′

n,an
δ(θ ′

1 − θ1) . . . δ(θ ′
n − θn).

The FFE of the fundamental field na , which corresponds
to (a staggered part of) the spin operator Sa , has often
been studied. The leading contribution to the FFE is the
one-particle form factor Fna (θ1,a1). Because na is odd under
the transformation n → −n, the next order contribution
comes from the three-particle form factor, which gives small
corrections to the spin-spin correlation function.12–14 On the
other hand, the composite operator (Sa)2, which is of our
central interest, has been less studied. Since it is proportional
to (na)2 and even under the reversal n → −n, the leading
contribution to the FFE comes from the two-particle form
factor F(na )2 (θ1,a1; θ2,a2). We note that the exact two-particle
form factor of the antisymmetric field L(x) in the O(3)
NLSM has been applied to describe the uniform part of the
spin-spin correlation function of HAF chains.14–16 Including
the renormalization factors for spin operators, which are
undetermined at this point, we have

FSa (θ1,a1) =
√

Z δa,a1 , (3)

F(Sa )2 (θ1,a1; θ2,a2) = −iZ2 δa1,a2 (3δa,a1 − 1)ψ2(θ1 − θ2).

(4)

The two-particle form factor (4) receives contributions from
higher-order terms in the FFE of Sa , and cannot be determined
by Eq. (3) alone. Thus Z2 is a parameter independent of Z.

We have the constraint
∑

a=1,2,3(Sa)2 = 2 on the composite
operator. From this constraint and the O(3) symmetry, it
follows that

∑
a=1,2,3 F(Sa )2 (θ1,3; θ2,3) = 〈0|θ1,3; θ2,3〉 = 0,

which is satisfied by (4). Integral representation of ψ2(θ ) is
given in Ref. 17 for O(N ) NLSM with a general integer N .
For N = 3, it reads

ψ2(θ ) = sinh
θ

2
exp

[∫ ∞

0

dω

ω
e−πω cosh[(π + iθ )ω] − 1

sinh(πω)

]
.

This integral can be analytically carried out to give

ψ2(θ ) = i

2
(θ − πi) tanh

θ

2
. (5)

Determination of the renormalization factors Z and Z2

requires numerical calculations. In order to test the validity of

FIG. 1. (Color online) Numerically calculated spin-spin cor-
relation (−1)r〈0|Sz(r)Sz(0)|0〉 (circles) and the correlation
〈0|[Sz(r)]2[Sz(0)]2|0〉 − 4/9 (triangles) are compared with FFEs (6)
with Z = 1.26 (solid curve) and the connected part of (7) with
Z2 = 0.24 (dashed curve). The free-magnon approximation (dotted
curve) cannot fit the correlation function of (Sz)2.

the FFE for (Sa)2 and further to determine Z2, we computed the
equal-time correlation function 〈0|[Sz(r)]2[Sz(0)]2|0〉 by the
infinite time-evolving block decimation (iTEBD) method,18

as shown in Fig. 1.
FFE is derived by inserting the identity 1̂ = ∑∞

n=0 Pn,
where the Pn’s are the projection operators to the n-particle
subspace of the Fock space, defined by P0 = |0〉〈0| and

Pn = 1
n!

∑
a1,...,an

∫ ∏
j dθj

(4π)n |θ1,a1; . . . ; θn,an〉〈θ1,a1; . . . ; θn,an|
for n � 1. In the leading nonvanishing order, we find

(−1)r〈0|Sz(r)Sz(0)|0〉 ≈ Z

∫
dθ

4π
ei�0r sinh θ/v, (6)

〈0|[Sz(r)]2[Sz(0)]2|0〉 − 4

9
≈ 3Z2

2
∫

dθ1dθ2

(4π )2
|ψ2(θ1 − θ2)|2

× ei�0r(sinh θ1+sinh θ2)/v. (7)

Z = 1.26 was given in Ref. 15 by comparing a numerically
obtained spin-spin correlation function with the LG model.
Concerning the spin-spin correlation function, the LG model is
equivalent to the lowest-order FFE (6); our iTEBD calculation
also reproduces the result of Ref. 15. On the other hand, to the
best of our knowledge, Z2 has not been determined previously.

As shown in Fig. 1, the lowest order of FFE (7) shows
an excellent agreement with the numerical data; the fit also
determines

Z2 = 0.24. (8)

Since we used the known values of the Haldane gap �0 =
0.41J and the spin-wave velocity v = 2.49J (Ref. 19) for S =
1, the renormalization factor Z2 is the only fitting parameter.

In contrast to the FFE (7), the LG model, which ignores
interaction among magnons, shows discrepancy with the
numerical data, as also shown in Fig. 1. To illustrate the effect
of the interaction, let us discuss the asymptotic long-distance
behavior of Eqs. (6) and (7). When r → +∞, only the
behavior of ψ2(θ ) at θ ∼ 0 is relevant in (7). Here we can
expand (6) and (7) as (−1)r〈0|Sz(r)Sz(0)|0〉 ∝ e−r/ξ /

√
8πr/ξ

and 〈0|[Sz(r)]2[Sz(0)]2|0〉 − 4/9 ∝ e−r/ξ2/(4πr/ξ2). In a rela-
tivistic field theory, the inverse correlation length is equivalent
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to the lowest excitation energy created by the operator; in
fact, ξ = v/�0. Furthermore, in the LG model,4 ξ2 = ξ/2
should hold. This is because the composite field (na)2 creates
two particles, and O(3) NLSM does not contain any bound
states.20 Thus the excitation energy for the two-particle
creation would be twice the magnon mass (2�0), implying
ξ2 = ξ/2. However, the actual numerical data are inconsistent
with this relation: ξ2 = 2.75 < ξ/2 = 3.01. This discrepancy
is attributed to the interaction between magnons. Since (na)2

creates two magnons at the same point, the actual excitation
energy is larger than 2�0, resulting in ξ2 < ξ/2.

With the full determination of the two-particle form factor
(4), we turn to a discussion of the dynamical structure factor
(DSF) at T = 0 in Haldane chains with a SIA. The peaks in the
DSF reflect the energy of the magnon at a given momentum.
Triply degenerate magnon dispersions in the isotropic chain are
split due to the SIA. We determine the first-order perturbation
to the masses �(1)

a ≡ �a − �0 in the form-factor perturbation
theory (FFPT):21

�(1)
a ∼ 〈θ,a|H′|0,a〉

〈θ,a|0,a〉 . (9)

In fact, both the numerator and the denominator are propor-
tional to δ(θ ), and Eq. (9) should be understood as the ratio of
the coefficients of δ(θ ). Furthermore, the numerator equals
to FH′ (0,a; θ − πi,a) because of the crossing symmetry.22

Therefore, (9) reads

�(1)
x = −Z2v

2�0
D − 3Z2v

2�0
E, (10)

�(1)
y = −Z2v

2�0
D + 3Z2v

2�0
E, (11)

�(1)
z = Z2v

�0
D. (12)

The leading contribution to the T = 0 DSF Saa(π,ω)
corresponds to the creation of a single magnon. Therefore,
we find

Saa(π,ω) ∼ πZv

�a

δ(ω − �a), (13)

which has the identical form to the DSF of a system of free
particles. This is natural because the population of magnons
approaches zero in the T → 0 limit, and thus the interactions
are negligible. Nevertheless, we emphasize that the change of
the masses as �a (10)–(12) due to the SIA is affected by the
magnon-magnon interaction. Equation (13) implies that the
magnon masses �a can be identified with the peak frequency
of DSF at the antiferromagnetic wave vector q = π . In Fig. 2,
we compare the magnon masses �a extracted from the T = 0
DSF peak obtained numerically by the Lanczos method23 for
various values of D (while setting E = 0). For small D, the
numerical data agree very well with the FFPT (10)–(12).

The form of the T = 0 DSF (13) leads to another prediction:
The ratio of the DSF intensities should obey∫

dω Szz(π,�z)∫
dω Sxx(π,�x)

= �x

�z

. (14)

This is also confirmed by the Lanczos data as shown in the
inset of Fig. 2.

FIG. 2. (Color online) Numerically determined excitation gaps
�x (circles) and �z (triangles) are plotted for −0.4 � D/J � 0.6
and E = 0. Deviation of the numerical data from the first-order FFPT
(solid and dashed lines) is attributed to higher-order perturbations. In-
set: The ratio Szz(π,�z)/Sxx(π,�x) obtained by the Lanczos method
(symbols) and (14) (solid curve) are compared. The extrapolation to
L = ∞ is done by fitting the finite-size data for L = 12, 14, 16, 18,
and 20 with a polynomial of 1/L.

Let us extend our discussion to the system under a finite
magnetic field. Now our Hamiltonian H = H0 + HZ + H′
consists of three terms. H0 is the SU(2) symmetric exchange
interaction, HZ = −geμB H · S = −geμB H · ∑

j Sj is the
Zeeman interaction, and H′ is the SIA, which is assumed to
be small. ge is Landé g factor of electrons and μB is the Bohr
magneton. We set geμB = 1 unless otherwise stated. ESR is
a very powerful tool to study the effects of anisotropies on
spin dynamics. One of the fundamental quantities in ESR is
the resonance frequency shift (ESR shift). The ESR shift is
generally given, in the first order of the anisotropy H′, as24–26

δω = −〈[[H′,S+],S−]〉0

2〈Sz〉0
. (15)

〈· · ·〉0 denotes the average with respect to the unper-
turbed Hamiltonian H(0) = H0 + HZ . For the SIA, (15)
reads δω = f (
,�) YD(T ,H ), where f (
,�) = D(1 −
3 cos2 
) − 3E sin2 
 cos 2� and

YD(T ,H ) =
∑

j

〈
3
(
Sz

j

)2 − 2
〉
0

2〈Sz〉0
. (16)

(
,�) is the polar coordinate of the magnetic field axis.
To apply the results of the FFPT, first we consider the limit

T ,H � �0. Here we could project the numerator to a one-
magnon subspace, ignoring the multimagnon contributions.
The projection operator is P1 = ∫

dθ
4π

∑
a=0,± |θ,a〉〈θ,a|. Note

that we introduce a different set of indices a = 0,± represent-
ing magnons with dispersion Ea(θ ) = �0 cosh θ − aH . The
projection leads to

P1

∑
j

[
3
(
Sz

j

)2 − 2
]
P1 =

∫
dθ

4π

3Z2v

2�0 cosh θ
[2|θ,0〉〈θ,0|

−|θ,+〉〈θ, +| − |θ,−〉〈θ, − |].
(17)
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FIG. 3. (Color online) Magnetic field dependence of ESR shift
YD(T ,H ) for T = 0.1J (circles) and T = 0.2J (triangles). The solid
curve is (18), which is exact in H → 0. The dashed and dotted curves
are (19) at T = 0.1J and T = 0.2J , respectively.

Its thermal expectation value can be given in terms of the
(classical) distribution function. Thus we find

YD(T ,H ) = −3Z2

4
tanh

(
H

2T

) ∫
dθ
4π

v
�0 cosh θ

e−�0 cosh θ/T

∫
dθ
4π

e−�0 cosh θ/T
.

(18)

Figure 3 shows the magnetic field dependence of YD(T ,H ),
comparing (18) from the FFPT with numerical results obtained
by (16) with the quantum Monte Carlo (QMC) method in
ALPS software.27

Although the agreement is good at low temperature
T = 0.1J and at low magnetic fields H � �0, the
discrepancy is evident for H � �0. This is rather natural,
because the magnon population increases as H is increased,
invalidating the dilute limit approximation made in the
derivation of Eq. (18). In particular, T = 0, H = �0 is a
quantum critical point which separates the low-field gapped
phase and the high-field TLL phase, where magnons are
condensed. Although it is difficult to handle the case with
nondilute magnons, a reasonable improvement would be
incorporating magnon-magnon repulsion through the Pauli
exclusion principle by utilizing the Fermi-Dirac distribution
function fa(k) = [eωa (k)/T + 1]−1 instead of the classical one,
in Eq. (18). This is demonstrated by the fact that the z = 2 free-
fermion theory well describes the low-energy behavior near
the quantum critical point H = �0.28,29 The magnetization is
〈Sz〉 = m(T ,H ) = ∫

dk
2π

[f+(k) − f−(k)] and YD(T ,H ) is

YD(T ,H ) = 3Z2

2m(T ,H )

∫
dk

2π

v

2ω0(k)
× [2f0(k) − f+(k) − f−(k)]. (19)

)(

)
(

FIG. 4. (Color online) Comparison of the resonance frequency
ωr = geμBH + δω by QMC (circles) with experimental data
(Ref. 30) (triangles). We performed QMC calculations with L = 30
sites. We used D = 0.25J and H ‖ c (
 = � = 0). The solid curve
is obtained from (19) and the dashed line represents the paramagnetic
resonance ω = geμBH .

This reduces to Eq. (18) in the limit H,T → 0. We emphasize
that there is no free parameter in our theory since the
renormalization factor Z2 in the overall coefficient of (19)
has been already determined in (8). As shown in Fig. 3, the
free-fermion approximation (19) explains the extremum of
the ESR shift observed numerically around the critical field
H = �0.

Figure 4 shows the ESR shift observed experimentally
in Ni(C5H14N2)2N3(PF6),30 which possesses the SIA, and
the corresponding numerical result by the QMC method.
Our FFPT (19) successfully accounts for the experimental
and numerical results, including the gradual approach to the
paramagnetic resonance line ω = geμBH in the high-field
region. A detailed analysis of the ESR shift in the whole range
of H will be given in a subsequent publication.31
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