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Kitaev-Heisenberg- J2- J3 model for the iridates A2IrO3
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A Kitaev-Heisenberg-J2-J3 model is proposed to describe the Mott-insulating layered iridates A2IrO3 (A = Na,
Li). The model is a combination of the Kitaev honeycomb model and the Heisenberg model with all three
nearest-neighbor couplings J1, J2, and J3. A rich phase diagram is obtained at the classical level, including the
experimentally suggested zigzag ordered phase; as well as the stripy phase, which extends from the Kitaev-
Heisenberg limit to the J1-J2-J3 one. Combining the experimentally observed spin order with the optimal fitting
to the uniform magnetic susceptibility data gives an estimate of possible parameter values, which in turn reaffirms
the necessity of including both the Kitaev and farther neighbor couplings.
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Frustrated spin systems have long served as a relatively
simple yet rich source of exotic phenomena such as spin liquids
and unconventional order. The frustration may arise either
geometrically on a lattice incompatible with the spin ordering,
or dynamically from noncommuting competing terms in
the Hamiltonian. The nearest-neighbor S = 1/2 Heisenberg
model on the kagome lattice is an instance of geometrical
frustration that may even host a quantum spin liquid ground
state.1 Bipartite lattices such as the honeycomb can still be
geometrically frustrated by including farther than nearest-
neighbor antiferromagnetic Heisenberg exchange, giving so-
called J1-J2-J3 models. Such models on the honeycomb
in particular have seen a recent surge of work,2–6 though
a quantum spin liquid phase may require charge as well
as spin fluctuations.7–9 Breaking spin rotational symmetry
provides avenues for dynamical frustration, as in the Kitaev
honeycomb model,10 a nearest-neighbor Ising coupling of a
spin component set by a bond label γ as in Fig. 1. This
seemingly artificial model is exactly solvable with a spin liquid
ground state exhibiting an emergent Majorana fermion with a
Z2 gauge background.

A recent and surprising addition to the experimentally
relevant J1-J2-J3 models of frustrated spin systems, the
Kitaev coupling, has been recently proposed11,12 to occur in
the Mott-insulating13 iridates A2IrO3 (A = Na, Li), where
the iridium ions are arranged in layers of two dimensional
honeycomb lattices. Uniform susceptibility and heat capacity
studies on these materials13,14 found Curie-Weiss temperatures
of −125 K for Na2IrO3 and −33 K for Li2IrO3, and a low
magnetic ordering temperature of 15 K for both, suggesting
strong frustration. A resonant x-ray scattering measurement15

on Na2IrO3 found the ground state has antiferromagnetic order
at wave vector M , suggested by a first-principles calculation15

to be a zigzag rather than a stripy configuration (see
Fig. 2).

Strong spin-orbit coupling splits the iridium t2g states into a
filled manifold and a half-filled Kramer’s doublet, an effective
spin-1/2 degree of freedom which need no longer respect
the rotational symmetry. Thus the 90◦ angles of the Ir-O-Ir
hopping path within the oxygen octahedra, together with d-
orbital Hund’s rule coupling and orbital interactions, are able
to give the Kramer’s doublet highly anisotropic exchanges of
the Kitaev form. Higher-order hopping paths, direct orbital

overlaps, trigonal distortions, and spin-orbit energy splittings
within the iridium two-electron propagator all contribute spin
interactions other than the Kitaev term, primarily including
antiferromagnetic Heisenberg exchange.

Keeping only the nearest-neighbor Heisenberg exchange
yields the Heisenberg-Kitaev model,12,16–18 Eq. (1), with J2,J3

set to zero, which has been previously used to describe the
A2IrO3 materials.12–15 The phase diagram12,16 in the parameter
0 � α � 1 consists of a Néel phase for the Heisenberg model at
small 0 � α < 0.4, the Kitaev spin liquid at large 0.8 < α � 1,
and an intermediate antiferromagnetically ordered stripy phase
(see Fig. 2). The stripy configuration is the exact ground state
at α = 0.5, solvable by means of a periodic site-dependent
spin rotation12 which turns the Hamiltonian into a Heisenberg
ferromagnet in the rotated spins.

Preserving J2 and J3 to produce the previously unstudied
Kitaev-Heisenberg-J2-J3 model is important for two reasons.
First, substantial J2 and J3 are likely to exist in the materials;
density functional theory (DFT) calculations19 for Na2IrO3

found J2/J1 ≈ 0.5, and a later tight-binding fit of the DFT
data including J3 found J2,J3 to be approximately equal.20

Second, the experimentally suggested zigzag ordered ground
state15 cannot be realized in a Kitaev-Heisenberg model
alone. It is found that an antiferromagnetic J3 term is
needed to stabilize the zigzag order. Moderate Kitaev and
J2 couplings stabilize both zigzag and stripy orders. We
will also show that in order to reproduce the experimentally
measured uniform susceptibility χ (T ), the farther neighbor
J2 and J3 couplings as well as the Kitaev term are likely
needed.

The Kitaev-Heisenberg-J2-J3 Hamiltonian is

H = J

[
(1 − α)

( ∑
〈ij〉

+J2

∑
〈〈ij〉〉

+J3

∑
〈〈〈ij〉〉〉

)
σ i · σ j

− 2α
∑
〈ij〉

σ
γij

i σ
γij

j

]
, (1)

where 〈ij 〉, 〈〈ij 〉〉, and 〈〈〈ij 〉〉〉 stand for the first, second, and
third nearest-neighbor bonds, and γij is a nearest-neighbor
bond label, as illustrated in Fig. 1. The model interpolates
between the J1-J2-J3 model at α = 0 and the Kitaev model
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FIG. 1. The honeycomb lattice, with the Kitaev label γ for
nearest-neighbor bonds, and including second and third neighbor
bonds with Heisenberg couplings J2 and J3.

at α = 1, maintaining the second and third neighbor coupling
strengths J2 and J3 in units of the nearest-neighbor Heisenberg
coupling strength.

A recently proposed alternative model for Na2IrO3 based
on ab initio calculations19 takes the limit where trigonal
distortion effects are stronger than spin-orbit coupling, finding
a Hamiltonian with Ising anisotropy and no Kitaev term.20,21

Putting this interesting scenario aside,22 we find that mild
ĉ ≡ (1,1,1) uniaxial trigonal distortion is consistent with our
approach. The effective spin-1/2 Kramer’s doublet remains
well separated from the filled states. Its modified wave
function creates anisotropies in the magnetic field coupling
(g-factor tensor) and combines with the non-90◦ Ir-O-Ir
hopping path to perturb Eq. (1), possibly enhancing both
Kitaev and Heisenberg terms in addition to creating small
Ising SĉSĉ and Ising-Kitaev Sγij Sĉ terms. Both modifications
are expected from the observed anisotropy in single-crystal
Na2IrO3 susceptibility13 and do not change our results.

Since there is ample evidence13–15 for magnetic ordering
in both Na2IrO3 and Li2IrO3, we will leave the calculation
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FIG. 2. (a) Sample (J2,J3) slice of the classical phase diagram,
with phases (I), (II), and (IV) represented in (b), (c), and (d),
respectively. Region (III) contains various noncollinear spiral con-
figurations. (b) (I) Néel. (c) (II) Zigzag. (d) (IV) Stripy.

of the quantum phase diagram of Eq. (1) for future work,
instead turning to the magnetically ordered phases which
may be studied by a purely classical analysis. For each point
(α,J2,J3) in the three-dimensional phase diagram we deter-
mined the magnetic ordering configurations using a quadratic
(unconstrained) classical spin model,23 which we diagonalized
analytically in momentum space. Since � = −� and M =
−M these two wave vectors automatically give configurations
of collinear unit-length normalized spins, despite the absence
of the unit-length constraint in the calculation, reaffirming the
validity of the classical solution at these points. Solutions at
wave vector K or at generic incommensurate wave vectors
correspond to noncollinear spiral configurations, which we
label as a single phase.

In order to discuss results on the classical phase diagram,
we introduce standard nomenclature from the literature. For
each ordering wave vector the phases are labeled by a Roman
numeral2,3 as follows: �: (I) Néel; M: (IV) stripy;12 and (II)
zigzag15 (or columnar6). All other wave vectors are (III) spiral.
Figure 3 displays six (J2,J3) slices of the classical phase
diagram at various fixed α.

Quantum fluctuations modify the classical phase diagram in
two ways. First, they create regions of quantum phases such as
the plaquette valence bond solid or the Kitaev spin liquid; the
former has been seen in the J1-J2-J3 model,2 while the latter
appears12,16 at small J2,J3 starting at α � 0.8. Second, they
shift the boundaries between the magnetically ordered phases.
Quantum fluctuations disfavor the spiral configurations2,3 in
favor of the collinear ordered phases, shrinking region (III);
they also favor the Néel state (I) over the other orders.2,12

The three-dimensional phase diagram offers insights oth-
erwise unavailable in its various limits. The stripy (IV) region
in the J1-J2-J3 model at α = 0 is in the same phase as the
fluctuation-free exactly solvable point α = 0.5,J2 = J3 = 0,
which may be understood only within the Kitaev-Heisenberg
model.12 As α increases, both the stripy and the zigzag phases
grow substantially larger. The dynamic frustration by the
Kitaev term and the geometric frustration by the J2 term have
similar effects on the ordered phases, destabilizing Néel in
favor of stripy and zigzag.

It is worth reporting the direction of magnetic ordering in
the various phases (excepting the special points α = 0 and
α = 1/2). The direction of the collinear magnetic ordering
in both stripy and zigzag phases is constrained already at
the classical level. For Mz stripy order the spins lie along
Sz, as was already determined by the spin rotation12 solution
of the J2 = J3 = 0, α = 0.5 Hamiltonian. For zigzag order
we found that the spins are constrained to the SxSy plane
(see Fig. 2). Thermal and quantum fluctuations (“order from
disorder”) force the spins to lie along a cubic axis within the
classically allowed space, in this case the Sx and Sy axes.
Trigonal distortion gives other perturbations: For example,
for Mz stripy order it cants the spin axis from Sz toward the
distortion axis, and for the Néel phase the distortion axis may
be an energy minimum or maximum within the Bloch sphere.
A linear spin-wave analysis found that directions closest
to cubic axes are still preferred by quantum fluctuations.
However, anisotropy in the real material likely overcomes all
these effects to determine the ordering direction.15
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FIG. 3. (Color online) Fixed α slices in (J2,J3) showing the magnetically ordered phases (I,II,III,IV) = Neel, zigzag, spiral, stripy) and
shading corresponding to the ED χ (T ) fit goodness. Increasing the Kitaev term (i.e., increasing α) enlarges the extent of the zigzag and stripy
phases, which occur at both small and large α. Fits to Na2IrO3 are shaded in orange (with dotted contour lines) and fits to Li2IrO3 are in blue
(with dashed contour lines); darker shading corresponds to good fitting with μ/μB ≈ 1 and J2 � J3, while lighter shading corresponds to poor
agreement. Given a magnetically ordered ground state for each of the materials, the range of allowed parameters is found by intersecting the
darker shaded region with the magnetically ordered phase.

Next we discuss the comparisons between experimentally
measured susceptibility13,14 and exact diagonalization (ED),
first describing each in turn. Uniform magnetic susceptibility
data for the sodium and lithium materials at temperatures up to
300 K was taken from the most recent study,14 with the constant
background removed.14 We used data from temperatures above
150 K in order to avoid finite-size effects when comparing to
ED. ED using the “fulldiag” ALPS module24 was performed
keeping all eigenstates to enable comparison with high-
temperature data. The system diagonalized was an eight-spin
cluster, the unit cell of the α = 1/2 site dependent spin
rotation,12 with periodic boundary conditions. As expected,
the eight-spin ED, corresponding to a high-temperature series
expansion with eight-spin clusters, is reliable to far lower
temperatures than the two-spin Curie-Weiss expression, which
only holds at T � J .We found that ED finite-size effects
for eight-spin clusters were only visible in the susceptibility
at low temperatures T � J/2, well below J . The highest J

values needed for good fits were below the 150 K data cutoff,
self-consistently affirming the reliability of the ED fits.

For each parameter set (α,J2,J3) we diagonalized the
system to generate a curve χ (T ). The Hamiltonian Eq. (1) with
a magnetic field coupling term has two parameters in addition
to (α,J2,J3), namely, the overall scale J and the magnetic field
coupling gμ. Since the effective spin-1/2 turns out to have
the same g factor as an electron spin, we fix g = 2 and expect

μ/μB to remain close to μ/μB = 1. For each (α,J2,J3) point
the curve χ (T ) was fit to the experimental data by the two
parameters J (corresponding to horizontal stretching) and
μ/μB (with (μ/μB)2 corresponding to vertical stretching).
The resulting fit was evaluated by a “goodness function,”
the product of three Gaussian distributions, enforcing the
following three conditions for a good fit. First, the magnetic
moment μ/μB found by the best fit must be close to 1, with
a standard deviation of 0.15. This constraint on μ effectively
constrained J as well. Second, the root-mean-square relative
fit residual must be near zero with a standard deviation of 10−3.
Third, the third neighbor coupling must be smaller or not much
larger than the second neighbor coupling J3 � J2, relaxed by
a standard deviation of 0.2. The absolute (unscaled) value of

TABLE I. Parameters for given M-wave vector order.

Na2IrO3

Stripy (IV) α ≈ 0.2–0.3 J2 � 0.5, J3 � 0.2 J ≈ 110 K
Zigzag (II) α ≈ 0.4–0.6 J2,J3 � 0.4 J ≈ 100 K

Li2IrO3

Stripy (IV) α ≈ 0.5 J2,J3 � 0.3 J ≈ 100 K
Zigzag (II) α ≈ 0.7 J2,J3 � 0.4 J ≈ 90 K
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this goodness function was used to produce the shading in
Fig. 3, with darker shading corresponding to better fits.

Given knowledge of the ground-state magnetic order in
Na2IrO3 and Li2IrO3, appropriate values for α, J2, and
J3 are found by intersecting the darker shaded regions in
Fig. 3 with the domain of the ordered phase. The estimated
Na2IrO3 and Li2IrO3 parameters given either stripy or zigzag
magnetic order are summarized in Table I. All material and
order combinations yielded fitted values of J in the range
J ≈ 60–150 K, with the likeliest values J ≈ 100 K. The
lithium material has less structural distortion than the sodium
material,14 suggesting a larger α, in agreement with the fitting
results if they have the same magnetic order. For zigzag ordered
Li2IrO3 we find α ≈ 0.7, i.e., JK ∼ 4–5J1 with a numerical
value of JK ≈ 130 K. Such a large Kitaev term relative to the
other couplings suggests that the Kitaev spin liquid phase may
be within experimental reach.14 In particular, doping Li2IrO3

may suppress its magnetic order to reveal characteristics of a
doped Kitaev spin liquid.25

In conclusion, we propose the Kitaev-Heisenberg-J2-J3

model, determining its ordered phases, and further using ED

fits of susceptibility measurements to demonstrate its appli-
cability to Na2IrO3 and Li2IrO3. We find that the geometrical
frustration due to J2,J3 and the dynamical frustration due to the
Kitaev term both stabilize the same unconventional stripy and
zigzag ordered ground states before the onset of the Kitaev spin
liquid. We extract appropriate values for the spin couplings by
first restricting to the experimentally observed magnetic order
in the phase diagram, and then by requiring good fitting of the
susceptibility χ (T ) by ED data. For zigzag ordered Li2IrO3, a
significant Kitaev term JK ≈ 130 K, five times larger than the
nearest-neighbor Heisenberg coupling, as well as substantial
J2 and J3 couplings, are required for good agreement with
experimental data.
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