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Analytical expressions for the spin-transfer torque (STT) in magnetic junctions with a ferromagnetic insulator
(FI) are derived using the Keldysh formalism. Adopting simple approximations and ballistic transport, both
parallel and perpendicular torques are expressed in terms of spin-dependent intersite Green’s functions of the
insulator. They depend linearly on the bias voltage because of the asymmetry of junctions. The relationship
between STT and tunnel magnetoresistance, the difference between the features of the STT obtained in the
present and previous works, and effects of the electronic structures of FI and those of impurities on the STT are
discussed.
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Magnetic multilayers and magnetic tunnel junctions are
widely used in various fundamental physics and technological
applications in the field of spintronics. Giant magnetoresis-
tance (GMR) in magnetic multilayers and tunnel magnetore-
sistance (TMR) in magnetic tunnel junctions are phenomena
that are used to control charge current by means of a magnetic
field. An inverse effect, the control of magnetism by charge cur-
rent, that is, current-induced magnetization switching (CIMS),
was also predicted contemporaneously with the discovery of
GMR and TMR,1,2 and confirmed experimentally.3 It is well
understood that CIMS is realized by spin-transfer torque (STT)
exerted by spin-polarized currents.4–7 After a breakthrough
in TMR using an epitaxial MgO barrier in magnetic tunnel
junctions,8 CIMS in magnetic tunnel junctions has been
extensively studied in both experiment9–12 and theory.13–19

CIMS has also been applied to magnetoresistive random access
memories and spin-torque oscillators.20,21

STT exerted on a magnetization M in tunnel junctions
is a vector having two components, one parallel (N‖) and
one perpendicular (N⊥) to the plane of M. N‖ and N⊥
are called spin-transfer and fieldlike terms, respectively, and
are generally nonzero. The magnitude of each component
is important for the magnetization dynamics controlled by
currents.6 The dependence of N‖ and N⊥ on the bias voltage V

has been predicted to be proportional to V and V 2, respectively,
for symmetric junctions.14,17,18 It was also predicted that
N‖ changes sign with |V |, and that N⊥ shows oscillatory
dependence on V .17,19

Meanwhile, the magnetic tunnel junctions mentioned above
comprise transition-metal ferromagnets (FMs) separated by a
MgO insulator (I). Recently, half-metallic Heusler alloys and
spinel ferrites have attracted interest as spintronic materials.
Especially some ferrites such as CoFe2O4 and NiFe2O4

are ferromagnetic (or ferrimagnetic) insulators (FI) and are
expected to play the role of a spin filter.22–24 Figure 1(a)
shows a schematic of the density of states (DOS) of an
FI, in which two types of magnetic atoms A and B are
included. The DOS has spin-dependent energy gaps between
the occupied and unoccupied states.25 Because they possess
both ferromagnetism with a high Curie temperature and an
electrically insulating character, it would be interesting to
fabricate tunnel junctions with FIs and to study the STT exerted
on M of the FI. Furthermore, in view of recent interest in FIs

such as YIG (yttrium iron garnet),26,27 STT and spin current
through FIs would be important subjects.

Hence, the purpose of this Rapid Communication is to
derive an analytic expression for the STT, including both N‖
and N⊥, for junctions with a FI by using a nonequilibrium
Keldysh formalism in the ballistic transport regime. Instead of
FM/I/FM-type tunnel junctions, we use FM/NM(or I)/FI/NM-
type junctions, shown in Fig. 1(b), in which a thick FM and
a thin FI are separated by a thin nonmagnetic metal (NM)
or by a thin insulator to decouple any exchange interaction
between the FM and FI. We will show that both N‖ and N⊥ are
proportional to V because of the asymmetry of the junction,
and they are expressed in terms of spin-dependent nonlocal
Green’s functions of the FI. We will discuss the difference
between features of the STT obtained in the present Rapid
Communication and those in FM/I/FM junctions studied so far.

We formulate the charge and spin currents flowing through
the FI layer using the Keldysh formalism.28 The formalism
in general may be applied to a full-orbital tight-binding
(TB) model, however, analytical expressions are obtained
in a single-orbital TB model. Inelastic scattering by spin
waves, etc., and the effects due to magnetic anisotropy are
not considered.6

A spin-polarized current induced by the magnetization Mp

of the FM exerts a STT on the magnetization M of the FI. The
direction of Mp is fixed and that of M may be be canted by
an angle (θ,ϕ), as depicted in Fig. 1(c). In the formalism, we
divide the junction into three parts by inserting two cleaved
layers, an electrode of the left (L) side including a FM and thin
NM or I, a FI layer, and an electrode of the right (R) side made
of a NM. The cleaved layers are inserted between sites m and
n and between sites p and q, as shown in Fig. 1(d). Because
of the conservation law of charge current, the charge current
through the m-n interface 〈JC

m 〉 is the same with that through
the p-q interface. On the other hand, the spin current through
the m-n interface 〈JS

m〉 is different from that through the p-q
interface 〈JS

p〉, and the difference between these currents gives
the STT exerted on the FI.

The general expressions of the charge and spin currents
through m-n interface are

〈
JC

m

〉 = e

h̄
Tr

∫
1

2π
dω(G+

mn tnm − tmnG+
nm)1 (1)
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FIG. 1. (a) Schematic of the DOS of an ferromagnetic insulator
(FI) composed of two types of magnetic atoms A and B, (b) a typical
structure of the unctions, (c) magnetization alignment of the junctions,
and (d) site indices of the junctions with hopping integrals t and t ′ at
the m-n and p-q interfaces, respectively.

and

〈
JS

m

〉 = 1

2
Tr

∫
1

2π
dω(G+

mn tnm − tmnG+
nm)σ , (2)

respectively. Here, G+ is the nonequilibrium (Keldysh)
Green’s function for the whole junction, and is defined as
G+

ij (t,t ′) = i〈c+
j (t ′)ci(t)〉/h̄, where c+

i (t) [ci(t)] represents the
creation (annihilation) operator of an electron at site i, t

represents the time in the Heisenberg representation, and σ

represents the Pauli matrix. A trace is taken over the spin,
orbitals, and momentum k‖ parallel to the layer planes. We
omit k‖ in the equations for simplicity because we are dealing
with the ballistic transport.

In order to obtain the spin current responsible for STT, the
equilibrium spin current 〈JS

m〉eq (exchange coupling between
ferromagnetic layers) should be subtracted as

〈
JS

m

〉
n−eq = 〈

JS
m

〉 − 〈
JS

m

〉
eq, (3)

and the STT is given by the change in the nonequilibrium spin
current between the m-n and p-q layers

N = 〈
JS

p

〉
n−eq − 〈

JS
m

〉
n−eq, (4)

where the spin current through the p-q interface is given by
m → p and n → q in Eq. (2). In FM/I/FM junctions, only
interface scattering at I/FM is crucial since the thickness of the
left FM is assumed to be infinity.7 The equilibrium spin current
is calculated by using the relation G+ = (GA − GR)feq,29

where feq is the Fermi distribution function in the equilibrium
state, and A and R indicate that the Green’s functions are
advanced and retarded ones, respectively. Hereafter, we omit
the vector representation of Green’s functions for simplicity.

The flow of the calculation is as follows.28 First, the Green’s
function G+

mn is expressed in terms of G in the insulator as

G+
mn = g+

mmtmnG
A
nn + gR

mmtmnG
+
nn, (5)

G+
nm = G+

nntnmgA
mm + GR

nntnmg+
mm, (6)

where g is the Green’s function in the equilibrium state.
Substituting them into Eqs. (1) and (2), we obtain

〈
JC

m

〉 = e

h
Tr

∫
dω

[
g+

mmtmnG
A
nntnm + gR

mmtmnG
+
nntnm

− tmnG
+
nntnmgA

mm − tmnG
R
nntnmg+

mm

]
1, (7)

〈
JS

m

〉 = 1

4π
Tr

∫
dω

[
g+

mmtmnG
A
nntnm + gR

mmtmnG
+
nntnm

− tmnG
+
nntnmgA

mm − tmnG
R
nntnmg+

mm

]
σ . (8)

Next, the Green’s functions G±
nn is expanded as

G±
nn = GR

nntnmg±
mmtmnG

A
nn + GR

npt ′pqg
±
qq t

′
qpGA

np, (9)

with respect to tmn and t ′pq , which are hopping integrals at
the m-n and p-q interfaces, respectively, and are dealt as
perturbations. This is an approximation for G+

nn where the
site n is included in the insulator. In the above expression,
only the second term contributes to tunneling when there is no
additional interaction in the FI layer. The first term corresponds
to the reflection of electrons. We further replace the intersite
Green’s functions GR

np with an unperturbed one that is, gR
np.

This replacement may be justified when we note that the FI
is an insulator and that the tunneling electrons would not go
back and forth many times in the junction. Then

G±
nn ∼ gR

npt ′pqg
±
qq t

′
qpgA

np. (10)

Similar approximations are used for advanced and retarded
Green’s functions as

GA(R)
nn ∼ gA(R)

np t ′pqg
A(R)
qq t ′qpgA(R)

np . (11)

By using these approximations, the charge and spin currents
are given as

〈
JC

m

〉 = e

h
Tr

∫
dω

[−g+
mmtmngnpt ′pqg

−
qq t

′
qpgpntnm

+ g−
mmtmngnpt ′pqg

+
qq t

′
qpgnptnm

]
1, (12)

〈
JS

m

〉 = 1

4π
Tr

∫
dω

[
g+

mmtmngnpt ′pqg
A
qq t

′
qpgpntnm

+ gR
mmtmngnpt ′pqg

+
qq t

′
qpgnptnm

− tmngnpt ′pqg
+
qq t

′
qpgnptnmgA

mm

− tmngnpt ′pqg
R
qq t

′
qpgpntnmg+

mm

]
σ , (13)

where superscripts R and A in g have been omitted since g is
real in the FI. It should be noted that a more general expression
of the charge current is obtained by using the property of
the trace in Eq. (7) and a relation GA − GR = G+ − G−.
However, it cannot be used for the spin current because of the
Pauli spin matrix in Eq. (8). Therefore, we have used simpler
approximations for both currents to make them consistent.
The conservation of charge current is easily verified for both
general and approximate expressions.

Now the Green’s functions g±
mm(qq) are expressed in terms

of the local density of states Dm(q) at site m(q) with Fermi
distribution functions fL(R), as g+

mm = 2πiDmfL and g−
mm =

2πiDm(fL − 1). Note that in general Dm(q) is dependent on
k‖, however, we focus our attention on a state k‖ = (0,0) (�̄
point), which contributes mostly to tunnel currents in junctions
with an I or FI. In the equilibrium state, fL = fR = feq. In
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the nonequilibrium state, in general, feq 	= fR 	= fL, however,
we assume feq = fL 	= fR and calculate the spin current in
the nonequilibrium state by using Eq. (3). Then the first and
fourth terms, which include a factor of fL in [· · · ] of Eq. (13),
are canceled by the corresponding terms in the equilibrium
state. The second and third terms result in terms proportional
to 2πiDq(fR − fL). The resultant expression is

〈
JS

m

〉
n−eq = i

2
Tr

∫
dω

[
gR

mmtmngnpt ′pqDqt
′
qpgnptnm

− tmngnpt ′pqDqt
′
qpgnptnmgA

mm

]
(fR − fL)σ . (14)

Spin current through the p-q interface 〈JS
p〉n−eq may be

calculated in a similar manner, and the STT is given by Eq. (4).
Up to now, the expressions of both charge and spin currents are
applicable to realistic junctions using a full-orbital TB model.

Finally, adopting the single-orbital model with tmn =
tnm = t and t ′pq = t ′qp = t ′ and transforming the spin axis
into the global spin axis, we get N = N‖ M̄ × (M̄P × M̄) +
N⊥(M̄P × M̄) using the unit vectors of the magnetization with

N‖ = −
∫

dωC(ω)Pm(g↑
np − g↓

np)2, (15)

N⊥ =
∫

dωC(ω)
1

2πD0
m

{(g↑
np)2 − (g↓

np)2}(R↑
m − R↓

m), (16)

and

C(ω) = π (t t ′)2(fR − fL)D0
qD

0
m. (17)

Here, Pm is the spin polarization of the DOS D
↑(↓)
m = D0

m(1 +
(−)Pm) and Rσ

m = Re(gσ
m). Because the right electrode is a

NM, Dq ≡ D0
q .

There are several interesting points to be noted: Both N‖
and N⊥ are linear in the bias voltage V , which is caused by
the asymmetric structure of the junctions, and the sign of N⊥
may change depending on the magnitude of Rσ

m. Owing to
our simple approximations in Eqs. (13) and (14), in which
multiple scattering at interfaces has been neglected, the STT
is proportional to a product of the DOS at the left and
right electrodes and to the spin polarization Pm at the left
electrode, similar to the results obtained by Slonczewski.13

When the multiple scattering, that is, band mixing between
the left electrode and the FI is included, higher orders of
the angle dependence may appear in the STT. Although the
term fR − fL in Eq. (17) includes an arbitrary value of V ,
the expressions of N may be applicable to low-bias voltages
because a change in the electronic structure by V is disregarded
in the present formalism.

The charge current is given as

〈
JC

m

〉 = c

∫
dω D0

qD
0
m

∑
σ

(
gσ2

np + σPmgσ2
np cos θ

)
(fR − fL),

(18)

with c = 2πe(t t ′)2/h̄. The MR defined as MR = (JP −
JAP )/JP , where JP (AP ) is the charge current in parallel (θ = 0)
and antiparallel (θ = π ) alignment, is easily evaluated. For
example, when gnp↑ 
 gnp↓, MR = 2Pm/(1 + Pm), and an
inverse MR is obtained in the opposite limit.

Because the charge current J and the STT N are propor-
tional to (|e|/h̄)(t t ′)2D2V (g↑2

np + g
↓2
np ) and (t t ′)2D2V (g↑2

np −

g
↓2
np ) or to (t t ′)2D2V (g↑

np − g
↓
np)2, respectively, we find that

N ∼ (h̄/|e|)Jη, where η is a product of the spin polarization
Pm and ratio of the spin dependence of the nonlocal Green’s
function gσ

np. When gnp↑ 
 gnp↓, η ∼ Pm, which should be
compared with the TMR ratio. These results are consistent
with those of previous studies.2,4,13

It was reported that impurities within MgO in magnetic
tunnel junctions strongly affect the exchange coupling between
the ferromagnetic layers and TMR ratio.30,31 When impurities
with spin-dependent potential υσ

i are included within the FI,
the nonlocal Green’s functions vary as g̃σ

np ∼ gσ
np + gσ

ni υ̃
σ
i gσ

ip

with υ̃σ
i = υσ

i (1 − gσ
iiυ

σ
i )−1. Therefore, STT may also be

affected by the impurities.
Here, we show qualitative features of the nonlocal Green’s

function gnp calculated by using a single-orbital TB model for
a FI and adopting a layered structure with six atomic layers
(n,p = 1,6 in this case), in which four layers have positive
magnetization and two layers have negative magnetization.
Occupied and unoccupied bands of each layer are character-
ized by negative and positive hopping integrals, respectively,
to approximately reproduce the electronic states near the
� point calculated for Co and Ni spinels. We assume that the
interlayer hopping integral is the same as that in layers with
positive magnetization. Figure 2 shows the energy dependence
of Re[gσ

16(E)] at k‖ = (0,0) near the energy gap. The local DOS
of an interface layer with positive magnetization is shown in the
inset. The local DOS is similar to the DOS depicted by the solid
curves in Fig. 1(a). We find that the real part of gσ

16(E) exhibits
a peak at the band edge where the DOS vanishes and decays
quickly with decreasing energy. Therefore, once the chemical
potential is located near either an up- or down-spin band edge,
we may have a strong spin asymmetry in the nonlocal Green’s
function, and we expect a large TMR and STT.

Finally, let us summarize the difference between the
features of the STT in FM/I/FM junctions studied previously
and those obtained in the present Rapid Communication.
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FIG. 2. (Color online) Energy dependence of up- and down-spin
nonlocal Green’s functions Re(g16) with k‖ = (0,0) near the energy
band gap calculated by using a simple model of an ferromagnetic
insulator with six atomic planes. The inset shows the local DOS at
an interface layer of the FI, in units of 1/|t |/atom/spin, where t is a
hopping integral within the insulator.
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It is worthwhile to note first that the STT is formulated
for junctions with a thin FI layer, in contrast to junction
structures FM/I/FM studied previously.14,17–19 A main dif-
ference between the feature resides in the role of electronic
states on STT. Detailed studies of the STT in FM/I/FM
junctions14,18,19 have clarified that the electronic structure near
the Fermi energy of FM is crucial for the bias dependence
of the STT. Band symmetry has also been pointed out to be
important for Fe/MgO/Fe junctions.15 On the other hand, the
STT in junctions with FI is governed by the real part (not
the imaginary part) of the spin-dependent nonlocal Green’s
function within the energy gap of FI, as explicitly shown in
Eqs. (15) and (16).

In conclusion, analytical expressions of the spin-transfer
torque (STT) have been formulated as the change in the spin
angular momentum produced by tunneling of spin-polarized
electrons through a ferromagnetic insulator (FI) by using the

Keldysh formalism. Adopting simple approximations, both
parallel and perpendicular torques are expressed in terms of
spin-dependent intersite Green’s functions of the FI. It is found
that they depend linearly on the bias voltage, due to the
asymmetry of the junctions. The relationship between STT
and tunnel magnetoresistance, and the effects of electronic
structures of the FI and of impurities are presented. More
studies on interactions between magnetic excitation in FI
and tunneling spins would be desirable to clarify how the
magnetization dynamics of FI is affected by the STT.
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in Priority Area “Creation and control of spin current” from
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