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Polaron transport in organic crystals: Temperature tuning of disorder effects
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We explore polaronic quantum transport in three-dimensional models of disordered organic crystals with strong
coupling between electronic and vibrational degrees of freedom. By studying the polaron dynamics in a static
disorder environment, temperature-dependent mobilities are extracted and found to exhibit different fingerprints
depending on the strength of the disorder potential. At low temperatures and for strong enough disorder, coherence
effects induce weak localization of polarons. These effects are reduced with increasing temperature (thermal
disorder), resulting in mobility increase. However, at a transition temperature, phonon-assisted contributions
driven by polaron-phonon scattering prevail, provoking a downturn of the mobility. The results provide an
alternative scenario to discuss controversial experimental features in molecular crystals.
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The microscopic understanding of charge transport in
organic materials remains a challenge after more than two
decades of theoretical and experimental efforts.1,2 An es-
tablished fact is, however, that transport theories developed
for conventional inorganic semiconductors fail to properly
describe organic matter (or narrow-band systems in general)
in its full complexity. One of the main reasons lies in strong
electron-phonon coupling which is at the basis of high techni-
cal and conceptual hurdles, demanding for the advancement of
concepts and quantum transport methods that are able to cope
with the entangled effects of structural or chemical and thermal
disorders. For strongly disordered (and soft) organic structures
(such as discotic liquid crystals, DNA, or microcrystalline
polymer semiconductors), multiscale approaches combining
classical molecular dynamics with quantum transport simu-
lations offer an interesting perspective.3,4 On the other hand,
since the seminal work of Su, Schrieffer, and Heeger,5 it is
recognized that the electron transport in π -conjugated mate-
rials encompasses various complicated transport mechanisms,
including band conduction or hopping processes which can be
well captured by the concept of polarons.

After early works by Holstein6 and Conwell,7 theoretical
progress in recent years has been achieved in the explo-
ration of polaronic phenomena, including the description
of Fröhlich polarons at the dielectric/organics interface in
organic-field-effect transistors (accounting for Coulomb in-
teraction and screening phenomena),8 as well as the simu-
lation of nonadiabatic polaron motion,9 inelastic effects on
coherent polaronlike motion,10 or the revision of dynamic
localization concepts in one-dimensional models of organic
materials.11 Additionally, to investigate polaron motion in
higher dimensional [three-dimensional (3D)] systems, a gen-
eralized transport methodology has been proposed using
a mixed Holstein-Peierls model12 in the Kubo framework.
This latter work has provided some qualitative understanding
of high-temperature-dependent charge mobility of ultrapure
organic crystals (including anisotropic effects), but it does

not explain the sign reversal of the bulk mobility versus
temperature derivative ( ∂μ

∂T
) in the lower-temperature regime,13

which is still a debated issue. Indeed, as observed by Karl
and co-workers in α-perylene single-crystalline thin films,
charge mobilities can increase from 1 cm2(V s)−1 (10 K) to
∼100 cm2(V s)−1 at 30 K, followed by a power-law decay up to
room temperature.13 A similar mobility behavior also has been
more recently reported in rubrene crystal-based field-effect
transistors14 and in modified pentacene polycrystalline films
with large domain sizes of over 100 nm.15 Notwithstanding
repeated analysis, the underlying physical mechanism driv-
ing such temperature-dependent mobility remains elusive.16

Moreover, the reported clear evidences for band dispersion
(as large as 400 meV) in high-purity rubrene single crystals17

support the scenario of polaron band transport,11,18,19 although
the question of quantum interference effects20 remains to be
investigated and quantified in 3D disordered organic crystals.

In this Rapid Communication, we use a real-space order N

Kubo methodology to theoretically explore polaron transport
in three-dimensional disordered organic crystals, taking into
account elastic scattering, as well as decoherence effects. De-
coherence is introduced at a phenomenological level, assuming
that the coherent polaron motion suffers from additional
stochastic dephasing events, driven by thermal vibrations
which play an important role in the low-T regime.21 Addi-
tionally, incoherent contributions of polaron motion (driven
by polaron-phonon scattering12) are found to dominate the
high-T regime. The obtained temperature-dependent mobility
fingerprints are reminiscent of experimental features in fairly
ordered organic materials.13–15

The present theoretical approach uses a polaronic tight-
binding (TB) Hamiltonian and orthorhombic symmetry (see
the inset of Fig. 1), as found in rubrene, which is defined by
H = HP + HW , where HP = ∑

m�=n ε̃mna
†
man + ∑

λ h̄ωλb
†
λbλ

describes polarons and phonons. It can be obtained from a
polaronic transformation (Lang-Firsov)12 of a generic model
for disordered polaronic materials.22 Here, we use the concept
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FIG. 1. (Color online) (a) Typical time-dependent diffusion coef-
ficient for various W and temperature T . Inset: 3D crystal structure
with system parameters εmn and Rmn for nearest neighbors. (b)
Polaron mean free path vs energy for various disorder strengths.
Only positive energies are shown because of symmetry.

of a single effective vibrational mode with energy ωλ =
12 meV, and we use as a typical dimensionless electron-
phonon coupling gλ = 0.7 inspired by available ab initio data.
The effective mode used here is representative of the many
low-frequency intermolecular modes which are present in
organic materials. The temperature-dependent renormalized
transfer integrals ε̃mn are used following the full dressing
approximation12 (Nλ is the Bose-Einstein function), and are
given by ε̃mn = εmn exp[−∑

λ(1 + 2Nλ)g2
λ], with εmn the

electronic transfer integrals (given in the inset of Fig. 1).
HP gives rise to a gapless cosine-type temperature-dependent
and anisotropic band structure in the 3D Brillouin zone,
regarded as a typical case for organic crystals.23 Finally,
HW = ∑

m εma
†
mam tunes the strength of an additional elastic

(Anderson-type) disorder potential18 with on-site energies
taken at random within εm ∈ [−W/2,W/2], with an average
modulus of εm, which is W/4. Such uncorrelated disorder
mimics impurities and defects as a first approximation.18 A
refined analysis could be achieved by using first-principles
calculations and precise crystal symmetry (see, e.g., Ref. 24
for details).

The TB model is implemented into a Kubo transport
framework which is based on the theory developed in Ref. 25.
This theory is generalized in the present Rapid Communication
to investigate effects of static disorder. Due to the splitting
of the mobility into two contributions (coherent and inco-
herent) obtained in Ref. 25, we proceed here by employing
two complementary coherent and incoherent Kubo transport
methodologies to explore the whole temperature range. The
first one allows a real-space description of polaron propagation
in the coherent regime in the superimposed disordered (static)
potential by using the Kubo-Greenwood approach.26 By
following the polaron dynamics, the elastic polaron mean
free path as well as the weak-localization corrections to the
conductivity in the low-temperature regime can be computed.
Second, the incoherent (phonon-assisted) contribution of
polaron transport is conveyed by polaron-phonon scattering.
It is calculated based on the theory developed in Ref. 25,
which is here generalized to include static disorder effects
(details below). Both contributions (coherent and incoherent)

are computed separately and are added to evaluate the total
polaron mobility. We note that there is no further parameter to
tune the relative amplitudes of both. They are fixed by material
parameters and the impact of disorder.

From the study of the coherent polaron wave-packet
dynamics, the elastic mean free path �e(E) can be first derived
from the time dependence of the diffusion coefficient D(E,t),
which writes

1

t

∑
l〈	l|δ(E − H )[U †(t)xU (t) − x]2|	l〉∑

l〈	l|δ(E − H )|	l〉 ,

taking x as the position operator along the transport direction,
δ(E − H ) the spectral measure operator the trace of which
gives the total density of states, and |	l〉 a set of random-
phase states (for details, see Ref. 26). In this approach D(t)
is derived from to the time evolution of 〈[x(t) − x(0)]2〉
driven by the operator Û (t) = �

Nt

n=1 exp(iH�t/h̄), with �t

the chosen time step. The calculations are performed for total
elapsed computational times of tmax = 61 ps. The system size
is at least (0.24 × 0.22 × 0.14) μm3 and periodic boundary
conditions are applied. Based on this, the coherent part of
the Kubo conductivity is computed using σ (E,t = Nt�t) =
e2

0ρ(E)D(E,t)/2, with ρ(E) the total density of states. We
further derive the carrier mobility

μ(coh) = �

e0ckBT

∫
dEσ (E,t)fFD(E)[1 − fFD(E)],

with fFD(E) being the Fermi-Dirac function, c the total charge
density fixed to 10−3, and � the volume of the unit cell.
The chosen time t is fixed by the temperature-dependent
decoherence time τϕ .

By introducing static disorder, polaron wave packets are
elastically scattered and suffer from multiple scattering events
and quantum interferences. Elastic scattering first results in a
diffusive regime, characterized by the polaron elastic mean
free path �e = Dmax/2̃v (Dmax is the maximum diffusion
coefficient and ṽ the polaron velocity). Figure 1(b) shows �e

along the transport direction, which follows an approximate
�e ∝ W−2 behavior for small W (in agreement with the Fermi
golden rule). The obtained values for �e are well below the total
system size. When �e becomes close to the lattice constant, it,
however, ceases to be a suitable characteristic length as the
system proceeds to the strong localization regime. In that limit
the localization length ξ might be used to further characterize
localized states. As seen in Fig. 1(b), the case of W = 160 meV
may be regarded (in our model) as a transition point. One
also notes that the polaron bandwidth varies with temperature
(renormalization of transfer integrals). As a result, for a given
static disorder potential, backscattering efficiency will increase
with temperature.

Beyond the diffusive regime, quantum interference effects
(QIEs) produce an increase of the resistance (weak localiza-
tion). Strong (coherent) localization effects due to disorder in
organic crystals have been studied in one- and two-dimensional
models,18 for which all states are localized irrespective to the
disorder strength. In three-dimensional models, the validity of
band-type conduction is known to be more robust with the
existence of a metal-insulator transition, which can be tuned
by the strength of elastic disorder.20
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In general, quantum coherence (and localization effects)
will be reduced by decoherence mechanisms.20 Decoherence
mechanisms for polaron transport could be driven by thermal
disorders including phonon-phonon, electron-electron, as well
as electron-phonon scattering processes. This thermal disorder
includes stochastic scattering events which relate the selected
coherent polaron with other phonon degrees of freedom. We
introduce phenomenologically a coherence time which tunes
the weak localization correction, and decreases with temper-
ature following a power law. Although there is no available
microscopic theory of decoherence in inorganic (or organic)
materials, a power-law dependence of the decoherence time
τϕ ∝ 1/T α has been derived, with α only depending on
the transport dimensionality for electron-electron interaction
induced dephasing20 (for temperatures below 1 K), in contrast
with the case of electron-phonon driven decoherence effects
for which α � 2–4 (material dependent).21 Here we assume
such a power law for τϕ to be generic, but we take into
account some variability in the T -dependent tuning of QIEs
by considering different values for α. We also assume that, at
5 K, τϕ corresponds to the maximum computed time
(τϕ = tmax) and introduce a lower limit for τϕ which en-
sures a seamless transition to the semiclassical limit at
elevated T .

Figure 2 shows μ(coh)(T ) for various disorder strengths
W . For values as low as 40 meV [corresponding to elastic
mean free paths in the order of 6–10 nm, Fig. 1(b)], no weak
localization is observed within the reach of our maximum
computed time. This can be appreciated by the absence
of a time-dependent decay of the diffusion coefficient [see
Fig. 1(a)]. As a result, the low-temperature μ(coh)(T ) is
seen to saturate to its semiclassical value on the order of
200 cm2(V s)−1 for the chosen parameters. In contrast, for
a static disorder strength such as W = 80 and 160 meV
(corresponding to �e ∼ 2 nm and 6 Å, respectively) substantial
contributions of QIEs are obtained, as witnessed by the time-
dependent decay of the diffusion coefficient [Fig. 1(a)], and
result in a marked decrease of μ(coh) at the lowest temperatures.
By increasing W by a factor of 2 (or 4), μ(coh)(T ) is reduced
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FIG. 2. (Color online) Coherent part of the carrier mobility for
several disorder strengths W and using a decoherence model with
α = 2 (see text). Inset: Same information using α = 3.

by one (or three) orders of magnitude. The temperature-
dependent decoherence effects then yield a positive ∂μ

∂T
(Fig. 2)

which is independent of the exact details of the decoherence
strength introduced phenomenologically. Such a behavior can
be observed only if the temperature-induced reduction of
the QIE dominates the band narrowing effect, which is not
observed for the negative ∂μ

∂T
found at higher temperatures in

Fig. 2. Importantly, in contrast to the common belief that a
mobility increase with temperature implies a phonon-assisted
transport regime, we obtain a positive ∂μ

∂T
for coherent motion.

This behavior can be expected to be relatively insensitive to
the strength of the electron-phonon coupling or the efficiency
of the phonon dressing of carriers assumed in the polaron
Hamiltonian.

At elevated temperatures, the phonon-assisted incoherent
contribution of polaron transport (driven by phonon-polaron
scattering) may prevail over the coherent one. By
generalizing Eq. (43) of Ref. 25 [using the density of
states ρ(E) of the disordered system], we compute the
incoherent part of the polaron mobility μ(inc) = e0�

2

2ch̄2kBT

∑
m

R2
mñε

2
mn

∫
dE1dE2ρ(E1)ρ(E2)fFD(E1)[1 − fFD(E2)]

∫ ∞
−∞ dt

eit(E1−E2)/h̄{exp[2�λ(t)g2
λ] − 1} in the transport direction with

�λ(t) = Nλe
iωλt + (1 + Nλ)e−iωλt and display its temperature

dependence in Fig. 3.27 We observe an activation behavior
of the phonon-assisted transport which is followed by a
saturation regime at ∼200 K and a weak decrease up to room
temperature. Although reminiscent of the experimental data
reported recently,13–15 we discuss below why phonon-assisted
transport is unlikely to explain the mobility downturn at low
T . We plot in Fig. 3 (main frame) the total carrier mobility
μ(coh)(T ) + μ(inc)(T ), which is the measurable quantity in
experiments. For all temperatures one observes a disorder
dependence of the mobility which is weaker for the high-T
regime. However, its origin in this regime is very different
from the strong quantum interferences described in Fig. 2 at
low T . Importantly, we find that even for strong disorder the
weak localization regime of coherent motion dominates the
low-temperature regime of the total carrier mobility, resulting
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FIG. 3. (Color online) Temperature dependence of the total
mobility (main frame) and incoherent part (inset) for several disorder
strengths W and decoherence effects with α = 2.
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in ∂μ

∂T
> 0 for strong enough disorder (not phonon assisted).

On the other hand, the mobility decrease ( ∂μ

∂T
< 0) at elevated

T is mostly driven by phonon-assisted polaron motion,
i.e., increasing contribution of carrier-phonon scattering, in
contrast to the temperature-activation concept commonly
associated with phonon-assisted transport.

We have studied a quantum-based polaron transport sce-
nario and found that quantum interferences can play an impor-
tant role for understanding temperature-dependent transport
features. Such a scenario is consistent with experimental

trends reported in clean organic crystals,13–15 and the obtained
results are not within the reach of restricted semiclassical
transport approaches. Although the absolute values of charge
mobilities are comparable to what is measured experimentally,
a systematic comparison with experimental data, including
transport anisotropy, would demand the use of first-principles
calculations for the material parameters.

This work is supported by the European Community
through the Marie Curie Actions.
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