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Ordering trends in transition metal alloys from tight-binding electronic structure calculations
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Accurate prediction of the ordering behavior of transition metal alloys from the electronic structure is a
challenging task, opening the way to build materials with unique properties in a controlled way. To this goal,
we provide an accurate model based on the fourth-moment approximation of the tight-binding approach, which
exhaustively gives ordering trends as a function of d-band filling, within maps where both the d-band positions
and widths are used as parameters.
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It has been a longstanding issue of modeling activity
in material science to derive thermodynamic properties of
transition metal alloys from the knowledge of the electronic
structure of their pure constituents.1–4 The goal was both to
better understand the intimate coupling between electronic
and chemical structures, and to use this understanding to build
structures with unique properties (as it is the case with the
recent development of nanoalloys5). Application domains are,
e.g., metallurgy, catalysis, magnetism, and optics.

Many approaches have been proposed, based upon
a more or less sophisticated description of the elec-
tronic structure, from ab initio density functional theory
(DFT)-type methods,6–10 through the tight-binding (TB)
approximation,11,12 up to semiempirical potential models.13–18

Whereas the latter are too simple to establish a link between
the electronic and chemical structure up to the desired level
of accuracy, the TB method within a pure d-band description
is known to capture the corresponding physics. In addition,
it is more suited for a trend study than the DFT methods. It
is therefore taken as the starting point for the present Rapid
Communication.

The TB Hamiltonian for a binary alloy AcB1−c involves
two types of matrix elements, respectively, diagonal and off-
diagonal on the basis of d atomic orbitals. The first one εa

d is
the atomic d orbital level for an atom of type a. The second one
is the hopping integral between two orbitals on neighboring
sites, which can be expressed in terms of the usual Slater
parameters derived from the band structure using interpolation
schemes,19 and relates to the d bandwidth (Wa

d � −8ddσaa

for the fcc structure4). In this framework, the first term gives
rise to the so-called diagonal disorder effect coming from the
difference δd = εA

d − εB
d between the d orbital levels of two

elements, whereas the second one accounts for a possible effect
of off-diagonal disorder due to the difference in d bandwidth
Wa

d : δnd = WA
d − WB

d . The parameters δd and δnd actually
drive the redistribution of the electronic states with respect
to those of pure elements and therefore both the properties
of the alloy and its preference to order or phase separate at
low temperature. The respective values of δd and δnd for all
possible transition and noble metal alloys are shown in Fig. 1.
Without any loss of generality, in this Rapid Communication
the elements A and B are chosen such as δd = εA

d − εB
d > 0.

As can be seen, δd and δnd follow a similar variation so that
none of them prevails on the other. However, up to now, the
only systematic study of the link between ordering tendency
and electronic structure in transition metal alloys has been
to completely neglect the off-diagonal disorder effect (δnd =
0). In that case a generalized perturbation method [GPM
(Ref. 20)] allows to derive effective pair interactions (EPIs)
Vij = 1

2 (V AA
ij + V BB

ij − 2V AB
ij ) from the electronic structure

of the disordered alloy treated within the coherent potential
approximation [CPA (Ref. 21)]. Since the EPIs are strongly
damped with distance,22 they can be limited to first neighbors,
leading to a single one Vij = V for all first-neighbor pairs.
The sign of V gives the chemical tendency of the system to
order (V > 0) or to phase separate (V < 0) at low temperature
(ground state). The variation of V with the average d-band
filling in the alloy Ne = cNA

d + (1 − c)NB
d , with Na

d the
number of d electrons in a pure a metal, has put in evidence
systematic trends, among which the prediction of ordering
tendency for 0.3 < Ne < 0.7 roughly, and to phase separate
otherwise, in agreement with experiment for a wide range of
systems.

However, one has to keep in mind that the GPM approach
has been derived by taking into account the difference in d-
band positions as the only source of alloying effect. This makes
it unsuited for systems presenting a weak diagonal disorder
effect, for which the origin of the ordering tendency has to be
found in the difference in bandwidths (off-diagonal disorder).
This concerns systems of high interest, such as CoPt, NiPt, or
CuAu, which are indeed exceptions to the GPM rules which
predict them to phase separate, although they are archetypal
systems known to form ordered phases. It is then necessary to
go beyond GPM shortcomings, which can be done following
two complementary directions.

The first one is to assume that the description in terms of
EPIs remains valid even when not grounded, and to calculate
them by ab initio DFT methods which obviously account for all
(diagonal and off-diagonal) electronic structure effects.6–10,23

This was indeed successful to predict, using Korringa-Kohn-
Rostoker (KKR) (Ref. 7) or linear muffin-tin orbital (LMTO)
(Ref. 23) calculations, the correct ordering behavior in some
particular alloys (among which CuAu and CoPt). However, it
does not give a general description of the ordering tendency for
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FIG. 1. (Color online) Correlated behavior of εa
d and Wa

d for all
transition metals, compiled from Ref. 19. The lines follow the d-band
filling along series.

all alloys nor an elucidation of what are its main driving forces.
In addition, it can hardly (up to now) be applied in a systematic
way to more complex simulations coupling atomic relaxations
and chemical exchanges (e.g., semigrand canonical Monte
Carlo simulations of alloy surfaces, nanoalloys, defects), even
though some work has been done for limit cases (surface
segregation in dilute systems24).

The philosophy adopted in our Rapid Communication is
quite different in the sense that our goal is to identify the
missing driving forces of the ordering process in order to revisit
the original GPM description and to generalize its predictions.
To this aim, one has to calculate the local density of states
(LDOS) n(E) to the required accuracy. We use a continued
fraction expansion, the coefficients of which are directly
related to the moments of n(E) and calculated using the
recursion method.25 The simplest extension that treats on equal
footing both diagonal and off-diagonal disorder effects is to use
a LDOS based on a fourth moment approximation (FMA), as
in the case of covalent materials.26 This is the procedure used
here with the twofold goal to revisit the GPM and to provide
a well-founded basis for a generation of empirical potentials
for alloys based on the FMA. We have calculated the EPIs
V for c = 0.25, 0.5, and 0.75, from the respective values of
the formation energies of the L10 (EL10 = −4V ) and L12

(EL12 = −3V ) ordered phases, and for both dilute limits from
the solution energies (Esol = −12V ). A typical LDOS and the
corresponding EPIs as a function of the average d-band filling
Ne are shown in Fig. 2 for c = 0.5 and different values of δd and
δnd . The used average bandwidth Wavg[=(WA

d + WB
d )/2] falls

within the extremal values Wavg, min and Wavg, max displayed in
Fig. 1. The first case (δnd = 0) allows to recover the results
of GPM, in particular, the preference for ordered phases to
appear around a half-filled d band. A comparison with the
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FIG. 2. (Color online) Effects of diagonal (δd ) and off-diagonal
(δnd ) disorder on the total d-band LDOS, n(E), (left-hand side) for
the L10 (solid line) and demixed (dashed line) phases, and on the
band-filling (Ne) dependence of the alloying effective pair interaction
V (right-hand side), with Wavg = 8 eV.

EPI calculated with a larger set of exact moments22 shows that
truncating the continued fraction expansion to the second level
(fourth moment) is sufficient, which confirms the validity of
the FMA. The second case (δd = 0) shows that the influence
of off-diagonal disorder alone is to favor phase separation
for any d-band filling. The behavior of the EPI in these two
limit cases can be easily understood from simple qualitative
arguments based on the respective band edges in the ordered
and phase-separated systems.4 Finally, one sees that coupling
both effects significantly modifies the previous curves by
desymmetrizing the d-band filling dependence, in opposite
ways depending on the sign of δnd , which displaces the range
of existence of ordering phases.

From these EPIs one can derive three-dimensional (3D)
maps which, for a given concentration c, show the tendency
of a system to order or phase separate as a function of δd , δnd

(within the physical ranges in Fig. 1) and Ne. Sections of these
3D maps for different concentrations and selected values of
δd are displayed in Fig. 3. Each section shows the respective
domains for the existence of ordered and separated phases as a
function of Ne (x axis) and δnd (y axis). The tendency to either
order or phase separate is maximal in the middle of a domain
(roughly), and vanishes toward the domain boundaries. As can
be seen, off-diagonal disorder strongly changes the overall
trends derived from calculations taking into account diagonal
disorder only (δnd = 0 in the maps), which were up to now
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FIG. 3. (Color online) Ordering (shaded area) and demixing
(white areas) domains in the parameter space spanned by δnd and
Ne for different values of δd . The five rows correspond to the five
compositions detailed in the text. The dark (red on line) and light
(blue on line) shaded areas represent the results for extremal values
of Wav derived from Fig. 1: Wavg, min = 5.5 eV and Wavg, max = 11.0 eV
(except for δd = 8 eV for which Wavg, max = 9.0 eV).

and to the best of our knowledge, the only commonly admitted
trends. The most interesting effect in this sense is probably the
opening of ordering tendency domains, for reasonable values
of the off-diagonal parameter, in the limits of small or large
d-band fillings for which only phase separation was predicted
before. The overall effect of concentration is to shift the
ordering domains from larger to lower d-band filling from one
dilute limit to the other. As a consequence, a given system can
reverse its ordering tendency as a function of concentration,
in particular, for the largest values of δd . However, let us keep
in mind that the solution energy is very sensitive to atomic
relaxations around the impurity which could change the map
in the dilute case in presence of strong size mismatch (e.g., in
the CuAg case27).

Locating a given system in the appropriate map of Fig. 3
requires the corresponding value of δd , δnd , and Ne. Note,
however, that the actual value of δd should be the one
determined after a self-consistent treatment of charge transfer
induced by alloying. This is performed by self-consistent
TB calculations based on the local charge neutrality rule
per site, orbital and chemical species, recently derived from
DFT calculations.28 Results are given in Table I for systems

involving one element of the first transition series and one
element of the second or third one. For two noble metals the
non-self-consistent values were maintained as they already
yield self-consistency approximately. Note that, for the sake
of generality, magnetism was not included in our calculations.
However, our maps can still be used for a magnetic system by
inserting an appropriate d-band filling being two times that of
the minority band, which actually drives the cohesion in this
case.

There remains to check to what extent the mixing behavior
of systems such as CoPt, NiPt, or CuAu which could not
be explained by considering only diagonal disorder fall to
their place in the new domains. Using values of Table I,
one sees that it is indeed the case for both CoPt and NiPt,
respectively, which now fall into ordering regions of Fig. 3 as
they should. The present maps also allow us to find the right
places for alloys made of two noble metals, which slipped
through the previous description. In particular, they reveal
opposite behaviors depending on whether the noble metal
of the first transition series Cu is alloyed with that of either
the second (Ag) or third (Au) series. Indeed, the off-diagonal
parameter increases from the former to the latter, which makes
the system evolve from the phase separation domain (favored
for the almost filled d band at δnd = 0) for CuAg to the ordering
one opened by the off-diagonal disorder effect for CuAu, in
perfect agreement with experiment.

Once elucidated, the fundamental question of the tendency
of an alloy to order or not, a subsidiary question would be
(in the former case) that of the nature of the ordered phase,
which requires calculating EPIs beyond first neighbors to
discriminate between competing structures. This has already
been done by ab initio methods for a few cases8,10 and more
generally by TB-GPM, only taking into account the diagonal
disorder effect.3,22 Establishing such maps is not the purpose of
the present Rapid Communication, but they can be determined
using the same methodology as for first-neighbor EPIs, taking
into account both diagonal and off-diagonal disorder.

In summary, we have presented an accurate way to
describe and predict the main thermodynamic characteristic
of alloys, namely, their mixing behavior, from the single
knowledge of the electronic structure of their pure constituents,
using the fourth moment approximation (FMA) within a TB
approach. This allowed us to classify the transition element
compounds as a function of their d-band filling and the
difference between not only the d levels of the components
but also their d bandwidths from generalized (δd,δnd,Ne)
structural maps. Such a methodology is both complementary
to existing ab initio calculations and necessary since it allows
to identify the main electronic structure driving forces for
ordering and to set the general framework in which all
systems can be classified. In this framework, the present
maps can also be used to predict the ordering behavior
of more complex systems, through the evolution of these
driving forces. Thus, the influence of dimensionality could
be accounted for through the effect of bond breaking on
both the d-bandwidth and d-level displacements,29 in order to
determine how the ordering behavior of an alloy evolve at the
surface or in a cluster. Ordering trends in nanoalloys could
then be estimated from our maps by just shifting accordingly
the corresponding (δd,δnd ) points.
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TABLE I. Self-consistent values of δd (eV) at equiconcentration for alloys involving one element of the first transition series and one
element of the second or third one. According to our notation, δd = εA

d − εB
d and δnd = WA − WB . Here δd,0 is the non-self-consistent value

derived from Fig. 1.

A Co Ni Pd Co Ni Cu Co Ni Pt Co Ni Cu
B Pd Pd Cu Ag Ag Ag Pt Pt Cu Au Au Au

Ne 8.5 9.0 9.4 8.95 9.45 9.85 8.35 8.85 9.25 8.85 9.35 9.75
δd,0 3.2 2.6 ∼0.0 6.6 6.0 3.4 2.2 1.5 1.0 4.7 4.1 1.6
δnd −1.2 −1.7 −2.9 1.1 0.6 −0.6 −2.9 −3.4 4.6 −0.9 −1.4 −2.6
δd 1.0 0.4 2.7 5.3 4.4 – 1.0 0.2 3.5 3.3 2.5 –

Finally, the present approach provides the minimal level
of accuracy or sophistication required in alloy modeling to
capture the essential physics, or equivalently the essential
ingredients which have to be included in a simplified method
to make it reliable. Thus dealing with alloy problems requires
to treat on equal footing both diagonal and off-diagonal
effects. This implies to go beyond second moment approx-
imation (SMA), which can be done within FMA by adding
a repulsive term to the band term treated here. Indeed,
FMA is computationally not much slower than the SMA
models but much faster than DFT and standard TB methods,

since it yields a computation time scaling linearly with
the systems size. Our maps then provide a well-founded
basis for future extensive use of such interatomic FMA
potentials in problems coupling atomic displacements and
chemical rearrangements in complex alloys (nanoalloys, for
instance).
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