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Coincidence between energy gaps and Kohn anomalies in conventional superconductors
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Recently, neutron scattering spin-echo measurements have provided high-resolution data on the temperature
dependence of the linewidth �(q,T ) of acoustic phonons in conventional superconductors Pb and Nb [see
P. Aynajian et al., Science 319, 1509 (2008)]. At low temperatures, the merging of the 2�(T ) structure in the
linewidth with a peak associated with a low-lying h̄ωqKA

Kohn anomaly suggested a coincidence between 2�(0)
and h̄ωqKA

in Pb and Nb. Here we carry out a standard BCS calculation of the phonon linewidth to examine its
temperature evolution and explore how close 2�(0)/h̄ωqKA

must be to unity in order to be consistent with the
neutron data.
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I. INTRODUCTION

Using resonant spin-echo neutron scattering techniques,
Aynajian et al.1 have recently measured the linewidth of
transverse acoustic phonons in high-purity single crystals of
Pb and Nb. At low temperatures, which are, however, above
the superconducting transition temperature Tc, a plot of the
phonon linewidth �(q,T ) as a function of the phonon wave
vector q exhibits peaks that arise from Kohn anomalies.2 When
the temperature decreases below Tc and the superconducting
gap opens, one sees an expected decrease in the linewidth
�(q,T ) for phonons having energy h̄ωq less than twice the
superconducting gap �(T ). As h̄ωq approaches 2�(T ), there
is a rapid increase in �(q,T ) associated with the peak in the
quasiparticle density of states at the gap edge and the fact that
the BCS coherence factor for a phonon to break a Cooper pair
and decay into two quasiparticles approaches 1 at threshold.3

However, as Aynajian et al. note, what is surprising is that as
T goes to zero, the feature in �(q,T ) that is associated with
h̄ωq = 2�(T ) appears to merge with a Kohn anomaly peak.
This behavior is seen in both Pb and Nb, posing the following
question: Why should the energy of a transverse acoustic
phonon associated with a normal state Kohn anomaly coincide
with twice the limit of the low-temperature superconducting
gap 2�(0)?

Motivated by this experimental result, we have carried out
a standard BCS calculation of the temperature dependence of
the transverse acoustic linewidth and examined what happens
if 2�(0) is near the energy associated with a normal state
Kohn anomaly in �(q,T ). In particular, we are interested in
the evolution of �(q,T ) as the temperature is lowered and
2�(T ) approaches the energy of the Kohn anomaly h̄ωqKA

.
How close to h̄ωqKA

does the low-temperature limit of 2�(T )
need to be for it to appear that the 2�(0) structure in �(q,T )
merges with the Kohn anomaly structure as T goes to zero?

II. FORMALISM

We begin by first examining the matrix elements for
the electron coupling to the transverse acoustic modes.

In clean materials, the coupling of the electrons to the
low-frequency transverse phonons occurs through umklapp
scattering processes.4 As one knows, this is because the
polarization ε̂λ(q) of a transverse phonon is orthogonal to q.
In Figs. 1(a) and 1(b), we show Fermi surface sections for Pb
and Nb, respectively, obtained from density functional theory
(DFT) calculations (ABINIT).5 In both cases the calculated
Fermi surfaces agree well with measurements.6,7 In the top
figure for Pb, an umklapp scattering process is shown in
which an electron is scattered from k to k′ = k + Kn + q,
with q the wave vector of the transverse phonon and Kn a
reciprocal-lattice vector. In this case, the phonon wave vector
qKA that is shown connects two parts of the Fermi surface
that have parallel tangents, leading to a Kohn anomaly in the
scattering rate and the phonon linewidth. A similar process for
Nb is illustrated in the lower part of Fig. 1.

In the following calculations, we use an electron-phonon
vertex gλ(k,k′):

gλ(k,k′) = −i

√
h̄

2MN ωλ(k − k′)
ε̂λ(k − k′)

×
∑

Km,Kn

(k + Km − k′ − Kn)a†
Km

(k)aKn
(k′)

×〈k + Km|U |k′ + Kn〉 (1)

for a transverse acoustic mode λ that has a frequency h̄ωλ(q)
and a polarization vector ε̂λ(q). Here M is the ion mass,
U is the lattice pseudopotential, and N is the number of
lattice sites. As discussed, for transverse phonons one needs an
umklapp process to couple the electrons to the direction of the
ionic vibration given by ε̂λ=T . The momentum dependence of
the coupling then varies as gT (k,k′) ∝ (K + q) · ε̂T ∼ K · ε̂T

times a function that is slowly varying for values of k and k′
that contribute to the Kohn anomaly and which we take as a
constant. Then, as we will see, the linewidth of the transverse
phonons will exhibit a peak as q approaches the Kohn anomaly
wave vector qKA.
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FIG. 1. (Color online) The Fermi surfaces of (a) Pb and (b) Nb.
The short black arrows indicate the qKA wave vectors (r.l.u.) qKA =
0.295 in Pb and qKA = 0.196 in Nb. The long arrow indicates the
reciprocal-lattice vector Kn associated with the umklapp scattering
process. The locations of the Bragg planes are indicated by thin
dashed lines.

Before proceeding further, we note that the small q
limit is not properly captured by this approximation. On
physical grounds one expects g(k,k′) → 0 as q → 0, as
this limit corresponds to a rigid uniform displacement of
the lattice and therefore does not couple to the electrons
in the periodic potential. As discussed, without umklapp
scattering (Kn − Km = 0) this limit is satisfied since g(k,k′)
for the transverse modes is identically zero due to momentum
conservation. However, once the umklapp scattering processes
are included, the coupling constant has a q → 0 dependence
given by g(k,k′) ∼ K · ε̂T (q)/

√
ω(q) times the matrix element

appearing in Eq. (1). In this case, a self-consistent determi-
nation of the matrix element cancels the 1/q dependence
arising from the phonon dispersion such that the proper
limit is obtained. However, since our focus is on the phonon
lifetime for q ∼ qKA, we proceed with the constant coupling
approximation and restrict ourselves to momentum transfers
where this approximation is expected to be valid.

To capture the essence of the Kohn-umklapp scattering, we
first consider the expression for the transverse acoustic phonon
linewidth �(q,T ) in the normal state for the case in which the
Fermi surface spanned by qKA is approximated by a cylinder
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FIG. 2. The normal state T = 0 phonon linewidth of the trans-
verse acoustic branch with cT /vF = 0.01 evaluated for free electrons
with (a) a cylindrical Fermi surface and (b) a concave Fermi surface.
In both cases, �(q) has been normalized to its value at qKA/2.

of radius kF [Fig. 2(a)]. In this case, �(q,T ) is given by

�(q,T ) = π |gK|2
N

∑
k

[f (εk) − f (εk+q)]

× δ(ωq − εk+q + εk) (2)

with f the Fermi factor and εk the electronic band dispersion.
From here on we choose h̄ = 1. For simplicity, we have set
gλ=T (k,k′) = gK, the phonon mode energy ωq = cT |q|, with
cT the transverse speed of sound, and we assumed a simple
two-dimensional (2D) free-electron dispersion εk = k2/2m −
μ. Taking the T = 0 limit and making the change of variables
x = k/kF , Eq. (2) reduces to

�(q,T = 0) = mkF |gK|2
4πq

∫ 1

0
x dx

∫ 2π

0
dφ[δ(α−(q)

− x cos(φ)) − δ(α+(q) − x cos(φ))], (3)

where α±(q) = cT

vF
± q

2kF
and kF and vF are the Fermi

momentum and velocity, respectively. After a little algebra,
we then obtain

�(q,T = 0) = NF|gk|2 2kF

q
[
√

1 − α2−(q)�(1 − α2
−(q))

−
√

1 − α2+(q)�(1 − α2
+(q))], (4)

where NF is the single-particle density of states per spin at the
Fermi level and �(x) is the usual step function.

�(q,T = 0) is plotted in Fig. 2(a) for cT /vF = 0.01.
While the overall magnitude of the linewidth is determined
by the ratio of cT /vF , the momentum dependence comes
from simple phase-space considerations. One can see that
the phonon linewidth grows rapidly for momentum transfers
approaching 2kF in this example and quickly falls to zero for
larger momentum transfers as no phase space is available for
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scattering. This strong enhancement of the phonon linewidth in
the normal state at q corresponding to the Kohn anomaly will
also be present in the superconducting state, with an additional
kinematic constraint imposed by the breaking of Cooper
pairs.

The kinematic constraint of phonon decay in the super-
conducting state brings the energy scale 2� directly into
play. This is shown in Fig. 3, which sketches quasiparticle
scattering across the gap edge 2�. Due to the dispersion of
the phonon, vertical scattering processes having no net wave
vector transfers are kinematically forbidden. In order to bridge
the gap, the energy of the phonon must be at least 2�. In
other words, a finite wave-vector transfer must occur where
q = 2�/cT . In addition, the dominant Kohn-umklapp process
k′ − k = Kn + qKA involves a momentum transfer of qKA,
which in this sketch is 2kF . Thus we have two conditions
that lead to the conclusion that when ω(q) of the transverse
acoustic phonon branch equals twice the superconducting gap,
or in other words when q = qKA = 2�/cT , an enhancement
of the phonon decay will occur.

We next consider the transverse acoustic phonon decay rate
in the superconducting state for this cylindrical model using
conventional BSC theory.4 As is well known, the phonon
self-energy can be obtained by evaluating the electron-hole
bubble.8–11 In the superconducting state, the phonon self-
energy �(q,iωm) is then given by

�(q,iωm) = 1

Nβ
Tr

∑
n,k

|gK|2τ̂3Ĝ(k,iωn)

× Ĝ(k + q,iωn + iωm)τ̂3, (5)

where ωn = (2n + 1)π/β and ωm = 2mπ/β are fermion and
boson Matsubara frequencies, Tr denotes the trace, and Ĝ is
the electron propagator,

Ĝ(k,iωn) = iωnτ̂0 + εkτ̂3 + �kτ̂1

(iωn)2 − E2
k

. (6)

Here τ̂i are the usual Pauli matrices and Ek =
√

ε2
k + �2

k is the
quasiparticle energy. After analytic continuation, the phonon
self-energy is given by

�(q,ωq) = 1

2N

∑
k

|gK|2
{
A+(k,q)[f(Ek) − f(Ek+q)]

[
1

h̄ωq − Ek + Ek+q + iδ
− 1

h̄ωq + Ek − Ek+q + iδ

]

+A−(k,q)[f(−Ek) − f(Ek+q)]

[
1

h̄ωq + Ek + Ek+q + iδ
− 1

h̄ωq − Ek − Ek+q + iδ

]}
(7)

with the coherence factors defined as

A±(k,q) = 1 ± εkεk+q − �k�k+q

EkEk+q
. (8)

The q-dependent phonon linewidth �(q,T ) is then determined
from the imaginary part of �(q,ωq).

The first two terms in Eq. (7) describe quasiparticle
scattering processes. For these processes, the BCS coherence
factor A+ vanishes at the threshold where ω = 2�0 and
εk = εk+q. This, along with the depletion of the thermal
quasiparticle populations as the gap opens, suppresses their
contribution to the phonon linewidth. The fourth term in Eq. (7)

εf

-kf kf

2Δ

qKA

qKAcT > 2Δ

qKAcT < 2Δ

FIG. 3. (Color online) A schematic of the kinematic constraint
for the decay of an acoustic phonon in the superconducting state.

corresponds to a process in which a phonon breaks a pair,
creating two quasiparticles with wave vectors k + q and −k.
This requires that the phonon energy ωq be greater than or
equal to 2�(T ). In this case, the BCS coherence factor A−
goes to 1 at threshold where E(k + q) = E(k) = �(T ) and
there is a sudden increase in the linewidth.

Before turning to the results for the linewidth in Pb, we
first consider two simplified cases at T = 0, shown in Fig. 4.
Here we have set the phonon energy ωq = cT q and plotted
�(q,T = 0) versus q/qKA. The � = 0 curve is identical to
Fig. 2. As the superconducting gap opens, �(q,T = 0) is
suppressed for cT q < 2�(0) due to the loss of phase space
for electron-phonon scattering. This produces an onset (or
“knee”) in �(q,T = 0) at an energy corresponding to the gap
edge. Note that in this case one expects a knee rather than a
peak because qξ ∼ vF /cT 	 1.9 (The knee is also somewhat
smeared here due to the finite broadening δ = cT /40 used.)

The height of the onset is controlled by the momentum q

for breaking a Cooper pair into two quasiparticles carrying
momenta k and k − q, respectively.7,8 As � is made larger,
the onset at cT q = 2� associated with pair-breaking in the
superconducting state moves out toward the Kohn anomaly
at qKA. For a cylindrical Fermi surface, the Kohn anomaly
occurs at qKA = 2kF , and when 2�(0) = cT qKA, the pair-
breaking onset coincides with the Kohn anomaly peak. If
2�(0) exceeds cT qKA, the Kohn anomaly peak is suppressed
by kinematics as the energy to break a pair is greater than
cT qKA.
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FIG. 4. (Color online) The transverse acoustic phonon linewidth
in the superconducting state at T = 0 for various values of the
superconducting gap 2� = AcT qKA. Each curve has been normalized
by the corresponding normal state value at qKA/2, T = 0. (a) �(q) for
a perfectly cylindrical Fermi surface. (b) �(q) for a cylindrical Fermi
surface with a concave warping along the kz direction (see text).

For a cylindrical Fermi surface with 2�(0) > cT qKA, �(q)
is suppressed due to phase-space considerations previously
discussed for the normal state. However, if the Fermi surface
has some degree of curvature along the kz direction, such
a sharp cutoff will not occur. To illustrate this, in Fig. 4(b)
we plot �(q,T = 0) for a Fermi surface that has a concave
warping along the z direction [see Fig. 2(b)]. The electronic
band dispersion has again been modeled by a free electron
dispersion but with mx = my = m and mz = −5m.12 For such
a dispersion, qKA corresponds to the spanning condition across
the narrowest portion of the Fermi surface (kz = 0). As can
be seen in Fig. 4(b), the concave curvature of the Fermi
surface provides phase space for scattering with momentum
transfers q > qKA, and the sharp cutoff in �(q,T = 0) is
no longer present. With the opening of the superconducting
gap, �(q,T = 0) is suppressed for cT q < 2�(0), just as in
the previous case. For 2�(0) = cT qKA, a remnant of the
umklapp-Kohn peak remains. As the gap is increased further
[2�(0) > cT qKA], the phase space associated with the Kohn
peak is gapped out and the peak in �(q,T = 0) is thus
suppressed.

III. RESULTS FOR LEAD

With the simple examples of the previous sections, we
are now ready to turn to the phonon linewidth in Pb. To
obtain the electron dispersion, the DFT band structure for
Pb was calculated on a regular grid of 100 × 100 × 100
momentum points per quadrant of the first Brillouin zone, and
a linear interpolant was used to obtain energies at intermediate
momenta. For the phonon dispersion, we again assume a linear
phonon dispersion ω(q) = cT |q|, with cT = 7.9 meV/(r.l.u.).
The transition temperature Tc = 7.2 K sets the temperature
scale and we use an intrinsic broadening δ = 0.01 meV
throughout. Finally, we note that an explicit evaluation of the
matrix element for umklapp scattering gk,k′ given by Eq. (1)
adds a computationally intensive layer to the problem due to
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FIG. 5. (Color online) The linewidth of a transverse acoustic
phonon in Pb as a function of reduced temperature t = T/Tc for
various values of 2�(T = 0) as indicated. Each curve has been
normalized to the value of the linewidth in the normal state (T = Tc)
at q = qKA/2.

the dense momentum grid involved. However, as previously
discussed, the momentum dependence of g(k,k′) is expected to
be weak. Therefore, for simplicity, we approximate the matrix
element with a constant gK and restrict the momentum sum
to the region near the orange (light) Fermi surfaces shown in
Fig. 1(a) while neglecting the contribution from the blue (dark)
Fermi surfaces. These cylinder-like orange (light) sections
have a large nesting connected by the umklapp wave vector K
and therefore are expected to give the main contribution to the
Kohn anomaly due to the large phase space for this scattering
process.

The results are shown in Fig. 5 as a function of tem-
perature for gap sizes ranging from 2�(T = 0) = 0.8cT qKA

to 1.1cT qKA. The qualitative behavior of �(q,T ) is similar
to that found for the simplified models considered in the
previous section. Above Tc, the phonon linewidth is finite for
all values of q = (q,q,0) and has a peak at q = qKA = 0.285
(r.l.u.), which is associated with the Kohn anomaly indicated
in Fig. 1. As the temperature is lowered across Tc, the gap
opens following an assumed BCS temperature dependence.
For cT q < 2�(T ), �(q,T ) is suppressed and the expected
2� onset (knee) forms. [Here, �(q) has a finite value for
cT q < 2�(T ), which is exponentially suppressed as T is
lowered. This is due to the nonzero contributions of the first
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TABLE I. The relevant parameters for the elemental supercon-
ductors Pb and Nb. The values for Pb have been estimated from
Ref. 1. The gap for Nb was obtained from Ref. 14. The transverse
speed of sound in Nb was obtained from Ref. 13.

2�(0) (meV) cT (meV/r.l.u.) qKA (r.l.u.) 2�(0)/cT qKA

Pb 2.70 7.93 0.36 0.95
Nb 3.06 21.3 0.18 0.80

two terms in Eq. (7) and corresponds to the thermal occupation
of quasiparticle states across the gap edge.] As T is lowered
further, 2�(T ) grows and the knee in �(q,T ) moves toward
the Kohn peak. If 2�(0) is smaller than cT qKA, this knee
stops short of the peak at the lowest temperatures [Fig. 5(a)],
while for 2�(0) = cT qKA it merges with the peak [Fig. 5(b)].
Finally, if 2�(0) > cT qKA [Fig. 5(c)], then for sufficiently low
temperatures the Kohn peak is suppressed similar to the results
shown in Fig. 4(b).

Thus within a BCS framework, �(q,T ) depends on the
shape of the Fermi surface and qKA, the velocity of sound
for the transverse acoustic branch, and the magnitude of
the superconducting gap. The appropriate parameters for Nb
and Pb are summarized in Table I. For Pb we estimate
2�(0) = 0.95cT qKA, which corresponds closest to Fig. 5(b),
while for Nb we estimate 2�(0) = 0.8cT qKA, corresponding
to Fig. 5(a).

Comparing our results to Figs. 3 and 4 of Ref. 1, we
find that agreement with the experimental data for Pb is
good while agreement for the case of Nb is less clear. For
Pb we find 2�(0) ∼ 0.95cT qKA and we therefore expect a
knee to form in �(q,T ) that tracks out to the Kohn peak
as the temperature is lowered. This behavior is similar to
what is observed experimentally (Fig. 3 of Ref. 1). In the
case of Nb, 2�(0) ∼ 0.80cT qKA, and we therefore expect the
knee to approach the Kohn peak but stop short at the lowest
temperatures, leaving a pronounced knee in the observed
linewidth. Examining Fig. 4(b) of Ref. 1, it is difficult to
determine if such a knee is present in the data. Finally, we
note that our calculations predict that the Kohn peak should be
suppressed when 2�(0) > cT qKA. Therefore, one clear way
to test the conclusions of this work would be to examine the
linewidth of the transverse acoustic branch in a material where
cT qKA < 2�(0).

IV. CONCLUSIONS

We have seen that the momentum and temperature depen-
dence of the transverse acoustic phonon linewidth �(q,T ) in
the superconducting state depends on ωqKA

and 2�(T ). While
both of these energies depend upon the band structure and
phonon dispersion, there is nothing that should lock them
together in the traditional theory, particular since the e-ph
coupling to this mode in Pb is small.4 Thus while it is known
that the Kohn anomaly wave vector qKA shown in Fig. 1 gives
rise to a small kink in α2F (ω) associated with the energy ωqKA

at which the transverse phonon begins to contribute to the
pairing interaction, this is a small feature and plays no role
in determining the magnitude of �(0).4 Therefore, within the
BCS framework, the fact that 2�(0) is close to the energy
of a Kohn anomaly ωqKA

must be viewed as a coincidence.
Furthermore, as noted, the fact that the wavelength of the
phonon is small compared to the coherence length leads to
a kneelike feature at 2�(0) rather than a peak. Therefore, if
ωqKA

> 2�(0), the Kohn anomaly remains as the dominant
feature at low temperatures. However, as shown in Figs. 4(b)
and 5(a), if 2�(0) is slightly less than the Kohn anomaly
phonon energy ωqKA

, the 2�(T ) structure can appear to merge
with the Kohn anomaly peak in �(q,T ) as T goes to zero.
Thus we would conclude that it is an interesting coincidence
that 2�(0) is only slightly smaller than the energies of the
Kohn anomalies in both Pb and Nb, but it does not mean that
the superconducting gap is determined by the Kohn anomaly
itself and does not force 2�(0) = ωqKA

.
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