
PHYSICAL REVIEW B 84, 174514 (2011)

Towards the observation of phase-locked Bloch oscillations in arrays of small Josephson junctions
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We have designed an experiment and performed extensive simulations and preliminary measurements to
identify a set of realistic circuit parameters that should allow the observation of constant-current steps at I = 2ef

in short arrays of small Josephson junctions under external ac drive of frequency f . Observation of these steps
demonstrating phase lock of the Bloch oscillations with the external drive requires a high-impedance environment
for the array, which is provided by on-chip resistors close to the junctions. We show that the width and shape of
the steps crucially depend on the shape of the drive and the electron temperature in the resistors.
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I. INTRODUCTION

Shortly after the discovery of the Josephson effect, it had
been understood that superconducting circuits including small
Josephson junctions can demonstrate quantum behavior of
the Josephson phase ϕ.1,2 During the past decade, this topic
has been extensively investigated for quantum information
applications (see, for example, Refs. 3 and 4). One of the
remarkable manifestations of quantum behavior is a band
energy spectrum of an isolated single Josephson junction.5,6

This effect results from the periodic dependence of the
Josephson potential energy EJ cos ϕ and finite kinetic energy
Q̂2/2C associated with the charge variable Q̂ = −i(2e) ∂

∂ϕ

and junction capacitance C, and having the scale Ec =
e2/2C. The motion of a fictitious particle in this periodic
potential is similar to that of an electron in a crystal lattice,
with the charge and capacitance in the Josephson case
playing the role of the momentum and mass of the particle,
respectively.

Applying a constant current Ī (similar to a constant electric
field for the crystal lattice analogy) should produce Bloch
oscillations of voltage across the junction with frequency
fB = Ī /2e. Each period of oscillations then corresponds to
the transfer of one Cooper pair with net charge 2e through
the junction. This phenomenon is dual to the ac Josephson
effect in larger junctions with classical behavior, which is
associated with the motion of single-flux quanta �0 in the
direction transverse to the supercurrent flow. Thus, similar to
the phase locking of Josephson oscillations leading to Shapiro
steps of constant voltage on the IV curve of large junctions,7

applying an alternating signal of frequency f to a small (Bloch)
junction should lead to the appearance of constant-current
plateaus I = 2emf , with m = 0, ± 1, ± 2, . . . .5,6

The major prerequisite for the experimental demonstra-
tion of Bloch oscillations in small Josephson junctions is
achieving a sufficiently high impedance of the electromag-
netic environment seen by the junction at characteristic
frequencies |Ze(ω)| � RQ, where RQ = h/4e2 ≈ 6.45 k� is
the resistance quantum.8 Unfortunately, the first attempts
to experimentally demonstrate this effect by engineering a
high-Ohmic environment using on-chip resistive leads9 only
showed peculiarities in the derivative of the IV curves when
the ac signal was applied. Although these peculiarities were
positioned at 2ef , the observation of clear current steps was
not possible. The main reason for this was believed to be the

substantial thermal fluctuations in the resistors. Our results
from Sec. VII indeed show that this seems to be the main
obstacle to designing an experiment that clearly demonstrates
this effect.

More recently, Nguyen et al.10 have succeeded in the
demonstration of Bloch oscillations by injecting a displace-
ment current Id into the island of a Bloch transistor11,12 through
a capacitive gate. In this experiment, the linear ramp of voltage
Vg , applied to the gate capacitance Cg and yielding sufficiently
high impedance Ze(ω) = 1/iωCg , ensured that the constant
current Id = Cg

dVg

dt
fed into the island. The readout of the

Bloch oscillations in this circuit was possible at discrete points
in time by applying a switching current technique.

Finding ways toward a clear observation of Bloch os-
cillations driven by a real dc source is the problem that
we address in this paper. Our motivation for developing
this concept is the better understanding of the dynamics
of this macroscopic quantum system and improvement of
the shape of the phase-locking steps with the goal of
their possible application for the fundamental standard of
current operating on coherent tunneling of single Cooper
pairs.

II. BACKGROUND

The physics of Bloch oscillations in small Josephson junc-
tions is most transparent in the representation of quasicharge q,
which plays a role similar to the quasimomentum in solids. The
eigenenergies of the Josephson junction En(q), n = 0,1, . . .,
are periodic functions of q with a period of 2e, whereas the
eigenstates |q,n〉 are the Bloch functions.5,6 At sufficiently low
temperature, the system occupies the ground state n = 0 and
the observable voltage across the junction

V (q) = dE0(q)/dq (1)

is an odd periodic function of q, the shape of which depends on
the ratio of characteristic energies λ = EJ /Ec. In the case of
weak Josephson coupling λ � 1, V (q) has a sawtooth shape
with a maximum amplitude Vc approaching e/C for λ → 0.
In the strong Josephson coupling case λ � 1, this function is
approximated by the expression V (q) = Vc sin(πq/e) with a
smaller amplitude Vc ≈ 211/4π1/2λ3/4 exp[−(8λ)1/2](e/C) �
e/C.6
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The dynamics of quasicharge had been analyzed earlier
within the framework of a resistively shunted junction (RSJ-)
like model derived for the zero-band (n = 0) approximation
and linear damping in Refs. 5 and 6. The quasicharge q in
this model is equal to the total charge fed into the junction by
a current source, i.e., q = ∫ t

0 I (t ′)dt ′ + q0. For the equivalent
serial circuit including a small Josephson junction, resistor,
and dc and ac voltage sources, the equation of motion for
quasicharge can be written as

Rq̇ + V (q) = V̄ + Vac + Vnoise, (2)

where the overdot means the time derivative and Rq̇ yields the
voltage across the series resistance R. Assuming a sufficiently
slow motion of q strictly in the ground state, i.e., hfB/	min �
1, where 	min is the minimum energy gap between the first
excited state and the ground state [E1(q) − E0(q)], which is
≈EJ for λ � 1, we have omitted in this equation an inertia term
∝ q̈ describing the effect of so-called Bloch inductance LB .13

Thus, the characteristic frequency in this first-order differential
equation describing the overdamped system is determined
solely by the rate of damping, i.e., ωc = πVc/eR. This quantity
can be also interpreted as a characteristic recharging rate for
a nonlinear Bloch capacitance, which has the reverse value
C−1

B = dV (q)/dq = d2E0/dq2.6

A serial bias resistance R � RQ also results in a noise
term Vnoise, causing a finite linewidth of the oscillations
proportional to 1/R.6 Moreover, in the realistic case of rather
large fluctuations,9 the Coulomb blockade corners in the
IV curve at V = ±Vc become rounded, and the shape of
expected Shapiro-type steps, always having a size � 1.2Vc,14 is
deteriorated by the noise even more strongly than the blockade
corners.

It is not easy, however, to fulfill in experiment the
requirements of (i) high linear damping and (ii) a relatively
low noise level, enabling the observation of clear current
steps with flat central parts. First, the state-of-the-art fabri-
cation technology for thin-film resistors allows reproducible
manufacturing of resistive stripes about w = 100 nm in
width and with resistivity ρ up to about 1 k�/�, yielding
a specific resistance r = ρ/w ≈ 10 k�/μm. A sufficiently
high value of resistance R = r� � RQ requires a length � of
several tens of micrometers. With a specific stray capacitance
to ground of about c ≈ 60 aF/μm,15,16 the accumulated capac-
itance quickly becomes much larger than the self-capacitance
of the Josephson junction C, which is typically in the range
0.1–1.0 fF. Therefore, at characteristic frequencies ωc of the
process, the effect of stray capacitance is significant and the
resistive stripe must be considered as an RC transmission
line leading to frequency-dependent damping. The equation
of motion for such a circuit is∫ ∞

0
K(t ′)q̇(t − t ′)dt ′ + V (q) = V̄ + Vac + Vnoise, (3)

where the kernel K(t) is a Fourier transform of the RC line
impedance Z(ω) = (r/jωc)1/2 tanh[(jωcr)1/2�].

Second, the requirement of relatively small noise can be
met if the parameter Vc is sufficiently large, i.e., eVc � kBT ∗,
where T ∗ is the electron temperature of the resistor. Although
for observation of the blockade part of the IV curve the

temperature T ∗ may only slightly exceed the mixing-chamber
(MC) temperature of the dilution refrigerator TMC, it increases
dramatically due to Joule heating when the resistor carries a
sufficiently large current of the order of 1 nA.17 The maximum
size of the first “Shapiro” step given by the dual to the RSJ
model with harmonic drive is about Vc (Ref. 14) and the
absolute maximum ≈1.16Vc is achieved for drive frequency
ω ≈ 2ωc and amplitude Iω ≈ 2GVc.18 The position of such
a step corresponds to Ī = eωc/π = GVc, which for typical
parameters is of the order of 1 nA.

III. SMALL JUNCTION ARRAYS

With the present technology of fabrication, the natural
way of improving visibility of the steps by increasing both
characteristic energies EJ and Ec is difficult because it
simultaneously requires a smaller junction size and larger
critical current. Whereas a decrease in size of our ≈(100 nm)2

junctions to about one quarter of this area would still be
feasible, thereby quadrupling the charging energy, the required
fourfold increase in Josephson energy EJ would necessitate
a 16-times-higher critical current density Jc, which becomes
much harder to manufacture reliably and will result in much
less uniform junctions. On the other hand, using a serial array
of N small Josephson junctions would increase effective Ec

without having to decrease the junction size, thereby enabling
the independent adjustment of EJ and Ec. This is only true as
long as the array can be considered a single lumped element,
so it is necessary to examine under which conditions this is the
case.

In sufficiently long arrays, the charge injected into the
array takes the form of solitons carrying a charge of ±2e, the
dynamics of which is described by a sine-Gordon equation.19

With the junction capacitance C and the stray capacitance
of the metallic islands between the junctions to ground C0,
the size of such a Cooper-pair soliton can be expressed in
the number of islands �s = (C/C0)1/2 over which the charge
2e is mostly distributed.20,21 Formation of solitons inside
the array leads to multiple solutions of the corresponding
sine-Gordon equation19 and, thus, to a multivalued voltage
Va(q) across the array as a function of injected charge q.
Moreover, this voltage saturates at a maximum value of about√

(πeVc/C0).21 An optimum drive of an array with such a
multivalued V (q) dependence, which can ensure controlled
motion of 2e solitons along the array, would probably
require several ac gates with well-determined mutual phase
shifts.

Still, one can use a relatively short array N < �s , which has
a single-valued 2e-periodic dependence Va(q) and, therefore,
can be considered as a lumped element. For zero offset
charges on the inner islands, the maximum value of Va(q)
may approach almost the level N -times higher than that of the
single junction, i.e., NVc.22 Figure 1 shows several numerically
obtained curves for Va(q), taking into account nonzero C0 as
well as one random configuration of offset charges.

IV. PRELIMINARY MEASUREMENTS

We fabricated Al/AlOx/Al junctions with an area of
≈(100 nm)2 defined by electron-beam lithography and angle
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FIG. 1. (Color online) The dependence Va(q) for a uniform
array of N = 8 junctions with λ = 1 in the ideal case of negligible
island capacitance (blue dashed-dotted line), with island capacitance
C0/C = 0.05 calculated for zero offset charges (solid red line) and
random distribution of these charges between −0.5e and 0.5e (dashed
green line). For comparison, the dotted black line shows dependence
V (q) for a single junction. The curves were obtained by numeric
solving of the corresponding sine-Gordon equation (Ref. 19).

evaporation. The junctions are arranged in short arrays of
N < 10 junctions. For these arrays, the capacitance to ground
differs slightly between even- and odd-numbered islands since
one forms the top and one the bottom electrode for the junction,
but it can be estimated at �14 aF per island on average on a
380-μm-thick silicon wafer,23 while the junction capacitances
are around 0.5 fF, yielding �s ≈ 6. The soliton size becomes
even larger for moderately increased values of EJ /Ec when the
effect of nonlinear Bloch capacitance is taken into account.21,24

When the chip is not glued directly onto grounded metal but
instead on a PCB carrier, the stray capacitance is reduced
further and the soliton size increases correspondingly. This
means that we can probably use up to about eight junctions in
series to increase effective Ec of our arrays.

We measured several short arrays and observed scaling of
the blockade voltage with the number of junctions in series, as
well as clear backbending of the IV curve, as shown in Fig. 2.
The backbending indicates the presence of Bloch oscillations
corresponding to the steady motion of a wave packet in the
ground state, while the again increasing voltage of the array
for currents above ≈50 pA shows that the upper Bloch bands
become populated, presumably due to thermal excitation and
Zener tunneling.25,26 Thus, we need to operate below this
current for the zero-band model to be applicable. The relatively
low current at which this inflection point occurs can be ascribed
to the rather small energy gap (< EJ ) between the ground state
and the first excited state in an array with finite capacitance to
ground.27

The resistance of the array slightly above Tc was ≈200 k�.
Using the Ambegaokar-Baratoff relation,28 we calculated the
Josephson energy of an individual junction to be about 35 μeV,
resulting in λ ≈ 0.8 for an individual junction and an effective
λa ≈ 0.1 for the entire array when considered as a single
equivalent junction.
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FIG. 2. Measured IV curves of a four-junction array (top) and
an eight-junction array (bottom). The solid lines show the voltage
across the array including bias resistors; the dashed line in the bottom
panel shows the voltage across the array alone, forming a “Bloch
nose.”

Another important parameter is the electron temperature
Te in the biasing resistors, which provide the high-impedance
environment. Due to their high resistance and small volume,
the dissipated energy per volume is significant even when only
a small current is flowing through them. Due to poor coupling
between the lattice and the electrons at low temperatures, Te

can be many times the temperature of the lattice and the
mixing chamber of the cryostat TMC.29 This will produce
increased Johnson-Nyquist noise, which is applied directly
to the junction array.

We probed Te in the biasing resistors using a
superconductor-insulator-normal (SIN) metal junction, where
the superconducting electrode was made of aluminium and the
normal electrode was the resistor itself. This has the advantage
of probing the normal metal directly, and the result is only
weakly dependent on the temperatures in the superconductor.30

We calibrated this SIN thermometer against the temperature
of the MC at zero current through the resistor. Comparing the
calibration IV curves with those obtained when the MC was
kept at base temperature, but current was passed through the
resistor, we obtain the Te(I ) curve shown in Fig. 3. These
data show that to keep resistor temperature below 100 mK,
we need to target currents below ≈50 pA. This will result
in a ratio kBT /eVc ≈ 1/50, which should yield reasonable
noise immunity. For later use in the simulations, we have
fitted the experimental data to the fifth-power dependence for
electron-phonon relaxation,29,31 which gives a reasonable fit
when we limit it to values below ≈200 mK.

V. SIMULATION METHOD

We have used the free-circuit-simulator ngspice32 to model
the circuit and solve Eq. (3) in the time domain. Using a
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FIG. 3. Effective resistor temperature vs heating current. The
inset shows a closeup of the region below 100 pA with the
axis identical to the main plot. The dashed line shows the fitted
function Te = (69 mK5 + 5 × 106 mK5

pA2 I 2)1/5, which is later used for
simulations. The fit uses only data below 300 pA.

standard simulator has the advantage that arbitrary electromag-
netic environments can be easily included in the simulation.
Each junction is modeled as a voltage controlled voltage
source (VCVS) with a periodic dependence on the normalized
charge χ = q π

e
. This dependence can be approximated by the

analytical formula

V (χ )

e/C
= ∂

∂χ

[
2

π
arcsin2

(√
1 − cos χ

0.3(EJ /Ec)2 + 2

)]
, (4)

applicable in the limit 0.01 < EJ /Ec < 1.33 Since the sim-
ulator does not readily allow access to the charge as a
variable, we implemented a subcircuit, which integrates
current through the junction into the auxiliary voltage Vχ ,
which is then used as input voltage for the VCVS as shown in
Fig. 4.

Our model obviously excludes quasiparticle tunneling
effects as well as any effects due to the upper energy bands in
the junction, and thus will not show the “Bloch nose” exactly
as seen in experiment, but it is still applicable as long as the
zero-band approximation holds. The high-Ohmic bias resistor

is modeled as a discretized RC line, where every resistor
segment includes a noise source to model thermal noise as
shown in Fig. 4.

Each individual noise source is modeled in the time domain
as random voltage with standard normal distribution scaled
by

√
4kBT R/τsim, where τsim is the simulation time step,

resulting in a white power spectrum up to the simulation
bandwidth. For the temperature of the biasing resistors, the
data from Sec. IV are used, and while dissipation is considered
per segment, it is assumed that the resistors have a uniform
temperature. Simulator bandwidth and the number of RC

line segments were determined individually for different
simulations so that a further increase would not result in a
significant change in simulator output. In practice, this would
usually be the case with around 10–20 GHz and 20 segments,
respectively. Thus, we fully account for the frequency depen-
dence of the noise seen by the array for the frequencies of
interest.

Correctness of the time-domain noise simulation was
checked by comparing the simulator results with the canonical
theory for Josephson junctions for the cases of true white
noise34 and low-frequency noise.35 For this, we used a
simplified circuit, which only had a single junction with
almost sinusoidal V (q) dependence, Vc = 761 μV, biased
through 2-M� resistance at T = 100 mK and zero parasitic
capacitances to ground. The results are shown in Fig. 5.
Since the time-domain simulation is inherently bandwidth
limited, white noise can only be approximated by assum-
ing a noise bandwidth significantly higher than the system
bandwidth. The white noise curves match the result from
theory perfectly once we take into account the fact that
the noise intensity γ = kBT /EJ , as defined in Ref. 14 for
the noise spectral density S(f ) = 2kBT /R, −∞ < f < ∞,
should be modified to γBloch = πkBT /eVc in our case, where
the factor of π results from the use of the normalized
charge χ . The low-frequency results do not require mod-
ification since the authors in Ref. 35 use Inoise/Ic as the
measure of noise intensity, which we can directly transfer
to Vnoise/Vc in our case. The low-frequency curves differ
slightly in shape, indicating that with a noise bandwidth of
100 MHz, we are not perfectly in the low-frequency limit
for our parameters yet, but the agreement is still reasonable
overall.

+
− VDC
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50ΩVAC

CRF array Rbias

Rbias

complete circuit:
R R

C

S(ω) S(ω)R S(ω)R S(ω)

CC

Rbias model:

JJ

C0

JJ

C0

JJ

C0

JJ
array model:

V=Vcsaw(Vχ)

= + C I=IJJVχ+
−

IJJ

junction model:

FIG. 4. Circuit used for simulations, including models for the noisy resistors and junction array. The dc bias is applied directly, while rf is
applied through the coupling capacitor Crf.
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FIG. 5. Comparison of the rounding of the blockade corner by
thermal fluctuations as predicted by our simulator and canonical
theory for Josephson junctions in the case of white noise and
low-frequency noise.

VI. REQUIREMENTS FOR CONSTANT-CURRENT STEPS

Dual to large junctions, where the maximum constant-
voltage step for sinusoidal drive and constant damping is
achieved around the characteristic frequency fc = IcRn/�0,
our arrays of Bloch junctions would exhibit the largest step
around fc = Vc/(2eR), where Vc is the maximum blockade
voltage and R is the series resistance, as long as the parasitic
capacitances are negligible up to this frequency. Below fc,
the step size decreases similarly to the behavior of large
junctions in the Josephson regime.14 This presents a problem
since we want Vc to be as large as possible, while currents
are limited to ≈50 pA, resulting in a theoretical requirement
for 10-M� resistors. However, with our current technology, it
is not possible to provide such a high (real) impedance up to
high frequencies due to the stray capacitance of the resistor.
The useful length of the resistor is, of course, frequency
dependent and can be roughly estimated as the length where the
capacitive component becomes comparable to the resistive. For
the technology values given in Sec. IV, resistors longer than
tens of μm and a few hundred k� give diminishing returns
in lowering fc and mainly serve as isolation from the warm
environment.36

It seems unlikely that this problem can be easily solved
within the confines of current manufacturing technology. One
would either need to increase the allowed dc current to ≈2efc,
or effectively lower fc further, or a combination of both. The
former would require an order of magnitude increase in EJ and
in the efficiency of thermalization of the resistors, while the
latter would require resistors with a much higher resistance per
unit length and a corresponding improvement in thermalization
due to the increased power dissipated per volume. This
problem arises largely due to the intrinsic coupling of the
characteristic frequency of the junction (or array) and the
driving frequency and, consequently, the resulting dc current.
However, in the world of Josephson voltage standards, there
exists a well-known method to decouple those two parameters,
and that is the use of a pulse drive. In the Josephson case, this
allows large steps to be achieved at pulse repetition frequencies

far below fc.37,38 The requirement for these pulses is that their
rise-fall times as well as the pulse duration are about 1/fc

and that they have sufficient amplitude (of the order of the
critical current or ≈Vc for our case). As such, they can be
viewed as the extreme version of a sinusoidal signal at fc,
which is switched on for only a single half-period. In the
analogy with the tilted washboard potential, this corresponds
to a sudden increase in the slope of the potential, allowing the
particle to move to the adjacent well, and then quickly tilting
the washboard back to stop the particle from moving further.
Simulation results in Sec. VII will show that this may indeed
be the method of choice to see constant-current steps with
current manufacturing technology.

VII. RESULTS

The different factors outlined in the previous sections
conspire to make the direct observation of robust phase locking
unlikely unless all factors are carefully considered in the
design. In fact, we were not able to identify any set of
realistic parameters where a simple sinusoidal drive leads to
the observation of flat constant-current steps. The problem is
that one either has to run the drive at or around fc, which yields
a step with a width on the order of Vc when zero temperature
is assumed, but heats up the resistors so much that the step
completely disappears once a realistic temperature is taken
into account, as seen in Fig. 6. With our current technology,
the characteristic frequency fc can not be lowered further
than about 1 GHz, while retaining a reasonably large Vc,
since the useful length of the resistors is limited by their
capacitance to ground. However, just the dc current at this
frequency I = 1 GHz·2e ≈ 320 pA would heat the resistors
to >200 mK, and including ac dissipation, this then becomes
about 350 mK. Alternatively, one would need to run the drive
significantly below fc to reduce heating, in which case the
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FIG. 6. Simulated IV curves at zero temperature (solid lines) and
considering heating from the dc current (dashed lines), both with and
without sinusoidal ac drive of 1.25 GHz applied. A large step of the
order of Vc exists at zero temperature, but only a slight change in slope
remains once realistic heating is assumed, although the blockade
remains large, even in the presence of noise. The small fractional
steps appear due to both the nonharmonic shape of V (q) [Eq. (4)]
and frequency-dependent damping [Eq. (3)].
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FIG. 7. Comparison of simulated IV curves for 100 MHz sinu-
soidal drive (top panel) and pulsed drive (bottom panel). Solid lines
are noiseless, dashed lines include thermal noise from the resistors.
The fundamental step with sinusoidal drive at this frequency is so
small that it completely disappears in the noise, while a flat step with
a size of the order of Vc remains with pulsed drive with 5% duty
cycle.

steps are much narrower even at zero temperature, just as
predicted by the standard RSJ model in the Josephson case.
They become so small that, even though heating is significantly
reduced, they again completely disappear in the noise once the
temperature is taken into account, as seen in the top panel
of Fig. 7.

A possible solution to this is to employ a pulsed drive with
a low duty cycle. This effectively decouples the choice of the
dc current at which to operate, from the choice of fc, enabling
us to fulfill the requirement for both low heating and a wide
fundamental step. This is illustrated in the bottom panel of
Fig. 7, where a pulse drive with 100 MHz repetition rate and
a 5% duty cycle was used. In this case, the simulation yields
a reasonably flat step even including heating. The ac power
dissipated in the resistors in this case is in fact almost negligible
due to the low duty cycle of the driving signal and barely
influences the shape of the step. The pulses were simulated
with rise-fall times of the simulation time step, and the duty
cycle was chosen so that further decrease did not improve the
step width. The precise shape of the pulses matters relatively
little, as long as they are sharp and short enough, i.e., of the
order of 1/fc. This is exactly dual to the case of the pulse-
driven Josephson voltage standard as described in Refs. 37
and 38, with the one exception of the frequency-dependent
damping. This is automatically modeled in our simulations,
and the effect can be seen in the bottom panel of Fig. 7: The
step width shown here for the noiseless case is the largest we
were able to achieve for our circuit parameters, and it is only
about Vc, whereas the ideal pulse drive applied to the standard
RSJ model as discussed in Refs. 37 and 38 would result in
about 2Vc.

VIII. CONCLUSION

Taking into account the effect of stray capacitance and
power dissipation in the bias resistors as well as the specific
shape of the V (q) dependence of the array, we have identified
a set of circuit parameters and shape of ac drive that should
allow the observation of constant-current plateaus in the IV
curves of an array of small Josephson junctions when an ac
signal is applied in addition to the dc bias, demonstrating the
phase lock of Bloch oscillations and ac signal. Experiments to
test this prediction are in preparation. While careful design is
required, the needed parameters are entirely within reach of
our fabrication technology.

Potential problems are the effects neglected in the model,
in particular, quasiparticle tunneling and background charges.
The proximity of the resistors to the array should help in
reducing the number of nonequilibrium quasiparticles.36 If this
is not sufficient, band-gap engineering within the array could
be used (see, e.g., Refs. 39 and 40). While this is typically
employed to keep the single island of a single-Cooper-pair
transistor free from quasiparticles by increasing its gap
compared to the leads, the periodically modulated band-gap
profile in an array should at least restrict the movement of
quasiparticles in the array, and possibly prevent their tunneling
altogether, but this needs to be experimentally determined.

In our experiments to date, the movement of background
charges was quite infrequent and is, thus, easily tolerable
for this application as long as the V (q) dependence remains
single valued with still reasonable blockade amplitude (see
Fig. 1). Delivering a properly shaped drive signal into a
high-impedance environment at mK temperatures is, while
challenging, routinely done for qubit setups.

Finally, the results of this work can also be applied
to the problem of Shapiro-type steps in the IV curves of
superconducting nanowires embedded in a high-impedance
environment. As has been predicted by Mooij and Nazarov,41

the effect of quantum phase slips in these circuits may result in
coherent motion of Cooper pairs through the wire, which could
then be phase locked to an external drive, yielding current
steps at I = 2ef . The behavior of such a nanowire is similar
to that of a short array of small Josephson junctions.42 This
was recently demonstrated in an experiment with a Josephson
junction array in a ring configuration.43 Thus, an experiment
aiming to demonstrate such a phase lock in nanowires
will face the same challenges, and the design will need to
account for the issues of frequency-dependent damping and
overheating of the biasing resistors, which we addressed in this
paper.
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