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Relaxation and glassy dynamics in disordered type-II superconductors
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We study the nonequilibrium relaxation kinetics of interacting magnetic flux lines in disordered type II
superconductors at low temperatures and low magnetic fields by means of a three-dimensional elastic-line model
and Monte Carlo simulations. Investigating the vortex density and height autocorrelation functions as well as the
flux-line mean-square displacement, we observe the emergence of glassy dynamics, caused by the competing
effects of vortex pinning due to point defects and long-range repulsive interactions between the flux lines. Our
systematic numerical study allows us to carefully disentangle the associated different relaxation mechanisms and
to assess their relative impact on the kinetics of dilute vortex matter at low temperatures.
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I. INTRODUCTION

In this paper, we report an investigation of the nonequi-
librium relaxation kinetics in the vortex glass phase of
layered disordered type II superconductors. Since Struik’s
original investigations,1 many glassy systems have been found
to exhibit physical aging phenomena, which have attracted
considerable interest during the past decades.2 Recently, it
has been realized that glass-like relaxation and aging can in
fact be found in many other systems.3–5 Glassy materials
feature extremely long relaxation times, which facilitates
the investigation of aging phenomena in real as well as
in numerical experiments. Our definition of physical aging
here entails two fundamental properties: First, we require
relaxation toward equilibrium to be very slow, typically
characterized by a power law decay, observable in a large
accessible time window, tmic � t � teq; here tmic denotes an
appropriate short microscopic time scale, whereas teq is the
much larger equilibration time for the macroscopic system
under consideration. Second, a nonequilibrium initial state is
prepared such that the kinetics is rendered nonstationary; thus,
time-translation invariance is broken, and two-time response
and correlation functions depend on both times s and t > s

independently, not just on the elapsed time difference t − s.
In this context, s is often referred to as waiting time and t as
observation time. In addition, in the limit t � s many aging
systems are characterized by the emergence of dynamical
scaling behavior.3

The physics of interacting vortex lines in disordered
type II superconductors is remarkably complex and has
been a major research focus in condensed matter physics
in the past two decades. It has been established that the
temperature vs magnetic-field phase diagram displays a
variety of distinct phases.6 A thorough understanding of the
equilibrium and transport properties of vortex matter is clearly
required to render these materials amenable to optimization
with respect to dissipative losses, especially in (desirable)
high-field applications. Investigations of vortex phases and
dynamics have in turn enriched condensed matter theory,
specifically the mathematical modeling and description of
quantum fluids, glassy states, topological defects, continu-
ous phase transitions, and dynamic critical phenomena. An
appealing feature of disordered magnetic flux-line systems
is their straightforward experimental realization, which al-
lows direct comparison of theoretical predictions with actual

measurements. The existence of glassy phases in vortex matter
is well established theoretically and experimentally.6,7 The
low-temperature Abrikosov lattice in pure flux-line systems is
already destroyed by weak point-like disorder (such as oxygen
vacancies in the cuprates). The first-order vortex lattice melting
transition of the pure system8 is then replaced by a continuous
transition into a disorder-dominated vortex glass phase.9–11

Here, the vortices are collectively pinned, displaying neither
translational nor orientational long-range order.12 In addition,
there is now mounting evidence for a topologically ordered
dislocation-free Bragg glass phase at low magnetic fields
or for weak disorder;7,11,13–15 and an intriguing intermediate
multidomain glass state has been proposed.16

Unambiguous signatures of aging in disordered vortex
matter have also been identified experimentally: For example,
Du et al. recently demonstrated that the voltage response
of a 2H-NbSe2 sample to a current pulse depended on the
pulse duration17 (see also Ref. 18). Out-of-equilibrium features
of vortex glass systems relaxing toward their equilibrium
state were studied some time ago by Nicodemi and Jensen
through Monte Carlo simulations of a two-dimensional coarse-
grained model system;19 however, this model applies to very
thin films only, since it naturally disregards the prominent
three-dimensional flux-line fluctuations. More recently, three-
dimensional Langevin dynamics simulations of vortex matter
were employed by Olson et al.20 and by Bustingorry, Cuglian-
dolo, and Domı́nguez21,22 (see also Refs. 23 and 24) in order
to investigate nonequilibrium relaxation kinetics, with quite
intriguing results and indications of aging behavior in quanti-
ties such as the two-time density-density correlation function,
the linear susceptibility, and the mean-square displacement.
Romá and Domı́nguez extended these studies to Monte Carlo
simulations of the three-dimensional gauge glass model at the
critical temperature.25

We remark that it is generally crucial for the analysis of
out-of-equilibrium systems to carefully investigate alternative
microscopic realizations of their dynamics in order to probe
their actual physical properties rather than artifacts inherent
in any mathematical modeling. Indeed, different mathematical
and numerical representations of nonequilibrium systems rely
on various underlying a priori assumptions that can only
be validated a posteriori. It is therefore imperative to test
a variety of different numerical methods and compare the
ensuing results in order to identify those properties that are
generic to the physical system under investigation. In this
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MICHEL PLEIMLING AND UWE C. TÄUBER PHYSICAL REVIEW B 84, 174509 (2011)

paper we employ Metropolis Monte Carlo simulations for a
three-dimensional interacting elastic-line model to investigate
the relaxation behavior in the physical aging regime for
systems with uncorrelated attractive point defects.

We strive to employ parameter values that describe high-Tc

superconducting materials such as YBCO and limit our inves-
tigations to low magnetic fields and temperatures (typically
10 K) in order for our disordered elastic-line model to
adequately represent a type II superconductor with realistic
material characteristics. Thus we address a parameter and time
regime wherein the slow dynamics is dominated by the gradual
buildup of correlations induced by an intricate interplay of
repulsive vortex interactions and attractive point pinning sites.

Our work differs in crucial aspects from other recent
studies (e.g., Refs. 21 and 22). As in Refs. 19 and 20,
we consider the physically relevant situation in type II
superconductors where all defects serve as genuinely attractive
and localized pinning sites for vortices, in the sense that
they locally reduce the chemical potential (or, equivalently,
suppress the superconducting transition temperature). Our
pinning potential landscape is therefore characterized by large
flat regions in space, where the vortices feel no pinning
force, interspersed with small attractive potential minima of
extension b0, much smaller than the London penetration depth
λab that sets the vortex-vortex interaction range. This is to be
contrasted with the model used in Refs. 21 and 22, which
is, rather, motivated by studies of interfaces in random envi-
ronments that are described by Gaussian distributions for the
disorder strength.6,26 Consequently, these models inevitably
incorporate both attractive and repulsive disorder, which can be
viewed as mimicking a sample with a very high density of point
defects. Alternatively, such a coarse-grained representation
of pinning centers forming a continuous disorder landscape
certainly becomes appropriate at elevated temperatures near
Tc, since then the pinning range is set by the coherence length
ξab, which diverges as the critical point is approached. Thus, a
random medium description is best suited for investigations
of critical phenomena and, also, more easily amenable to
field-theory representations. At low temperatures, however,
where ξab � b0, our modeling of the localized pinning centers
appears more realistic, and we, furthermore, remark that in this
scenario repulsive defects would introduce different physics in
the nonequilibrium relaxation and aging kinetics of vortices in
superconductors, such as flux bunching in regions devoid of
such disorder. We therefore carefully exclude any repulsive
pinning sites. In addition, the temperatures used in Refs. 21
and 22 appear to be considerably higher than those studied
in our present work. Further differences can be found in the
length of the vortex lines (in Refs. 21 and 22 rather short lines
were considered), in the boundary conditions, and in the initial
preparation of the system.

We characterize the aging properties of the interacting and
pinned flux lines through several two-time quantities, namely,
the vortex density-density autocorrelation function, the flux-
line height-height autocorrelation function, and the transverse
vortex mean-square displacement. Investigating the influence
of weak point defects, we find that the nonequilibrium
relaxation properties of magnetic flux lines in disordered type
II superconductors are governed by various crossover effects
that reflect the competition between pinning and repulsive

interactions. In the long-time limit and for not too high pinning
strengths, the dynamics is manifestly similar to that observed
in structural glasses.

The structure of this paper is as follows: In Sec. II we
describe our model and the Monte Carlo simulation algorithm
and define the quantities of interest for our study. Our data and
principal results are presented in Sec III. In order to disentangle
the different contributions to the nonequilibrium relaxation
dynamics of our system, we first separately elucidate the
effects of attractive pinning centers and of long-range vortex-
vortex interactions, then endeavor to analyze and understand
their intriguing interplay as reflected in the vortex system’s
relaxation kinetics. Finally, we discuss our findings in Sec. IV
and compare them with other studies.

II. MODEL AND SIMULATION PROCEDURE

A. Effective model Hamiltonian

We consider a three-dimensional vortex system in the
London limit, where the London penetration depth is much
larger than the coherence length. We model the vortex motion
by means of an elastic flux-line free energy described in Ref. 27
(see also, e.g., Refs. 28–32). The system is composed of N

flux lines in a sample of thickness L. The effective model
Hamiltonian HN is defined in terms of the flux-line trajectories
rj (z), with j = 1, . . . ,N , and consists of three components,
namely the elastic line tension, the disorder-induced pinning
potential, and the repulsive vortex-vortex interaction:

HN = ε̃1

2

N∑
j=1

∫ L

0

∣∣∣∣drj (z)

dz

∣∣∣∣
2

dz

N∑
j=1

∫ L

0
VD(rj (z)) dz

+ 1

2

∑
i �=j

∫ L

0
V (|ri(z) − rj (z)|) dz. (1)

Here, the elastic-line stiffness is ε̃1 ≈ �−2ε0 ln(λab/ξab), with
λab and ξab denoting the London penetration depth and
coherence length in the crystallographic ab plane (we assume
the magnetic field along the c axis), and the anisotropy
parameter (effective mass ratio) �−2 = Mab/Mc. The energy
scale is set by ε0 = (φ0/4πλab)2, where φ0 = hc/2e is the
magnetic flux quantum. The expression for the elastic-line
energy in Eq. (1) is valid in the limit |drj (z)/dz|2 � �2.
The purely in-plane repulsive interaction potential (consistent
with the extreme London limit) between flux-line elements is
given by the modified Bessel function of zeroth order, V (r) =
2ε0K0(r/λab), which diverges logarithmically as r → 0 and
decreases exponentially for r � λab. These vortex interactions
are truncated at half the system size, which is, in turn, chosen
sufficiently large that numerical artifacts due to this cutoff
length are minimized. We model point pinning centers through
square potential wells with radius b0 and strength U0 at ND

defect positions. (For additional details, see Refs. 32 and 33.)

B. Numerical parameter values

Our simulation parameter values33 were chosen corre-
sponding to typical material parameters for YBCO as listed
in Appendix D in Ref. 27. In the following, lengths and
energies are reported relative to the effective defect radius
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b0 and interaction energy scale ε0 (using cgs units), and time
in Monte Carlo steps (MCS), where 1 MCS corresponds to NL

proposed updates of the flux-line elements, with N the number
of flux lines and L the number of layers. We set the pinning
center radius b0 = 35 Å, anisotropy parameter �−1 = 1/5,
and, as is appropriate at low temperatures, λab = 34b0 ≈
1200 Å, and ξab = 0.3b0 ≈ 10.5 Å. Then ε0 ≈ 1.9 × 10−6

(in cgs units of energy/length), and the energy scale in the
line tension term becomes ε̃1 ≈ 0.18 ε0. We systematically
vary the pinning strength U0 between 0 and 0.2ε0. Usually,
our simulations are performed at temperature T = 10 K,
which corresponds to kBT /ε0b0 ≈ 0.002. Thermal excitation
energies are thus low compared to the elastic and pinning
energies, and at equilibrium we therefore expect the system
to be deep in the glassy regime. We do not allow for flux-line
cutting and reconnection processes in our simulations of a
low-temperature and dilute vortex system.

C. System preparation and simulation protocol

We apply the standard Metropolis Monte Carlo simulation
algorithm in three dimensions with a discretized version of
effective Hamiltonian (1).32 The system contains N = 16 flux
lines in L layers, with a distance b0 between consecutive
layers, and an equal number ND/L = 1116 of point pinning
centers, which are, however, randomly distributed within the
layer, with a mean separation of ∼9b0; in comparison, the
triangular vortex lattice spacing would be 78.5b0 in our dilute
system. We apply periodic boundary conditions in all three
space directions, as we are mainly interested in bulk properties.
This is to be contrasted with Refs. 21 and 22, where free
boundary conditions were used along the caxis. We have
systematically changed L between 10 and 2560 in order to
carefully monitor finite-size effects. The in-plane system size
is [Lx,Ly] = [ 2√

3
× 8λab,8λab]; the dimensions of the xy plane

were chosen such that, in the absence of disorder, the system
accommodates a regular triangular flux lattice. In the absence
of defects, we have tested that initially randomly placed
vortices properly equilibrate to form a triangular Abrikosov
flux lattice. We have also checked that there are no appreciable
effects due to the sharp cutoff of the vortex interactions at
4λab = Ly/2.

In order to investigate aging phenomena in the system with
uncorrelated point disorder, the vortices are prepared in an
out-of-equilibrium state: Straight flux lines are initially (at
t = 0) placed at random locations in the system. The vortex
lines are subsequently allowed to relax at the temperature T =
10 K for a duration s, the “waiting” time, before we start
measuring two-time quantities for t > s (see Fig. 1). (This is
again different from Refs. 21 and 22, where the vortex lines
were equilibrated at high temperatures inside the vortex liquid
phase before the subsequent quench to lower temperatures.)
Our waiting times extend up to s = 51 200 MCS, whereas the
total length of a simulation run is typically t = 10s.

D. Measured quantities

Aging phenomena can generally be adequately charac-
terized through the study of two-time quantities. In our
work we put special emphasis on a range of observables

0 s t

vortices
randomly placed measure C(t,s)

T=10 K T=10 K 

FIG. 1. Sketch of the measurement protocol. At t = 0, straight
vortex lines are initialized far out of equilibrium by placing them
randomly in the system at T = 10 K in the presence of weak point
defects. The vortex lines are then allowed to relax for different
waiting times s before various two-time quantities, such as the height
autocorrelation function C(t,s), are measured.

that allow us to rather comprehensively monitor the distinct
relaxation processes in vortex matter that originate from
pinning to attractive point defects and repulsive interaction
forces, respectively, and their intricate competitive interplay.

The height-height autocorrelation function and mean-
square displacement represent two quantities that are rou-
tinely studied in the context of interface fluctuations and
nonequilibrium growth processes.21–24,34–36 Separating the
time-dependent position of the flux line j in the zth layer
into its x and y components, rj (z,t) = (xj (z,t),yj (z,t)), the
two-time height-height autocorrelation function can be written
as

C(t,s) = 1

LN

L∑
z=1

N∑
j=1

〈xj (z,t)xj (z,s)〉 − 〈x(t)〉〈x(s)〉

+ 1

LN

L∑
z=1

N∑
j=1

〈yj (z,t)yj (z,s)〉 − 〈y(t)〉〈y(s)〉, (2)

where x(t) = 1
LN

∑L
z=1

∑N
j=1 xj (z,t), and similarly for y(t).

The brackets 〈· · ·〉 here denote both an average over the
noise history, i.e., over the sequential realizations of random
number sequences, and a configurational average over defect
distributions and initial positions of the straight vortex lines at
the outset of the simulation runs. The two-time mean-square
displacement in the xy planes, transverse to the external
magnetic field, can similarly be cast in the form

B(t,s) = 1

LN

L∑
z=1

N∑
j=1

[〈(xj (z,t) − xj (z,s))2〉

+ 〈(yj (z,t) − yj (z,s))2〉]. (3)

We remark that other related quantities that contain essentially
the same information are the two-time roughness function and
the two-time structure factor.23,35

Unfortunately, both the height autocorrelation and the
mean-square displacement are probably not easily accessible
in experiments on type II superconductors, except perhaps
through low-angle neutron scattering. Much better suited for
an experimental study is likely the (connected) two-time vortex
density-density autocorrelation function, which can formally
be written as

Cv(t,s) = 〈ρ(r,t)ρ(r,s)〉 − ρ2, (4)
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(a) t = s (b) t > s (c) t >> s

FIG. 2. Sketch (two-dimensional cross section) of vortex-line
elements (small filled circles) and associated circles with radius αb0

(large open circles) at different observation times.33 (a) At t = s,
each vortex-line element by construction resides inside its own circle
and gives a count

∑
i ni(t = s) = NS (=10 here). (b) At later times

t > s, the repulsive vortex interactions cause the flux-line elements
to move away from their initial positions. This results in a smaller
occupation number

∑
i ni(t > s) < NS (= 5 in this example). (c) At

long times t � s, it is possible that all vortex-line elements have left
the circle, ni(t � s) = 0, which results in a complete decorrelation.
For instance, the quantity

∑
i ni(s)ni(t) in the pictures at these three

times is evaluated to be 10 at t = s, 5 at t > s, and 0 for t � s.

where ρ(r,t) represents the local flux density per unit area
at position r, with constant uniform average 〈ρ(r,t)〉 = ρ.
Following an initially random placement, the repulsive vortex
interactions cause positional rearrangements, such that one
would expect a temporal decay of the density autocorrelation
function. In our simulations, we realize the vortex density
autocorrelation function in the following way:33 As before,
we start with randomly placed straight vortex lines at t = 0
and let the system subsequently relax up to waiting time s. A
density count for the vortex-line elements is then generated by
setting a circular area, with a radius equal to αb0, at the location
of each vortex-line element i ≡ (j,z) at t = s. Typical values
for α range from 0.05 to 0.20. As time t elapses, we count the
number of vortex-line elements still in their circles, generating
a time sequence of occupation numbers ni(t), with ni = 0 or 1,
and ni(t = s) = 1 by construction. Due to the repulsive vortex
interactions, flux-line elements tend to move away from their
initial positions, whence ni(t > s) can be 0 at a later time
if the vortex-line element leaves the prescribed circle. In the
presence of pinning centers, vortex-line elements will become
trapped inside the defects over a long time, causing ni (t > s) to
preferentially remain 1. This quantity is then averaged over the
NS = LN different vortex segments and many distinct defect
distributions and initial configurations, yielding

Cv(t,s) =
〈

1

NS

NS∑
i=1

ni(s)ni(t)

〉
. (5)

Figure 2 illustrates the algorithm for calculating the density
autocorrelation function.33 We have checked the results for
different values of α and found that, within a reasonable range,
the precise choice of α does not affect the results in the long-
time aging regime where t � s.

III. RELAXATION PROCESSES

In order to fully understand the nonequilibrium relaxation
processes and aging phenomena in disordered type II super-
conductors at low temperatures, we found it imperative to
carefully disentangle the dynamical contributions originating

from the repulsive interactions between the vortex lines and
from their pinning to attractive point defects. We start our
discussion with free flux lines, mainly in order to validate our
code by comparing our data with the theoretically expected
behavior and earlier work. We then separately consider the
effects of attractive point pins and of the long-range repulsive
vortex interactions, before we at last venture to study the
interplay of these two competing mechanisms to induce or
relax correlations in the system.

A. Free elastic line

The relaxation kinetics of a single free elastic vortex line
constitutes a valuable benchmark to check our program, as this
case can be easily understood by recalling that, in the presence
of thermal noise, a fluctuating interface that tries to minimize
its line tension should be described in the continuum limit by
the linear Edwards-Wilkinson equation.37 As the fluctuations
in the transverse x and y directions are independent random
variables for our free line, we expect the results for the free
vortex to be described by the one-dimensional version of that
well-known stochastic equation (below, h stands for either x

or y):

∂h(z,t)

∂t
= ν ∂2

z h(z,t) + η(z,t), (6)

where η(z,t) represents a Gaussian white noise with zero mean
and covariance 〈η(z,t)η(z′,t ′)〉 = 2T

ν
δ(t − t ′)δ(z − z′), ν is the

line stiffness (equal to ε̃1 here), and T is the temperature of
the heat bath. The Edwards-Wilkinson equation, as well as a
range of microscopic models belonging to the same dynamic
universality class, has been studied extensively. Starting
from a straight line, one first observes a short-time regime
with uncorrelated fluctuations, which is rapidly replaced by
a correlated intermediate-time interval characterized by a
nontrivial power law increase of the line roughness. After
a crossover time that algebraically depends on the system
size, this correlated regime finally reaches the steady-state
or saturation regime.

Two-time quantities have also been studied in the context of
the Edwards-Wilkinson equation,23,34,36 facilitated by the fact
that a full analytical analysis is possible for the linear stochastic
equation, (6). For example, in the correlated regime of the
one-dimensional Edwards-Wilkinson equation, the following
exact expression for the height-height autocorrelation function
has been derived:34

C(t,s) = C0s
1/2

[(
t

s
+ 1

)1/2

−
(

t

s
− 1

)1/2
]

, (7)

where C0 is a known constant. The detailed crossover proper-
ties of two-time quantities in the region between the correlated
and the saturated regimes have been carefully investigated in
Ref. 23.

In Fig. 3, we display our Monte Carlo simulation results
for our elastic vortex-line model when both the vortex
interaction and the defect pinning are switched off, i.e., only
the first contribution in (1) is retained. One immediately
notices a striking difference between the behavior of a “thin
film” composed of only a few layers [such as L = 10; see
Figs. 3(a)–3(c)] and “bulk” systems consisting of many layers
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FIG. 3. (Color online) Various two-time quantities for the free
elastic vortex line obtained in systems with (a–c) L = 10 and
(d–f) L = 2560 planes and averaged over typically 200 independent
Monte Carlo simulation runs: (a, d) mean-square displacement;
(b, e) height-height autocorrelation function; (c, f) vortex density-
density autocorrelation function (measured with α = 0.05). Data
obtained for different waiting times are shown. For L = 10 layers
the system rapidly reaches the steady state, and time-translation
invariance is recovered; i.e., the two-time quantities depend only
on the time difference t − s. For L = 2560, aging and dynamic
scaling prevail throughout the simulation time window. The solid
line in (e) indicates the exact expression (7) derived from the
Edwards-Wilkinson equation. Dashed lines in (d) and (f) indicate
the predicted asymptotic power laws with exponents 1/2 and −1/2,
respectively. Here and in the following figures error bars are much
smaller than symbol sizes.

[L = 2560; see Figs. 3(d)–3(f)]. In the former case, the system
rapidly evolves into the steady-state regime, yielding two-time
quantities that depend only on the elapsed time difference
t − s. As a result, the transverse displacements in the x and
y directions perform simple random walks, as revealed by the
linear increase in the mean-square displacement with time
[see Fig. 3(a)]. For the larger bulk system, the correlated
regime persists throughout the duration of our simulations,
and both waiting and observation times reside well within that
extended intermediate regime. This gives rise to aging and
dynamical scaling: Time-translation invariance is broken, and
all the two-time quantities display full-aging scaling.3 For each
two-time observable we find the following scaling behavior
[given here for the height autocorrelation function C(t,s)]:

C(t,s) = s−bfC(t/s), (8)

where b represents an aging scaling exponent and fC(y)
denotes an associated scaling function that follows a power
law decay for large arguments. For the height-height auto-
correlation we have b = −1/2.34 In Fig. 3(e) we explicitly
compare our numerically determined scaling function with
expression (7), resulting from the direct solution of the
Edwards-Wilkinson equation (solid line), and obtain perfect
agreement.

Summarizing, we see that the free vortex-line fluctuations
are indeed aptly described by the one-dimensional Edwards-
Wilkinson equation, (6). We also observe a strong dependence
on the system’s extension L in the magnetic field direction,
i.e., the vortex length: On the time scale of our simulations,
the stationary regime is almost immediately reached when
the system consists of only a few layers; in contrast, for
larger bulk systems, aging and dynamical scaling are easily
observed. This points to quite distinct relaxation behavior
in thin superconducting films and thicker bulk samples. We
decided to avoid the additional complications stemming from
the crossover between the correlated and the steady-state
regimes in our present study and, rather, to focus on system
sizes sufficiently large that no finite-size effects (no crossover
to the steady state) are observed on the accessed time scales.
Properties of smaller systems and possible experimental
consequences for thin superconducting films will be discussed
in a separate publication.

B. Pinning without interactions

Intuitively, one anticipates pinning centers to strongly
influence the thermal fluctuations of our elastic flux lines.
Indeed, attractive forces emanating from the pinning centers
will tend to localize vortex segments and, thus, ultimately
suppress thermal fluctuations. Depending on the pinning
strength, flux line elements will end up spending an appreciable
amount of time close to a pinning center. Therefore, compared
to freely fluctuating lines, a marked increase in correlations as
function of time must be expected.

Before we proceed to analyze the influence of pinning cen-
ters in more detail, we need to stress that we exclusively con-
sider attractive point defects, in accordance with the physics
of disordered type II superconductors in the low-temperature
regime. A recent study24 addressed the relaxation and aging
properties of elastic lines subjected to a random potential,
corresponding to both attractive and repulsive pinning centers.
Whereas a Gaussian disorder strength distribution certainly is
a good model for disordered ferromagnets, its relevance for
relaxation processes in disordered type II superconductors at
low temperatures is less obvious.

Let us start by looking at the mean-square displacement
B(t,0), with s = 0, which gives a measure of the (squared)
distance traveled by the flux-line elements since the initial
preparation of the system. In Fig. 4 we compare the behavior of
a free elastic line with that of flux lines subject to pinning cen-
ters of various strengths p = U0/ε0. The presence of attractive
pins clearly gives rise to different regimes. The flux lines are
rapidly attracted by the point defects, which yields an increase
in the slope in the log-log plots of B(t,0) vs time t . This
continues until some pinning-strength-dependent crossover
time at which the slope decreases even below the value of
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FIG. 4. (Color online) Mean-square displacement B(t,0) vs time
t (in MCS) for different values of pinning strength p, for systems of
size L = 640. In the initial time regime, the pinning centers attract
the vortex segments as revealed by an increase in the slope of B(t,0)
compared to a pure system. At later times the localization of the
flux-line elements induced by the pinning yields a strong decrease
in this slope. Data shown result from averaging over typically 100
independent runs. Dashed lines indicate times t = 100, 400, 1600,
and 6400 MCS (see Fig. 5).

the free line, signifying the confinement of localized vortex
segments to the vicinity of the pins. As one would expect,
this crossover time decreases for increasing pinning strengths.
For p � 0.05, B(t,0) remains essentially unchanged, which
indicates that for noninteracting lines there exists a critical
pinning strength above which thermal fluctuations are no
longer sufficiently strong to allow the vortex-line elements
to escape from the defects.

These different regimes also manifest themselves when
two-time quantities are considered, as shown in Fig. 5, where
we have plotted the data according to the free-line scaling
behavior. Of course, it is not to be expected that these scaling
laws remain valid when attractive defects are added to the
system, but this representation of our data facilitates the
following discussion. We first remark [see Figs. 5(a) and
5(d)] that the change in the slope of B(t,0) translates into
deviations of the mean-square displacement B(t,s) from the
free-line scaling that can be readily understood. For example,
for p = 0.01 the time intervals [25,250], [100,1000], and
[400,4000], used to compute B(t,s) for the waiting times
s = 25, 100, and 400, respectively, correspond to the time
regime with increasing local slopes of B(t,0) (cf. Fig. 4).
This yields a shift of ln(s−0.5B(t,s)) to higher values. As the
crossover time of B(t,0) lies inside the interval [1600,16000],
the converse behavior is observed for s = 1600 and even larger
waiting times, with a shift of ln(s−0.5B(t,s)) to lower values.
This effect is more pronounced for higher pinning strengths,
since then the crossover of B(t,0) takes place earlier.

The strongest influence of point defects and largest de-
viations from free elastic lines are observed in the height
autocorrelation function [Figs. 5(b) and 5(e)]. As the flux-line
elements are trapped by the pinning centers, their transverse
in-plane displacements become diminished, which leads to an
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FIG. 5. (Color online) Various two-time quantities for noninter-
acting vortex lines subject to attractive point defects of strengths (a–c)
p = 0.01 and (d–f) p = 0.05: (a, d) mean-square displacement; (b, e)
height-height autocorrelation function; (c, f) vortex density-density
autocorrelation (with α = 0.05). Data shown result from averaging
over typically 100 independent runs in systems of size L = 640. For
direct comparison with Fig. 3, data are plotted according to the scaling
properties of free elastic lines. Whereas an approximate scaling
prevails for small waiting times (especially for the mean-square
displacement and the vortex density-density autocorrelation), strong
deviations emerge for larger waiting times. In (e) the apparent collapse
of the height autocorrelation function for the largest waiting times is
merely caused by the scale used.

increase in the correlations as a function of the waiting time.
In addition, the decay of C(t,s) as a function of t is much
slower for larger values of s. For higher pinning strengths and
long waiting times we even observe nonmonotonic temporal
evolution, as the trapped flux lines experience an increase in
the height correlations.

Finally, the vortex density-density autocorrelation turns out
to be the least sensitive among our two-time observables to the
presence of pinning centers, at least for comparatively small
waiting times [see Figs. 5(c) and 5(f)]. Indeed, for moderate
values of s one still observes the free-line scaling behavior;
this is, of course, a consequence of our prescription for the
computation of this correlation function, namely, setting a
circular area with a fixed radius around every vortex-line
element at time s: As long as only a few line elements are
captured by a point defect, the scaling of Cv(t,s) remains
approximately unchanged. Only when the majority of the
vortex segments become trapped does this localization induce a
strong enhancement of the vortex density-density correlations.
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FIG. 6. (Color online) (a) Mean-square displacement and
(b) height-height autocorrelation function for noninteracting vortex
lines subject to both attractive and repulsive point defects with
strengths drawn from the square distribution [−0.01,0.01]. Data
shown result from averaging over typically 100 independent runs
in systems of size L = 1280. Data display simple aging scaling, with
different exponents for the two quantities.

To conclude this section, we note that the nonequilibrium
relaxation physics is drastically different when both attractive
and repulsive pinning centers are implemented. As studied in
Ref. 24 (see also Refs. 38 and 39), an elastic line in a random
potential is characterized by a time-dependent correlation
length that crosses over from an early-time power law growth
to an asymptotic logarithmic growth. Consequently, two-time
quantities display an apparent simple aging scaling with
effective exponents that depend on temperature and on the
randomness. We have verified that we obtain similar results
as in Ref. 24 when using both attractive and repulsive defects
in our model and Monte Carlo algorithm. Indeed, as shown
in Fig. 6, the time-dependent correlation length gives rise to
simple aging scaling of our two-time quantities, with effective
exponents that display a dependence on temperature and on the
distribution of the pinning strengths. These crossover features
also capture most of the relevant properties of disordered
ferromagnets undergoing phase ordering.40–42 In Refs. 21 and
22, disordered type II superconductors in the low-temperature
phase were modeled by a corresponding model with random
pins that are either attractive or repulsive. However, the
physical realization relevant to materials is that of purely
attractive pins, similar to those studied in our present work.
Yet since the properties of elastic lines strongly depend on
the nature of the pinning centers, any conclusions regarding
the nonequilibrium relaxation properties of disordered type
II superconductors at low temperatures that are inferred from
models with both attractive and repulsive defects should be
viewed with some skepticism.

C. Interacting vortex lines without pinning

In the absence of disorder, our system composed of inter-
acting flux lines evolves toward a regular triangular Abrikosov
lattice. As we start our simulations by deposing initially
straight lines at random positions, large displacements of the
flux-line elements are expected, as the system tries to minimize
the long-range in-plane repulsive vortex interaction energy.
The ensuing dynamic regimes are again nicely captured
by the mean-square displacement B(t,0), which takes on
values that are 2 orders of magnitude larger than in the
absence of interactions [see dashed (red) line in Fig. 7]. While
the flux-line segments experience these large displacements,
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FIG. 7. (Color online) Mean-square displacement B(t,0) vs time t

(in MCS) for interacting vortex lines with different values of pinning
strength p (system size L = 640; data result from averaging over
typically 100 independent runs). Due to the long-range interactions,
the flux lines aim to maximize their separations, thus yielding values
of B(t,0) that are 2 orders of magnitude larger than in the absence
of repulsive forces (cf. Fig. 4). These displacements are impeded
and vortex motion eventually stopped by the caging constraints of
neighboring lines and pinning to attractive point defects. The dashed
(red) line displays our data for a pure system, in the absence of pinning
centers. Dashed vertical lines indicate times t = 100, 400, 1600, and
6400 MCS.

B(t,0) displays an approximate power law increase with time,
with an effective exponent of ≈1.68. Once the majority of
vortices have reached the vicinity of their final equilibrium
positions, the slope of B(t,0) starts to gradually decrease.

Two-time quantities reveal both the initial-time regime and
the crossover at later times (see Fig. 8). The mean-square
displacement B(t,s) yields a reasonably good data collapse
for the smaller waiting times with the scaling exponent −1.68,
which follows from the slope of B(t,0) in that regime. When
the observation time t exceeds the crossover time, this scaling
breaks down. Instead, the growth rate of B(t,s) decreases
strongly with increasing s, even resulting in a crossing of the
curves for different waiting times. The behavior of B(t,s) is
mirrored by that of the vortex density autocorrelation function:
For small waiting times s, scaling is achieved with exponent
1.68, whereas for larger waiting times the decay of the
correlation slows down as s increases. From these results we
infer that the vortex density-density autocorrelation contains
essentially the same physical information as the mean-square
displacement. Interestingly, the height-height autocorrelation
function displays a different scaling for smaller waiting times,
given by the scaling exponent b = −0.5 of the free line
[see Figs. 8(c) and 8(d)]. This means that during the initial
rearrangement of the vortex lines the height fluctuations are
essentially the same as for the free line. Only when the vortices
come close to their equilibrium positions does the character of
the correlations change, reflecting the presence of long-range
repulsive forces.
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FIG. 8. (Color online) Two-time quantities for interacting vor-
tices in the absence of pinning centers: (a, b) mean-square dis-
placement; (c, d) height-height autocorrelation function; (e, f) vortex
density-density autocorrelation (with α = 0.05). Data obtained for
different waiting times s are shown, typically obtained from averaging
over 500 independent simulation runs; the system size is L = 640.
(a, c, e) Unscaled data in a log-log plot and (b, d, f) approximate
scaling observed for not too large waiting times. This scaling regime
corresponds to the intermediate time window where B(t,0) exhibits a
power law increase as a function of time, with an (effective) exponent
of ≈1.68 (see Fig. 7).

D. Interacting vortex lines with pinning

We are now ready to study the combined effects of
repulsive flux-line interactions and point defect pinning during
the nonequilibrium relaxation of vortex matter in disordered
type II superconductors. We again begin by first considering
the mean-square displacement B(t,0) (see Fig. 7). Adding very
weak attractive defects, e.g., with p = 0.01, has only a very
minor effect on the time evolution of B(t,0). Strengthening
the point pins leads to a smaller rate of increase for the
mean-square displacement; see the curve for p = 0.05 in
Fig. 7. At early times the flux lines are still displaced from
their initial positions, as the vortex interactions try to establish
an Abrikosov lattice. However, at intermediate times these
displacements are impeded by the defects that noticeably slow
down vortex motion. As a result, the system tends to a new
(quasi-)equilibrium state that balances these two competing
mechanisms. For even stronger pinning, the moving flux
lines become rapidly trapped by the disorder and the system
gradually freezes into a blocked configuration. In Fig. 7 this is
clearly the case for both p = 0.20 and p = 0.78.

The most interesting scenario naturally emerges for in-
termediate defect strengths. Indeed, when the pins are very
weak, the rearrangement of the flux lines is barely affected,
and all studied two-time quantities quantitatively display the
same behavior as in a pure system. On the other hand,
when the defects are too strong, the flux-line elements
remain firmly attached to the pinning centers, and a frozen
configuration ensues. The nontrivial behavior at intermediate
pinning strengths is studied in more detail in Fig. 9 for the case
p = 0.05.

The data for B(t,s) and Cv(t,s) shown in Figs. 9(a)
and 9(c) are readily understood by comparing them to the
corresponding results for the pure case [see Figs. 8(a) and 8(e)].
The difference between these data sets is the absence of the
early-time regime where B(t,0) has an approximately constant
slope (see Fig. 7). Consequently, the data with p = 0.05 do not
allow any data collapse, not even for the smallest waiting times
considered. However, this is the only noticeable difference, and
the behavior for larger waiting times is qualitatively the same
as for p = 0, except that the decrease in slope of B(t,s) for
larger values of s is stronger when p �= 0.

However, a completely different picture emerges for the
evolution of the normalized height-height autocorrelation
function. As shown in Fig. 9(b), for waiting times s larger
than a certain crossover value, C(t,s) exhibits the typical
two-step relaxation of a structural glass: An initial time-
translation invariant regime, which corresponds to the so-
called β relaxation in glasses and depends only on the elapsed
time difference t − s, is followed by a slow decay that is
usually referred to as α relaxation in the glass literature.43 In
the long-time limit we can fit this slow decay to a stretched
exponential,

f (τ ) = exp

[
−

(
τ

td (s)

)β
]

, (9)

with τ = t − s, and a waiting-time-dependent decorrelation
time td (s). For our different waiting times we obtain a consis-
tent value β ≈ 0.40 for the stretching exponent in Eq. (9). This
emergence of a characteristic two-step glass-like relaxation
is very intriguing. Obviously, the flux lines do not settle
into a stable microstate even after their lateral displacements
have become strongly reduced owing to the capture by the
attractive pinning centers and the caging due to their repelling
neighboring vortices. Instead, as a consequence of the two
competing relaxation mechanisms, collective dynamics and
slow decorrelation set in, which yield the typical two-step
relaxation dynamics of a glass.

We also note the intriguing shape of the normalized height
autocorrelation function in the crossover regime. Indeed,
at intermediate waiting times, C(t,s) displays a strongly
nonmonotonic behavior, with a maximal value that even
exceeds the value C(s,s) at t = s. This remarkable feature
points to a fundamental change in the nature of the emerging
correlations, which is due to the trapping of vortex segments
in the vicinity of the defects and subsequent balancing of the
competition between the attractive pinning and the repulsive
interactions.
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FIG. 9. (Color online) Two-time quantities for interacting vor-
tices in the presence of attractive pinning centers: (a) mean-
square displacement; (b) height-height autocorrelation function; and
(c) vortex density-density autocorrelation (with α = 0.05). The
pinning strength here is p = 0.05, the system size L = 640, and the
data result from averaging over typically 800 independent simulation
runs. The waiting times s for the vortex density autocorrelation
are the same as those for the mean-square displacement. For the
height autocorrelation function, the waiting times range from s = 25
to s = 51 200, the values of s being doubled between consecutive
curves. The (normalized) height-height autocorrelation function,
after a crossover, displays the same qualitative behavior as that
encountered in structural glasses. For large values of t − s, the height
autocorrelation assumes the stretched exponential form (9) with
β = 0.4, as shown by the dashed line overlying the s = 51 200 data.

IV. DISCUSSION AND CONCLUSION

Our three-dimensional Monte Carlo investigation of re-
laxation processes in disordered type II superconductors
has allowed us to gain a thorough understanding of the

nonequilibrium properties of these technologically important
materials. We find the relaxation processes to be dominated
by the interplay of two competing interactions, namely, the
pinning of the flux-line elements to attractive point defects
and the long-range mutual repulsion of the vortices. This
competition generates various crossover scenarios that we
have discussed systematically. The most interesting regime
emerges for pinning centers of intermediate strength, for
which we observe a distinguished two-step relaxation and a
final slow, stretched-exponential decay of the height-height
autocorrelation function. This behavior is reminiscent of
that encountered in structural glasses, clearly demonstrating
that disordered type II superconductors subject to point
defects indeed display pronounced glassy behavior at low
temperatures, again justifying the term “vortex glass” for this
frustrated pinned low-temperature phase.

We remark that our results are at variance with recent
investigations based on three-dimensional London-Langevin
dynamics simulations, where standard aging and dynamical
scaling behavior of two-time quantities was observed,21,22

akin to the relaxation features of elastic lines in a random
medium.24 However, these studies, in addition to using
different sample preparations, system sizes, and boundary
conditions in the z direction, employed a coarse-grained
continuous random medium model of disordered type II super-
conductors that becomes adequate near the normal-conducting
to superconducting transition but does not realistically capture
superconducting materials at low temperatures, for which
isolated defects such as oxygen vacancies always induce a
local suppression of the transition temperature and therefore
constitute attractive localized pinning centers for vortices. As
our study shows, dynamical scaling no longer prevails for
purely attractive point pinning centers, but instead, much richer
glassy relaxation dynamics sets in.

As mentioned in Sec. I, it is essential for investigations
of nonequilibrium systems to study different dynamics and
their algorithmic implementations in order to ensure that any
ensuing results indeed describe actual physical properties of
the system rather than numerical artifacts. We have therefore
recently begun to implement corresponding London-Langevin
dynamics simulations for our elastic-line model, (1), with
exclusively attractive pinning centers.44 Our first tentative
findings are in complete agreement with the Monte Carlo
simulation results reported in this paper: They too show
the emergence of glass-like behavior, with a slow, stretched-
exponential decay at long times. An in-depth analysis of this
dynamics is currently in progress; this comparative study also
aims at matching the different microscopic time scales implicit
in Monte Carlo and Langevin dynamical simulations.

Our current study can readily be expanded in various
directions. Our results are valid in the regime where all
time-dependent length scales remain small compared to the
size of the system. However, many transport and relaxation
experiments are carried out on thin superconducting films
rather than bulk samples. In our model, a finite (small) number
of layers introduces a dominant new length scale that substan-
tially changes the relaxation processes, leading to additional
crossover features. We also note that other types of defects can
be experimentally realized, ranging from parallel and splayed
columnar pins to planar defects and combinations thereof with
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MICHEL PLEIMLING AND UWE C. TÄUBER PHYSICAL REVIEW B 84, 174509 (2011)

point disorder. It is an open and intriguing problem to under-
stand how these different defect configurations influence the
out-of-equilibrium relaxation processes in type II supercon-
ductors. A detailed understanding of the relaxation phenomena
in superconducting materials may facilitate characterization
and optimization of samples with respect to pinning and flux
transport. Finally, in all transport applications the flux lines
are driven across the samples by external currents, which, at
long times, yields a nonequilibrium steady state replacing the
thermal equilibrium state that emerges without drive. Follow-
ing similar lines as in the present study, one should be able
also to analyze the relaxation properties of driven disordered

type II superconductors in a comprehensive manner. We plan
to address these and related problems in the future.
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31V. Petäjä, M. Alava, and H. Rieger, Europhys. Lett. 66,

778 (2004).
32J. Das, T. J. Bullard, and U. C. Täuber, Physica A 318, 48 (2003);
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34A. Röthlein, F. Baumann, and M. Pleimling, Phys. Rev. E 74,
061604 (2006); 76, 019901(E) (2007).

35S. Bustingorry, J. Stat. Mech. (2007) P10002.
36Y.-L. Chou and M. Pleimling, J. Stat. Mech. (2010) P08007.
37S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London A 381,

17 (1982).
38J. D. Noh and H. Park, Phys. Rev. E 80, 040102(R) (2009).
39C. Monthus and T. Garel, J. Stat. Mech. (2009) P12017.
40H. Park and M. Pleimling, Phys. Rev. B 82, 144406 (2010).
41F. Corberi, L. F. Cugliandolo, and H. Yoshino, e-print

arXiv:1010.0149.
42F. Corberi, E. Lippiello, A. Mukherjee, S. Puri, and M. Zannetti,

J. Stat. Mech. (2011) P03016.
43W. Götze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).
44U. Dobramysl, M. Pleimling, and U. C. Täuber, in preparation
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