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Superconductivity in multiband disordered systems: A vector recursion approach
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We present a vector recursion based approach to study the effect of disorder on superconductivity in a system
modeled by the two-band attractive Hubbard model. We use the augmented space formalism for the disorder
averaging. In the presence of only intraband pairing in a two-band disordered system with disorder in either or
both bands, our calculations reveal that the gap survives in the quasiparticle spectrum; similar to single band
systems. However, for interband pairing the gap in the quasiparticle spectrum ceases to exist beyond a critical
value of the disorder strength. In the presence of both interband and intraband pairing interaction, depending
on the relative magnitude of the pairing strength, only a particular kind of pairing is possible for a half filled
two-band system.
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I. INTRODUCTION

The study of superconductivity in multiband systems
has received considerable interest recently because of the
discovery of superconducting materials where the Fermi
surface is dominated by several bands. Examples include
MgB2 where the Fermi surface is determined by the σ

and π bands arising from the B-p orbitals. It is now
confirmed that the superconductivity in this material can be
explained with the Bardeen-Cooper-Schrieffer (BCS) theory
with two different superconducting gaps in agreement with
experiments.1 A description of unusual p-wave superconduc-
tivity in Sr2RuO4 also necessitates a multiband model for
superconductivity.2,3 Very recently the discovery of super-
conductivity in Fe pnictides, whose Fermi surface is built
out of the t2g orbitals of Fe, has again emphasized the
importance of the study of superconductivity in multiband
systems.4,5

The complex problem of superconductivity in multiband
systems was first studied by Suhl et al.6 using a tight-binding
model Hamiltonian with two bands. The model included
intraband pairing and also the interband hopping of pairs
of electrons belonging to the same band. They showed that
pairing could occur in each band and, because electron-phonon
interactions may have different strengths in different bands,
this can give rise to two different superconducting gaps. But
in the special case of only interband scattering, a single gap
was found to be present in the density of states unless the band
dispersion of the two bands had different shapes.7 A similar
model was also investigated by Machida et al.8 for the study
of superconductivity in multiband systems. Recently Moreo
et al.9 revisited the theory of superconductivity in multiband
systems in the context of Fe pnictides. In particular they have
emphasized the importance of interband pairing in multiband

systems in which, in contrast to earlier studies,6,8 Cooper
pairs are formed by electrons belonging to two different
bands. The calculations by Moreo et al.9 revealed that three
different regions can result from a purely interband pairing as
a function of the interaction parameter: (i) a normal regime
where the ground state is not superconducting; (ii) an exotic
superconducting “breached” regime where one of the bands
is gapped at the Fermi level while the other is not, and (iii)
a superconducting regime resembling the BCS states, at large
attractive coupling. The existence of an exotic superconducting
“breached” regime with both gapped and gapless quasiparticle
excitations was also discussed by Liu and Wilczek10 in
the context of cold atoms and quantum chromodynamic
systems.

The preceding discussion suggests that superconductivity
in multiband systems is not only interesting but markedly
different from its single-band counterpart. In this context it
will also be important to understand the role of disorder
in multiband superconducting systems since disorder is an
important factor that has a profound impact on superconduc-
tivity. While the effect of disorder on superconductivity in
single-band systems have been actively investigated, there are
very few systematic studies of the role of disorder in multiband
systems.

The effect of disorder in single-band systems is usually
discussed within the framework of Anderson’s theorem.11 For
s-wave superconductors Anderson’s theorem guarantees the
survival of an absolute gap in the quasiparticle spectrum
of the system provided the perturbation due to disorder
preserves time-reversal invariance and the coherence length
is long enough to ensure that the pairing amplitude �

does not fluctuate. There exists a body of work where the
Bogoliubov–de Gennes (BdG) equations,12 which provide
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a natural framework for a fully microscopic description
of the phenomena of superconductivity, have been solved
in conjunction with the mean-field single-site coherent po-
tential approximation (CPA),13–15 in order to understand
the physics of superconductivity in single-band disordered
systems.

Recently we have proposed an efficient real-space scheme
to solve the BdG equations for single-band disordered attrac-
tive Hubbard models.16 The aim of this paper is to propose
a real space, vector recursion based approach to study the
effect of disorder on a multiband attractive-U Hubbard model
where the configuration averaging, as in our earlier study, will
be based on the augmented space recursion (ASR) formalism
introduced by one of us.17 The ASR gives us the flexibility of
introducing the effects of random configuration fluctuations in
the local environment of a site. It does not violate analytical
properties of the configuration-averaged Green’s function,
which form an essential ingredient of the solution. It can
deal easily with the effect of either off-diagonal disorder or
inhomogeneous disorder such as clustering, segregation, and
short-ranged ordering, which usually occur intrinsically in
most disordered materials due to different chemical affinities
of the constituents.

We shall begin by studying superconductivity in an or-
dered two-band, tight-binding, attractive-U Hubbard model,
using our vector recursion technique. Then, having satisfied
ourselves with the reliability of our methodology, we shall
proceed to study the effect of disorder on the same model.
The rest of the paper is organized as follows: in Sec. II we
shall discuss our method in some detail. Section III will be
devoted to results and discussions for multiband ordered and
disordered systems. Finally in Sec. IV we will summarize our
study.

II. METHODOLOGY

A. Multiband attractive-U Hubbard model

To study the effect of disorder on a multiband s-wave
superconducting system we shall begin with the simplest
model, namely, the two-band attractive Hubbard Hamiltonian
in model lattices. The Hamiltonian is given by

H = −
∑
〈i,j〉

∑
m,m′,σ

tim,jm′ c
†
imσ cjm′σ +

∑
i,m,σ

(εim − μ)nimσ

−
∑
i,m

|Umm(i)|nim↑nim↓

−
∑

i

∑
m,m′,σ,σ

′
|Umm′(i)|nimσnim′σ ′ . (1)

Here m, m′ are the band index. This Hamiltonian is a
generalization of the single-band Hubbard Hamiltonian and

is similar to earlier studies by Annett and co-workers.2,3

Our model Hamiltonian allows for both intraband as well
as interband pairing. The interband pairing term is similar
to that of Annett and co-workers2,3 and Moreo et al.9 which
allows Cooper pairs to be formed by electrons belonging to
two different bands. The earlier studies by Suhl et al.6 and
Machida et al.8 did not consider the pairing of electrons
belonging to two different bands but a pair tunneling term
given by

−
∑

i

∑
m,m′,σ,σ

′

∣∣Ut
mm′ (i)

∣∣(cimσ cimσ ′ )†cim′σ cim′σ ′ . (2)

This term allowed for the tunneling of the Cooper pairs from
one band to the other with a tunneling strength given by
Ut

mm′ .
In Eq. (1) {c†imσ },{cimσ } are the usual electron creation and

annihilation operators for orbital m with spin σ on site labeled
i of a square or cubic lattice. The index m runs over the two
bands labeled s and l, μ is the chemical potential, and εim is
the local on-site energy at the site labeled i in the band m. The
hopping integral tim,jm′ has four components:: tis,js = ts is the
hopping integral in the s band from a site i to one of its nearest
neighbors j and til,j l = tl is that in the l band from a site to
one of its nearest neighbors. The interband hopping integrals
are tis,il = tsl , which is the hopping integral from a site in
the s band to the same site in the l band (or vice versa) and
tis,j l = tnn

sl , which is the hopping integral from a site i in the
s band to one of its nearest neighbors j in the l band (or vice
versa). In this work we have not included the interband intersite
hopping integral tnn

sl . However, we do consider the effect of
on-site interband hopping integrals tsl in some of our analysis.
As we will see subsequently, tsl will not alter the qualitative
features of our results. In this model, Uss = −|Us | corresponds
to a local Hubbard parameter leading to a pairing interaction
potential for s-band electrons and Ull = −|Ul| correspond to
a local Hubbard parameter for l-band electrons. Here, both the
attractive interactions give rise to s-wave pairing since they
are local. The interband pairing interaction Umm′ = −|Usl | is
the local attractive potential between electrons in the s and l

band.
The BdG mean-field decomposition12 of the interaction

terms give expectation values to the intra- and interband pairing
amplitudes,

�m = −|Um| 〈cim↓cim↑〉; �sl = −|Usl | 〈cil↓cis↑〉, (3)

and also to the intra- and interband “densities,”

〈nimσ 〉 = 〈cimσ c
†
imσ 〉 ; 〈nislσ 〉 = 〈cilσ c

†
isσ 〉. (4)

The effective quadratic BdG Hamiltonian becomes

Heff = −
∑
〈i,j〉

∑
m,m′,σ

tim,jm′ c
†
imσ cjm′σ +

∑
imσ

(εim − μ̂im) nimσ −
∑

im,m′,σ

|Umm′ | 〈nimm′σ 〉
2

c
†
imσ cjm′σ

+
∑
im

(�mc
†
im↑c

†
im↓ − �∗

mcim↑cim↓) +
∑

i,m,m′
(�mm′c

†
im↑c

†
im′↓ − �∗

mm′cim↑cim′↓), (5)
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where μ̂im = μ − |Umm|〈nim〉/2 incorporates the site depen-
dent Hartree shift.

This effective Hamiltonian can be diagonalized by using
the Hartree-Fock-Bogoliubov (HFB)18 transformation,

cim↑ =
∑

n

[βn↑um(ri,E) − β
†
n↓v∗

m(ri,E)],

(6)
cim↓ =

∑
n

[βn↓um(ri,E) + β
†
n↑v∗

m(ri,E)],

where β and β† are quasiparticle operators, and
um(ri,E), vm(ri,E) are the quasiparticle amplitudes associated
with an eigenenergy En.

In the Hartree-Fock mean-field approximation incorporat-
ing charge-order and superconducting decoupling along with
the above canonical transformation we have⎛⎜⎝ Hss �s −Nsl �sl

�∗
s −Hss �∗

sl Nsl

−Nls �ls Hll �l

�∗
ls −Nls �∗

l −Hll

⎞⎟⎠
⎛⎜⎝us(ri,E)

vs(ri,E)
ul(ri,E)
vl(ri,E)

⎞⎟⎠

= E

⎛⎜⎝us(ri,E)
vs(ri,E)
ul(ri,E)
vl(ri,E)

⎞⎟⎠ , (7)

where (the excitation eigenvalue E � 0)

Hmmum(ri,E) = (εim − μ̂im)um(ri,E) −
∑

j

tmum(rj ,E),

Nmm′um′ (ri,E) =
{

1

2
|Umm′ |〈nmm′ 〉 + tmm′

}
um′ (ri,E)

+
∑

j

tnn
mm′um′(rj ,E). (8)

Here j is the nearest neighbor of i. We can express the
particle densities and the pairing amplitudes in terms of the
quasiparticle amplitude as

〈nim〉 = 2
∫

dE|um(ri,E)|2f (E)

+ |vm(ri,E)|2[1 − f (E)],

〈nimm′ 〉 = 2
∫

dEum′ (ri,E)u∗
m(ri,E)f (E)

+ v∗
m′ (ri,E)vm(ri,E)[1 − f (E)],

(9)
�m = |Um|

∫
dEv∗

m(ri,E)um(ri,E)f (E)

−um(ri,E)v∗
m(ri,E)[1 − f (E)],

�mm′ = |Umm′ |
∫

dEv∗
m(ri,E)um′ (ri,E)f (E)

−um(ri,E)v∗
m′ (ri,E)[1 − f (E)],

where f (E) is the Fermi function. A fully self-consistent
solution of Eq. (7) can be obtained provided all the normal
potentials (|Um|nim and |Umm′ |nimm′) and anomalous potentials
(�im and �imm′ ) are determined self-consistently from Eq. (9).
The self-consistency criteria is set to 10−6 for calculation of
all self-consistent parameters throughout the present study.

B. Treatment of disorder: Augmented space formalism

The class of systems which we shall study here will
be binary substitutionally disordered alloys. We shall study
randomness in the diagonal site energies, either in one of the
two bands, say the l band ({εil}); or in both the bands ({εis}
and {εil}). We shall introduce site occupation variables {ni}
(this should not be confused with the number operator nimσ )
which take values 1 or 0 according to whether the site labeled
i is occupied by an A type or a B type of atom,

εim = εA
m ni + εB

m (1 − ni) = εB
m + δεmni, (10)

where, m = s or l and εA
s , εB

s and εA
l , εB

l are the possible
on-site energies corresponding to the s and l band, respectively.
We define the strength of disorder in the band labeled m by
Dm = |δεm| = |εA

m − εB
m|.

If the concentrations of A- and B-type atoms in the solid
are x and y, then the probability density of ni , in the absence
of short-range order, is given by

p(ni) = xδ(ni − 1) + yδ(ni). (11)

The “configuration space” of ni , �i , has rank 2 and is spanned
by the states |Ai〉 and |Bi〉 in which the parameter εim take the
values εA

m and εB
m, respectively.

The augmented space formalism associates with each
random variable ni an operator Ñi acting on its configuration
space �i and whose spectral density is its probability density.
That is,

p(ni) = − 1

π
lim
δ→0

Im 〈∅i |[(ni + iδ)Ĩ − Ñi]
−1|∅i〉, (12)

where |∅i〉 = √
x|Ai〉 + √

y|Bi〉 is the so-called “reference”
state. This nomenclature arises from the fact that the aug-
mented space theorem19 states that the matrix element in this
state is the configuration average. The other basis member is
|1i〉 = √

y|Ai〉 − √
x|Bi〉 which is a state with one “fluctua-

tion” about the reference state at the site i. Alternatively, it is
denoted by |{i}〉 where {i} is the “cardinality sequence” of sites
at which there are fluctuations. The configuration states |Ai〉
and |Bi〉 are the eigenkets of Ñi corresponding to eigenvalues
1 and 0. The representation of the operator Ñi in the basis
{|∅i〉,|ii〉} is

Ñi = xP∅i
+ yP1i

+ √
xy

[
T∅i ,1i

+ T1i ,∅i

]
= xI + (y − x)P1i

+ √
xy

[
T∅i ,1i

+ T1i ,∅i

]
. (13)

Here, I is the identity operator, PX are the projection
operators |X〉〈X|, and TXY are the transfer operators |X〉〈Y |,
and X,Y are either ∅i or 1i .

Let us define a configuration fluctuation creation operator
at the site labeled i as γ

†
i |∅i〉 = |1i〉. Since each site can

either be ∅ or 1, this is a fermionlike creation operator with
γ
†
i |1i〉 = 0. Similarly we define a configuration fluctuation

annihilation operator γi |1i〉 = |∅i〉 and γi |∅i〉 = 0. In terms of
these operators P1i

= γ
†
i γi counts the number of configuration

fluctuations at the site i, and of the transfer operators:
T∅i ,1i

= γi annihilates and T1i ,∅i
= γ

†
i creates a configuration

fluctuation at the site i.
The operator Ñi in this new representation is

Ñi = xI + (y − x) γ
†
i γi + √

xy (γ †
i + γi) (14)
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So,

εim = εB
m + δεm ni has associated with it an operator,

ε̃im = 〈εm〉I + (y − x)δεm γ
†
i γi + √

xy δεm (γ †
i + γi)

(15)

obtained by replacing ni with its operator form Ñi [see
Eq. (14)] where 〈εm〉 refers to the average:

〈εm〉 = xεA
m + yεB

m (16)

with m = s or l, δεs = εA
s − εB

s , and Ds = |δεs |, δεl = εA
l −

εB
l , and Dl = |δεl|.

The augmented space theorem19 states that the configura-
tion average of a function of a set of independent random
variables A({ni}) can be expressed as a matrix element
in the full configuration space of the disordered system

� = ∏⊗
�i ,

〈〈A({ni})〉〉 = 〈{∅}|Ã({Ñi})|{∅}〉, (17)

where |{∅}〉 = ∏⊗
i |∅i〉 and Ã({Ñi}) is the representation of

the operator Ã in the configuration space �, constructed by
replacing all random variables ni by their corresponding
operators Ñi . A compact way of representing a basis in
configuration space is to denote it by the set of sites where
we have a configuration fluctuation. This set is called the
cardinality set and the meaning of the empty cardinality
set {∅} then becomes obvious. For the present system the
Hamiltonian contains the random variables {εis} and{εil}. So
we need to construct the Hamiltonian in the augmented space
� = H ⊗ ∏⊗

i �i by replacing all the random variables εis

and εil by the corresponding operators shown in Eq. (15). The
effective augmented space Hamiltonian becomes

H̃eff = −
∑

〈i,j〉,m,m′,σ

tim,jm′ c
†
imσ cjm′σ ⊗ I +

∑
imσ

(〈εm〉 − μ̂im)nimσ ⊗ I +
∑
imσ

δεm nimσ ⊗ {(y − x)γ †
i γi + √

xy(γ †
i + γi)} · · ·

−
∑

im,m′,σ

|Umm′ | 〈nimm′σ 〉
2

c
†
imσ cjm′σ ⊗ I +

∑
im

(�mc
†
im↑c

†
im↓ − �∗

mcim↑cim↓) ⊗ I · · ·

+
∑

i,m,m′
(�mm′c

†
im↑c

†
im′↓ − �∗

mm′cim↑cim′↓) ⊗ I. (18)

In the special case when there is randomness in just one of the
bands (say l), in Eq. (18) we put δεs = 0 and 〈εs〉 = εs .

After constructing the Hamiltonian in augmented space the
augmented space theorem then automatically ensures that the
configuration average is a projection onto the state with no
“fluctuations,”19

〈〈G(i,i,E)〉〉 = 〈∅|G̃(i,i,E)|∅〉,
where G̃ = (EĨ − H̃

eff
)−1. All operators here are 4 × 4 ma-

trices (here double underbar indicates 4 × 4 matrices) in the
space spanned by the two bands and the electron-hole degrees
of freedom20 arising in BdG formalism.

The Green’s functions are obtained using the vector
recursion technique introduced by Haydock and Godin.21,22

The vector recursion has been described in great detail in the
given references and in our earlier work.16 We shall indicate
the main points and the interested reader may refer to the
quoted references for details. Once the BdG Hamiltonian
is set up as in Eq. (7) and the effective augmented space
transformation carried out as in Eq. (18), the vector recursion
technique essentially changes the basis in order to block tridi-
agonalize the effective Hamiltonian. The basis is recursively
generated,

|1〉〉 =

⎛⎜⎝us(�ri,E) ⊗ {∅}
vs(�ri,E) ⊗ {∅}
ul(�ri,E) ⊗ {∅}
vl(�ri,E) ⊗ {∅}

⎞⎟⎠
B†

n+1|n + 1〉〉 = H̃ |n〉〉 − An|n〉〉 − B n|n − 1〉〉.

The coefficients An and B n are matrices and obtained from
the orthogonality of the generated basis and between rows
of the same basis. The configuration averaged diagonal matrix
element of the Green’s function then follows as a matrix
continued fraction,

〈〈G(�ri�ri ; E)〉〉 = 〈〈1|G|1〉〉 = G
0
(E),

Gn(E) = [zI − An − B†
n+1Gn+1(E)B n+1]−Pn−1 ,

n = 0,1,2, . . . N2 − 1,

where A−Pn denotes inverse in the subspace spanned by the
basis {|n + 1〉〉,|n + 2〉〉 . . .}. The matrix continued fraction is
terminated in two steps. The matrix coefficients {A

n
,B

n
} are

calculated exactly for n < N1, then: first, by putting An = AN1

and B n = B N1 for all N1 � n < N2 and second, GN2 (E) =
(E + iη)−1I .

The physical quantities of interest [Eq. (9)] relevant to the
study can be expressed as appropriate matrix elements of the
Green’s function,

〈nm〉 = − 1

π
lim
η→0

Im
∫ ∞

−∞
[G++

mm(i,i,E + iη)fn

+ G−−
mm(i,i,E + iη)(1 − fn)]dE,

�m = − 1

π
lim
η→0

Im
∫ +Ec

−Ec

[G+−
mm(i,i,E + iη)fn

+ G−+
mm(i,i,E + iη)(1 − fn)]dE,
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〈nmm′ 〉 = − 1

π
lim
η→0

Im
∫ ∞

−∞
[G++

mm′(i,i,E + iη)fn

+ G−−
mm′ (i,i,E + iη)(1 − fn)]dE,

�mm′ = − 1

π
lim
η→0

Im
∫ +Ec

−Ec

[G+−
mm′(i,i,E + iη)fn

+ G−+
mm′ (i,i,E + iη)(1 − fn)]dE, (19)

where + and − refer to electron and hole spaces of the BdG
formalism20 and the energy interval [−Ec, + Ec] is the short
interval around the Fermi energy of the system where the
interaction has its effect.

III. RESULTS AND DISCUSSION

A. Ordered systems

In this section we shall present results on ordered two-band
superconductors (both the bands having s-orbital character)
on square and cubic lattices with both local intra- and
interband Hubbard parameters. The system is kept fixed at
half filling unless otherwise stated. Since these results are well
known from other approaches, a comparison with them will
ascertain the viability and numerical accuracy of our proposed
methodology.

For our model system the hopping integrals are chosen
as follows: in Figs. 1(a)–1(d) the intraband nearest-neighbor
hopping elements are ts = 1.0 and tl = 0.5 and the interband
on-site hopping is tsl = 0.0.

The s- and l-band partial densities of states (PDOS) for
the case when Us = Ul = Usl = 0 for the ordered system
are shown in Figs. 1(a) and 1(c) for the square and cubic
lattices, respectively. The two sets of PDOS exactly match
the standard calculations using Bloch’s theorem. One can
clearly see in Fig. 1(a) the band-center integrable Van Hove
singularity, the two flanking kink singularities, and the square-
root singularities at the band edges that are characteristic of
a square lattice. The cubic lattice PDOS [see Fig. 1(c)] is
characterized by constant DOS at the band center and terminate
in kink singularities on both sides. The s band with greater
intraband hopping integral is wider, as expected.

Next we investigate the situation in the presence of
intraband pairing, i.e., Hubbard parameter Us and Ul are only
finite. This corresponds to the system studied by Suhl et al.6

in the absence of interband tunneling of electrons. Thus Usl

in Eq. (1) is set to zero. In Figs. 1(b) and 1(d) we consider
the cases where Us = Ul = 4.0 and the system is kept fixed
at half filling. The BdG equations are solved recursively and
self-consistently as described earlier. After self-consistency
the superconducting order parameters �s and �l are found to
be nonzero. The s and l configuration averaged PDOS for the
system are calculated by using the relation

〈〈nm(E)〉〉 = − 1

π
lim
η→0

Im 〈〈G++
mm(1,1,E + iη)〉〉,

where m = s or l, η is an infinitesimal positive imaginary part
of the energy, and + refer to the electron states in the BdG
formalism.
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FIG. 1. (Color online) Study of superconductivity in an ordered square lattice [(a) and (b)] and cubic lattice [(c) and (d)] having two bands
s and l. (1) Intraband hopping integrals ts = 1.0 and tl = 0.5, and (2) Hubbard parameters for (a) and (c) are Us = Ul = Usl = 0.0 and for (b)
and (d) are Us = Ul = 4.0 and Usl = 0.
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The PDOS shown in Figs. 1(b) and 1(d) reveal that in
spite of the parameters Us = Ul , the superconducting pairing
amplitude �s and �l are different. This is due to the difference
in bandwidth (W ) as ts �= tl , and the observation that the
effective parameters Um/W (m = s or l) are responsible for
the magnitude of the gap seen in the local DOS.

In view of the above we have also investigated the situation
only with intraband Hubbard parameters such that Us �= Ul .
We have considered Us = 3.0 and Ul = 1.0. Since the effective
parameter Us/W = 0.75 > Ul/W = 0.5 we did find �s >�l .
The earlier study by Suhl et al.6 had also found two different
band gaps arising in a two-band model system. Two different
superconducting gaps were later realized in MgB2.23–29

Next in addition to the intraband pairing we have also
included interband pairing of electrons. In the presence of
both inter- and intraband Hubbard parameters an interesting
competitive effect sets in, as can be seen from Fig. 2(a).
We keep the intraband attractive Hubbard parameter fixed
(Us = Ul = 2.0), and vary the interband Hubbard parameter
Usl . The intraband hopping integrals are chosen to be ts = 1.0
and tl = 0.5 and interband on-site hopping integral is tsl = 0.2.
We see [from Fig. 2(a)] when Us = Ul � Usl then it is the
intraband pairing amplitude that is only finite and the interband
pairing amplitude vanishes. On the other hand, when Us =
Ul < Usl then it is only the interband pairing amplitude that is
nonzero. Our calculations shows for momentum independent
pairing in s-like bands depending on the strength of the
attractive interaction, only a particular kind of pairing, either
intraband or interband, is possible for two-band half filled
systems when both bands have s-wave character.

Finally, we examine the effect of the interband (on-site)
hopping integral tsl on the pairing amplitude � for a half filled
system. Figures 2(b) and 2(c) display the case for dominant
intraband pairing (Us = Ul = 3.5 > Usl = 2.0) and dominant
interband pairing (Us = Ul = 2.0 < Usl = 3.5), respectively.
We find from the figures that inclusion of intraband on-site
hopping term tsl does not change the qualitative picture for a
two-band system except to reduce the magnitude of the gap.

B. Homogeneously disordered systems

We shall now study an attractive-U Hubbard model of a
two-band, disordered, binary substitutional alloy on a square
lattice. First we consider randomness in the on-site energy in
one of the two channels, namely the l channel, and study its
effect on the other channel. We introduce randomness in the
on-site energy using Eq. (15) and our Hamiltonian takes the
form given in Eq. (18). The concentrations are x = y = 0.5
and the system is half filled throughout the study.

To begin with, we study the systems in a situation similar
to those under which we had investigated the corresponding
ordered system. We keep ts = 1.0 and tl = 0.5 and the
strength of disorder Dl = |εA

l − εB
l | = 1 throughout the cases

considered in Fig. 3.
First we study the case when the system is nonsupercon-

ducting (Us = Ul = Usl = 0.0). From Fig. 3(a) we find due
to the absence of hybridization between the s and l bands
the s PDOS is not affected by randomness in the l channel.
The l PDOS [Fig. 3(b)], however, has characteristic features of
disordered DOS: namely increase in bandwidth and smoothing
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l
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1.4
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Δ
Δ
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(b)

Us=Ul=3.5 ; Usl=2.0

0 0.2 0.4 0.6 0.8
tsl

0.5

1

1.5

2
Δ

ΔslUs=Ul=2.0 ; Usl=3.5

(c)

FIG. 2. (Color online) Variation of � for a square lattice when
both intra- and interband interaction potentials are nonzero. Here
the intraband hopping integrals are ts = 1.0 and tl = 0.5 for the s
and l bands, respectively. In (a) the intraband pairing potentials |Us |
and |Ul | are kept fixed at 2.0 and Usl is varied. In (b) and (c) the
pairing potentials are kept fixed [(b) Us = Ul > Usl = 2.0 and (c)
Us = Ul < Usl = 3.5] and the effect of variation of interband on-site
hopping integral tsl is studied.

out of Van Hove singularities. The total DOS [Fig. 3(c)]
therefore carries the signatures of disorder as well.

Next, we investigate the DOS of the same system consider-
ing only the intraband Hubbard parameters to be nonzero, i.e.,
Us = Ul = 4.0 and Usl = 0.0 [Figs. 3(d)–3(f)]. In this case
only the intraband pairing amplitudes �s and �l are nonzero
[see Eq. (3)]. We see that the s PDOS remains unaffected
by randomness in the l channel [comparing Fig. 3(d) with
Fig. 1(b)], disorder, however, influences the l PDOS [compar-
ing Fig. 3(e) with Fig. 1(b)]. Since both the s PDOS and l PDOS
are gapped, the total DOS remains gapped [Fig. 3(f)]. Similar
behavior also prevails with the inclusion of attractive interband
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FIG. 3. Study of a two-band superconducting system in a square lattice with disorder in the l channel with strength of disorder D = 1.0.
While (a)–(c) study the s, l PDOS and total DOS, respectively, for the nonsuperconducting case (where intra- and interband Hubbard potential
Us = Ul = Usl = 0.0), (d)–(f) study the effect of disorder on the corresponding superconducting system with only intraband interaction.

interaction Usl , provided the intraband pairing dominates, i.e.,
Usl < Ul and Us .

The variation of the zero-temperature superconducting
order parameters �s , �l , and �sl are plotted as a function of
the strength of disorder in Fig. 4(a) where Us = Ul = 2.0 >

Usl = 1.0. As expected for momentum independent pairing
only the intraband pairings are finite. �s does not change as a
function of disorder strength as it does not register the effect
of the disorder in the l channel. As the strength of disorder
(D) is increased �l reduces but remains finite even for D = 3.
Therefore in the chosen parameter regime for the two-band
system the situation is similar to that predicted by Anderson
theorem11 for the single-band system, where the gap survives
in the quasiparticle spectrum even in the presence of disorder.

Suhl et al.6 using a generalized BCS Hamiltonian for the
two-band superconductor proposed a generalized expression
for critical temperature Tc and temperature-dependent pairing
amplitude. As stated earlier, our two-band Hubbard Hamilto-
nian without the interband pairing term is identical to that of
Suhl et al. The expression for Tc for the s and l bands (T s

c and
T l

c , respectively) can be generalized to

1 = |Um|
∫ ∞

−∞
dE

〈〈Nm(E)〉〉
2E

tanh

(
E

2kBT m
c

)
, (20)

where m = s or l, while 〈〈Ns(E)〉〉 and 〈〈Nl(E)〉〉 are the
s- and l-band configuration averaged density of states in the
normal state at energy E. Setting Us = Ul = 3.5, Usl = 0 and
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FIG. 4. (Color online) (a) Variation of � as a function of disorder
strength (D) in the l band when Us = Ul > Usl . (b) Variations of
s-band and l-band critical temperatures T s

c and T l
c as a function of

disorder strength D when only intraband pairing occurs in a two-band
s-wave superconductor in a square lattice. (c) Variation of �s(T ) and
�l(T ) with T for various strengths of disorder D in the l band.

x = y = 0.5 and keeping the system fixed at half filling, we
obtain the corresponding T s

c and T l
c for different values of D

[see Fig. 4(b)]. As seen from this figure, T s
c remains constant

with increasing disorder strength D since randomness in the
l band does not affect the s band in the presence of intraband
pairing alone. T l

c is, however, suppressed with increasing D. At
this point, however, it must be noted that only the higher of the
two critical temperatures (T s

c and T l
c ) is physically significant

in this respect. So in the present case, Tc first decreases with
disorder and then becomes constant when T s

c > T l
c .

These conclusions are further strengthened by a study of
the pairing amplitude as a function of temperature, and the

expressions for the temperature-dependent pairing amplitudes
are

1 = |Um|
∫ ∞

−∞
dE

〈〈Nm(E)〉〉
2
(
E2 + �2

m

)1/2 tanh

((
E2 + �2

m

)1/2

2kBT

)

for the m = s or l bands.
We see that with the increase in disorder strength D in

the l band the temperature-dependent pairing amplitude �l

reduces much like the zero-temperature pairing amplitude [see
Fig. 4(c)]. Since randomness in the l channel does not affect
the s band thus �s(T ) is not affected by D so we have plotted
�s(T ) vs T only at D = 0 [see Fig. 4(c)]. We conclude from
Figs. 4(b) and 4(c) that for temperatures below the critical
temperatures though disorder (D) suppresses �(T ), but does
not reduce it to zero.
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FIG. 5. (Color online) (a) Variation of � with disorder strength
(D) in the l band when Us = Ul < Usl . (b),(c) Studies DOS for a
square-lattice superconducting system with disorder in the l band
when Us = Ul < Usl .
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FIG. 6. (Color online) A study of � as a function of disorder
strength (D) in the s and l band for (a) Us = Ul > Usl and (b) Us =
Ul < Usl for a two-dimensional (2D) superconducting system having
two bands. Here the intraband hopping integrals ts = 1.0 and tl = 0.5
and the interband hopping integral tsl = 0.0.

The next set of studies is the investigation of the increasing
strength of the disorder D on a two-band attractive-U Hubbard
model with dominant interband attractive interaction Usl >

Us,Ul . In the parameter regime Us = Ul = 1.0 < Usl the
dominant pairing is the interband pairing Usl and it affects both
the bands. In contrast to the case of only intraband pairing,
here for a critical strength of disorder D > 2 the pairing
amplitude �sl vanishes indicating the possible disappearance
of superconductivity [see Fig. 5(a)]. This is further illustrated
in the DOS plot for the s and l channels in Figs. 5(b) and 5(c),
respectively. Here the presence of randomness in the l channel
affects �sl and this in turn affects both s and l PDOS. With
increasing disorder D in the l channel the gaps both in the s

PDOS and l PDOS reduces. Eventually finite DOS at the Fermi
level is realized indicating the absence of superconductivity.

Finally we address the situation when disorder is introduced
in both s and l channels. When the interaction is such that
Us = Ul > Usl [Fig. 6(a)], then only �s and �l are nonzero
even for strength of disorder as large as D = 2.5 indicating
the presence of superconductivity. However, in the limit
Usl > Us = Ul [Fig. 6(b)], we see that �sl decreases rapidly
with disorder and finally vanishes. These features are very
similar to the case when disorder was introduced in only one
channel.

C. Summary

In this paper we have developed a real-space approach to
study the effect of disorder on multiband superconductivity
using a two-band Hubbard Hamiltonian to model our system
and augmented space vector-recursion21,22 method to treat
randomness in our system. We have established the accuracy
of our method by comparing our results in ordered systems
with those obtained earlier using other techniques. For ordered
systems we have seen gaps in both bands in the presence
of intraband pairing. In the presence of both intraband and
interband momentum independent pairing, depending on the
relative magnitude of the pairing strength, only a particular
kind of pairing is possible for a half filled s-like two-band
system.

We have then studied the effect of randomness in one of
the bands. When only intraband pairing occurs, randomness
in one channel does not affect the other. But in the presence of
interband pairing both the bands are affected by randomness.
By increasing the strength of disorder, superconductivity
survives in the presence of intraband pairing although the
pairing amplitudes decrease with disorder. However, for
interband pairing the gap in the quasiparticle spectrum ceases
to exist beyond a critical value of the disorder strength. In
the case of interband pairing, where the Cooper pairs are
formed by electrons belonging to two different bands, we
speculate that phase coherence of the superconducting state
is more sensitive to disorder. The lack of phase coherence
due to disorder is probably responsible for the disappearance
of superconductivity. The same conclusion holds good when
disorder is introduced in both the bands. Our calculation
indicates that interband pairing in multiband systems is not
only interesting but opens up a paradigm beyond Ander-
son’s theorem11 to understand superconductivity in disordered
systems.
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