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We introduce a method where successive coordinate transformations are applied to decrease the error in the
adiabatic master equation resulting from truncation in the local adiabatic parameter. Our method reduces the
nonphysical behavior stemming from the lack of complete positivity. The strong environment-induced relaxation
at high Cooper pair pumping frequencies leads to adiabatic ground-state pumping only in the lowest-order
approximation. We illustrate the robustness of the frequency where the adiabaticity breaks down using the
high-order theory and show the emergence of an optimal environmental coupling strength, for which ideal
pumping is preserved for the highest frequency. Finally, we study the effect of quantum interference on the
pumped current and give an estimate for the relaxation rate of an experimentally measured system.
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I. INTRODUCTION

Detection and manipulation of geometric phases1–5 in
superconducting quantum devices has been an area of active
research in recent years with one of the ultimate goals being
the ability to realize holonomic quantum gates.6 Even though
alternative methods to experimentally generate and detect the
geometric phases in such devices have been proposed and
realized,7,8 the link they have to Cooper pair pumping has
attracted major interest9–18 as it provides means of detecting
the phases by a measurement of the dynamically and geo-
metrically transferred charges. A measurement scheme based
on one superconducting island with two tunable Josephson
junctions, the Cooper pair sluice in a superconducting loop,
has been introduced19 and experimentally realized.20 Recently,
a system based on a similar device structure has been proposed
to execute fully geometric quantum computing using non-
Abelian phases.21,22

Even though the principles of operation for Cooper pair
pumps are well known, accounting for system-environment
interactions has been a work in progress. Cooper pair pumping
being essentially a coherent process, a proper description of the
operation must include the effect of the external environment.
The usual methods for describing the dynamics of open
steered quantum systems23–25 have been shown to violate
the conservation of physical observables, such as the electric
charge, and a variety of means have been employed in an
attempt to properly describe the dynamics.26–33 Recently, it
was discovered that for a consistent description using the
master equation for the reduced density matrix of the system,
all the nonsecular terms must be included to enable relaxation
to a proper basis and to ensure conservation of the pumped
charge in Cooper pair pumping.34,35 The same master equation
has also been derived using superadiabatic bases.36

In this paper, we employ the recent methodology of
superadiabatic bases36 in deriving the master equation for
steered systems and apply it after multiple coordinate trans-
formations of the time-local basis. This results in a master
equation where the truncation error related to the local
adiabatic parameter is potentially decreased as a function
of the number of coordinate transformations. We apply our
method to the problem of Cooper pair pumping. We show

that for the zero-temperature environment and fast pumping,
the ground-state adiabatic evolution revives in the relaxation
dominated region only using the adiabatic basis, that is, in
the lowest order of our description. Furthermore, we show
that the overestimation of the pumped charge caused by the
nonpositivity of the density matrix is alleviated dramatically
by the usage of high-order bases. We simulate the breakdown
of adiabaticity with increasing pumping frequency and show
the emergence of an optimal coupling strength preserving ideal
pumping up to the highest frequency. We present a condition
for the highest transition probability caused by constructive
interference between driving-induced excitations generated at
different times and show that it corresponds to the downward
resonance peaks in the pumped current. Finally, we obtain an
estimate for the relaxation rate of the device employed in the
experiments of Ref. 20 to pump Cooper pairs.

The structure of this paper is as follows. In the next section,
we introduce the model describing a driven quantum system
and demonstrate our method of defining successive effective
Hamiltonians by coordinate transformations. In Sec. III, we
write a master equation for the matrix elements of the reduced
density matrix of the system taken in an n-times transformed
time-dependent basis. In Sec. IV, we use the master equation
to model Cooper pair pumping. Furthermore, we simulate
previous experiments on the pumped current and derive an
estimate for the relaxation rate of a measured superconducting
system. We conclude the paper in Sec. V.

II. MODEL

We study a quantum system with a Hamiltonian ĤS , which
depends on a set of real control parameters {qk} that vary
in time. The system is assumed to be interacting with its
environment such that the total Hamiltonian is

Ĥ (t) = ĤS(t) + V̂ (t) + ĤE, (1)

where V̂ (t) is the coupling between the system and its
environment and ĤE is the Hamiltonian of the environment.
We assume that the coupling is of the generic form V̂ =
Â ⊗ X̂(t), where Â is the system part of the coupling operator
and X̂(t) acts in the Hilbert space of the environment. Let
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|m; �q(t)〉 be the instantaneous eigenstate of ĤS(t) and Em(t)
the corresponding eigenenergy defined by ĤS [�q(t)]|m; �q(t)〉 =
Em[�q(t)]|m; �q(t)〉. In the context of adiabatic evolution,
{|m; �q(t)〉} is referred to as the adiabatic basis. We assume
that the adiabatic states are normalized and nondegenerate.

Let the Hamiltonian ĤS(t) be diagonalized in a fixed time-
independent basis {|mf 〉} using the eigendecomposition as
ˆ̃H

(1)

S (t) = D̂
†
1(t)ĤS(t)D̂1(t), implying that 〈nf | ˆ̃H

(1)

S (t)|mf 〉 =
Em(t)δnm. We define a similar transformation for the total
density operator ρ̂(t) in the Schrödinger picture as ˆ̃ρ(1)(t) =
D̂

†
1(t)ρ̂(t)D̂1(t). It follows from the Schrödinger equation

that the evolution of ˆ̃ρ(1)(t) is governed by the effective
Hamiltonian for the adiabatic basis

ˆ̃H
(1)

(t) = ˆ̃H
(1)

S (t) + h̄ŵ1(t) + ˆ̃V (1)(t) + ĤE, (2)

where ˆ̃V (1)(t) = D̂
†
1(t)V̂ (t)D̂1(t) = D̂

†
1(t)ÂD̂1(t) ⊗ X̂(t) and

ŵ1(t) = −iD̂
†
1(t) ˙̂D1(t). The eigenbasis of D̂1(t)[ ˆ̃H (1)

S (t) +
h̄ŵ1(t)]D̂†

1(t) is usually referred to as the first superadiabatic
basis.

We can further define a unitary transformation D̂2(t)

making ˆ̃H
(1)

S (t) + h̄ŵ1(t) diagonal in the fixed basis.36 Thus the
evolution of the density matrix ˆ̃ρ(2)(t) = D̂

†
2(t) ˆ̃ρ(1)(t)D̂2(t) =

D̂
†
2(t)D̂†

1(t)ρ̂(t)D̂1(t)D̂2(t) is governed by the effective Hamil-
tonian for the first superadiabatic basis,

ˆ̃H
(2)

(t) = ˆ̃H
(2)

S (t) + h̄ŵ2(t) + ˆ̃V (2)(t) + ĤE, (3)

where ˆ̃H
(2)

S (t) = D̂
†
2(t)[ ˆ̃H

(1)

S (t) + h̄ŵ1(t)]D̂2(t), ˆ̃V (2)(t) =
D̂

†
2(t) ˆ̃V (1)(t)D̂2(t), and ŵ2(t) = −iD̂

†
2(t) ˙̂D2(t). This method

of successive coordinate transformations can be continued
to yield for the (n − 1)th superadiabatic basis an effective
Hamiltonian of

ˆ̃H
(n) = ˆ̃H

(n)

S + h̄ŵn + ˆ̃V (n) + ĤE, (4)

where ˆ̃H
(n)

S = D̂
†
n[ ˆ̃H

(n−1)

S + h̄ŵn−1]D̂n, ˆ̃V (n) =
(
∏n

i=2 D̂i)†D̂
†
1V̂ D̂1(

∏n
i=2 D̂i) and ŵn = −iD̂

†
n

˙̂Dn, where
we omitted explicitly marking the temporal dependence of
the operators for clarity. The operator product is defined as∏n

i=2 D̂i = D̂2D̂3 · · · D̂n−1D̂n. If we define D̂
(n)
S = ∏n

i=2 D̂i

for n � 2 and D̂
(n)
S = Î for n = 1, the density operators

governed by the Hamiltonians in Eqs. (2)–(4) obtain a more
universal form ˆ̃ρ(n) = (D̂(n)

S )†D̂†
1ρ̂D̂1D̂

(n)
S . Defining successive

diagonalizations in this manner proves useful in Sec. III as the
recently derived master equation34–36 can be applied to solve
the system dynamics using these high-order bases.

The iterative method described here is an adaptation
of Berry’s concept37 he later referred to as adiabatic
renormalization.38 It is based on the idea that each transforma-
tion rotates the basis we use to describe the system dynamics
ever closer to the exact evolving closed system state, that is,
the time dependence of the transformed system Hamiltonian
is suppressed after each rotation. After n transformations,
we define the time-dependent basis as {D̂1D̂

(n)
S |mf 〉}. This

approach generally works only in the restricted sense, that
is, after a number of iterations, the following rotations will
not allow us to describe the dynamics of the system more
accurately.37

Finally, we introduce the local adiabatic parameter as
α1(t) = h̄||ŵ1(t)||/�(t), where we compare the Hilbert-
Schmidt norm of the operator arising from the adiabatic
evolution ||ŵ1(t)|| =

√
TrS{ŵ1(t)†ŵ1(t)} to an instantaneous

minimum energy gap in the spectrum �(t). Here TrS denotes
the trace over the system degrees of freedom and in the
following we will use TrE to denote the trace over the
environment degrees of freedom. The parameter α1(t) should
give a good estimate for the degree of adiabaticity of the
evolution.35,36 In cyclic evolution with the period T , the
parameter scales as 1/T and thus in adiabatic evolution we
should have α1(t) � 1.

III. MASTER EQUATION

We consider an adiabatically steered two-level quantum
system weakly coupled to its environment. We denote the
ground and excited states of ĤS in the Schrödinger picture
as |g〉 and |e〉, respectively, with corresponding eigenenergies
Eg and Ee. Using the interaction picture approach, a master
equation was derived to describe the dynamics of such a
system in Refs. 34–36 up to the linear order in α1(t) and
the quadratic order in the system-environment coupling. The
method of derivation employed in Ref. 36 is our starting
point for developing a numerical scheme for obtaining a more
accurate description of the dissipative system dynamics. In
Ref. 36, a master equation for nonsteered systems was used in
conjunction with the effective Hamiltonian in Eq. (3) to derive
the leading-order master equation under steering. However,

a similar derivation can be carried out using ˆ̃H
(n)

for any n

to obtain a master equation for the matrix elements of ˆ̃ρ(n).
Notice that even though the method of defining successive
coordinate transformations can be applied to a system with
arbitrary number of energy levels, we constrain ourselves
to the two-level case. This is practical since our main goal is to
explore the implications of applying our scheme compared to
previous results.34,35

We define the reduced density operator of the system as
ˆ̃ρ(n)
S = TrE{ ˆ̃ρ(n)} so that its diagonal element becomes ρ(n)

gg =
〈0| ˆ̃ρ(n)

S |0〉 and the off-diagonal element ρ(n)
ge = 〈0| ˆ̃ρ(n)

S |1〉,
where {|mf = 0〉,|mf = 1〉} is the relevant fixed basis. These
are simply the matrix elements of the usual density operator
of the system in the Schrödinger picture taken in a time-
dependent basis {|g(n)〉,|e(n)〉}, where |g(n)〉 = D̂1D̂

(n)
S |0〉 and

|e(n)〉 = D̂1D̂
(n)
S |1〉. This is the rotated basis obtained through

the iterative procedure we described in Sec. II. We emphasize
that the basis states are not obtained using a perturbative
expansion in the local adiabatic parameter and thus each iter-
ation generally alters them by terms of all orders of α1(t).37,39

However, if the method described in Ref. 36 is applied in the
n-times transformed basis, the error in the resulting master
equation is defined by a perturbative expansion in ŵn. The
norm of ŵn decreases, in the restricted sense, with increasing n

as the time dependence of the transformed system Hamiltonian
is suppressed. In regard to depicting the actual dynamics of
the system, the only issue relevant to the selection of the basis
is that the time evolution of the density matrix elements can
be accurately described using it. Thus we can exploit the nth
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iterative basis and define a master equation up to the quadratic
order in the system-environment coupling and to the first order

in αn(t) = h̄||ŵn(t)||/ω(n)
01 (t), where E(n)

e − E(n)
g = h̄ω

(n)
01 such

that E(n)
e = 〈1| ˆ̃H

(n)

S |1〉 and E(n)
g = 〈0| ˆ̃H

(n)

S |0〉, as

ρ̇(n)
gg = −2Im

[(
w(n)

ge

)∗
ρ(n)

ge

] + S
(
ω

(n)
01

)∣∣m(n)
2

∣∣2 − [
S
(−ω

(n)
01

) + S
(
ω

(n)
01

)]∣∣m(n)
2

∣∣2
ρ(n)

gg + 2
[
Im

(
m

(n)
2

)
Im

(
ρ(n)

ge

)
+ Re

(
m

(n)
2

)
Re

(
ρ(n)

ge

)]
S(0)m(n)

1 − 2
2S(0) − S

(−ω
(n)
01

) − S
(
ω

(n)
01

)
ω

(n)
01

{[
Im

(
m

(n)
2

)
Im

(
w(n)

ge

) + Re
(
m

(n)
2

)
Re

(
w(n)

ge

)]

× [
Im

(
m

(n)
2

)
Im

(
ρ(n)

ge

) + Re
(
m

(n)
2

)
Re

(
ρ(n)

ge

)]} + 2
2S(0) − S

(−ω
(n)
01

) − S
(
ω

(n)
01

)
ω

(n)
01

{
Im

(
m

(n)
2

)
Im

(
w(n)

ge

)

+ Re
(
m

(n)
2

)
Re

(
w(n)

ge

)}
m

(n)
1 ρ(n)

gg − 2
S(0) − S

(
ω

(n)
01

)
ω

(n)
01

m
(n)
1

{
Im

(
m

(n)
2

)
Im

(
w(n)

ge

) + Re
(
m

(n)
2

)
Re

(
w(n)

ge

)}
, (5)

and

ρ̇(n)
ge = iw(n)

ge

(
2ρ(n)

gg − 1
) + i

(
w(n)

ee − w(n)
gg

)
ρ(n)

ge + iω
(n)
01 ρ(n)

ge − S
(
ω

(n)
01

)
m

(n)
1 m

(n)
2 + [

S
(−ω

(n)
01

) + S
(
ω

(n)
01

)]
m

(n)
1 m

(n)
2 ρ(n)

gg

− 2S(0)
(
m

(n)
1

)2
ρ(n)

ge − i
[
S
(−ω

(n)
01

) + S
(
ω

(n)
01

)]
m

(n)
2

[
Im

(
ρ(n)

ge

)
Re

(
m

(n)
2

) − Im
(
m

(n)
2

)
Re

(
ρ(n)

ge

)]
− 2

2S(0) − S
(−ω

(n)
01

) − S
(
ω

(n)
01

)
ω

(n)
01

(
m

(n)
1

)2
w(n)

ge ρ(n)
gg + 2

S(0) − S
(
ω

(n)
01

)
ω

(n)
01

(
m

(n)
1

)2
w(n)

ge

− im
(n)
2

S
(−ω

(n)
01

) − S
(
ω

(n)
01

)
ω

(n)
01

{
Im

(
m

(n)
2

)
Re

(
w(n)

ge

) − Im
(
w(n)

ge

)
Re

(
m

(n)
2

)}

− 2
2S(0) − S

(−ω
(n)
01

) − S
(
ω

(n)
01

)
ω

(n)
01

m
(n)
1

{
im

(n)
2

[
Im

(
w(n)

ge

)
Re

(
ρ(n)

ge

) − Im
(
ρ(n)

ge

)
Re

(
w(n)

ge

)]
− [

Im
(
m

(n)
2

)
Im

(
w(n)

ge

) + Re
(
m

(n)
2

)
Re

(
w(n)

ge

)]
ρ(n)

ge

}
. (6)

Furthermore, we denote m
(n)
1 = 〈g(n)|Â|g(n)〉, m

(n)
2 =

〈g(n)|Â|e(n)〉, w(n)
gg = −i〈0|D̂†

n
˙̂Dn|0〉, w(n)

ee = −i〈1|D̂†
n

˙̂Dn|1〉
and w(n)

ge = −i〈0|D̂†
n

˙̂Dn|1〉. The reduced spectral
density of the noise source is defined as S(ω) =∫ ∞
−∞ dτTrE{ρ̂EX̂(τ )X̂(0)}eiωτ /h̄2. Similarly to Refs. 34–36,

we assume that the system is in the Markov regime,
the system time scales are longer than the environment
autocorrelation time leading to neglecting the Lamb shift,40

and the approximation of adiabatic rates applies. These
assumptions and the time scale separation they lead to are
described in detail in Ref. 36.

As described above, the benefit of defining the successive
coordinate transformations of the Hamiltonian is that the
corresponding master equation is up to the first order in αn(t),
thus describing the evolution of the system more accurately, in
the restricted sense, as n increases. Defining a master equation
of arbitrary order in α1(t) using the original methods34–36 is
possible, but the effort required renders such derivations highly
impractical.

It has been shown34,35 that assuming a zero-temperature
environment and taking the quasistationary limit, the mas-
ter equation in the lowest order leads to ρ(1)

gg = 1 + O(α2
1)

and ρ(1)
ge = −w(1)

ge /ω
(1)
01 + O(α2

1). This translates to ρ(2)
gg = 1 +

O(α2
1) and ρ(2)

ge = 0 + O(α2
1) showing that in the first order in

α1, the density matrix ˆ̃ρ(2) describes the evolution of a pure
state. This is a remarkable result validating that the master
equation in Refs. 34–36 ensures relaxation to |g(2)〉 up to the
first order in α1. Similarly, using our master equation for ˆ̃ρ(n)

ensures that the relaxation takes the system to |g(n+1)〉 up to the
first order in αn. Especially, in the limit n → ∞, the rotational
terms w

(n)
kl , k,l ∈ {g,e}, in the master equation vanish and the

basis {|g(n)〉,|e(n)〉}|n→∞ fully describes the steering assuming
that the process of basis rotations converges. The requirements
for the convergence or the number of transformations up to
which the iterative procedure suppresses the time dependence
of the Hamiltonian of the system1 are not studied in this paper,
as it turns out in Sec. IV that a small number of transformations
allows one to capture the main effect of this scheme.

IV. COOPER PAIR SLUICE

A. Definitions

We introduce the Cooper pair sluice12 as a physical
realization of a steered two-level system. The charge pumped
through the sluice establishes a connection to geometric
phases9,11,17,19,20 acquired during the adiabatic evolution and
provides a physical observable. We aim to study and improve
on the recent theoretical pumping results34,35 using the high-
order effective theory.
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FIG. 1. (Color online) (a) Circuit diagram of the Cooper pair sluice. The fluxes threading the left and right SQUIDs are denoted by �l and
�r , and � denotes the total flux threading the large superconducting loop. The phase differences over the SQUIDs are marked by ϕl and ϕr

and they are defined in the direction specified by the arrows in the figure. The gate capacitance Cg is used to manipulate the island charge with
the gate voltage Vg . (b) The time dependence of the control parameters EJl , EJr , and ng during a pumping cycle. The residual values εl , εr ,
and η allow for nonideal SQUIDs and gate control.

The Cooper pair sluice shown in Fig. 1(a) is comprised
of a superconducting island separated by two superconducting
quantum interference devices (SQUIDs),41 each involving two
Josephson junctions. If we assume that the self-inductances
of the SQUID loops are negligible, the SQUIDs operate
as tunable Josephson junctions whose Josephson energies
EJk(�k), where k ∈ {l,r}, are determined by the external
fluxes threading the loops. The sluice Hamiltonian is

ĤS =EC(n̂ − ng)2−EJr cos
(
φ̂ + ϕ

2

)
− EJl cos

(
φ̂ − ϕ

2

)
,

(7)

where the Coulomb energy for one excess Cooper pair is
EC = 2e2/C and the gate charge is defined in units of 2e

as ng = VgCg/(2e). Here Cg is the gate capacitance and C

stands for the total capacitance of the island. The operator
describing the phase on the island is φ̂ = (ϕ̂r − ϕ̂l)/2 and
its canonical conjugate, the operator describing the number
of excess Cooper pairs on the island, is n̂ = −i∂φ̂ . The
gauge-invariant phase difference over the device ϕ = ϕ̂r + ϕ̂l

is determined by ϕ = 2π�/�0 and kept constant during the
evolution.

We denote n̂k = −i∂ϕ̂k
(k ∈ {l,r}) as the Cooper pair

number operator of the kth SQUID and write the average value
of the current through the kth SQUID as35

〈Îk〉 = 2ei

h̄
(TrS{ρ̂S[n̂k,ĤS]} + Tr{ρ̂[n̂k,V̂ ]}), (8)

where Îk denotes the respective current operator. If the
environment does not directly induce a current, that is,
[n̂k,V̂ ] = 0, Eq. (8) defines the usual current operator19

Îk = −2ei

h̄
[ĤS,n̂k] = 2e

h̄

∂ĤS

∂ϕ̂k

. (9)

If we set EC � max{EJl,EJr} and ng ≈ 1/2, the dynamics
are accurately described by the two lowest charge states
allowing us to apply the preceding two-state theory. We denote
|0〉 and |1〉 as the states with no and with one excess Cooper pair
on the island defining our fixed basis. We study the capacitive
coupling of the environment to the system by introducing

voltage fluctuations δV̂g(t) at the gate of the sluice.34,35 The
coupling operator then becomes V̂g = −egσ̂z ⊗ δV̂g(t) where
σ̂z = |0〉〈0| − |1〉〈1| and g = Cg/C denotes the strength of
the coupling. The coupling operator has been selected traceless
in the two-state basis by adding an operator comparable to the
identity operator to adopt a convention used in the derivation
of the master equation.36 Such a selection can be applied to
any coupling operator and it does not reduce the generality of
the master equation. Since [n̂k,V̂ ] = 0, Eqs. (7) and (9) imply
that Îk = 2eEJk sin(ϕ̂k)/h̄.

Assume that the noise source is a resistor in thermal
equilibrium; a situation which can be engineered in the
physical realization of the sluice. If we consider the voltage
noise of a resistor grounded at one end and connected to
the gate by a low impedance circuit at the other end, the
reduced spectral density of the noise source at the gate
becomes42 S(ω) = 2Rgω/[h̄(1 − e−h̄ω/(kBTR ))], where Rg is the
effective resistance of the noise source and TR is the resistor
temperature. We note that the detailed balance condition
S(ω) = eh̄ω/(kBTR )S(−ω) applies. Furthermore, we introduce
dephasing to the system by assuming that S(0) = 2kBT0Rg/h̄

2,
where T0 is the effective dephasing temperature.

We denote the matrix elements of the current operator of
the kth SQUID by I

(n)
k,rs = 〈r (n)|Îk|s(n)〉. The expectation value

of the current using the adiabatic basis is

〈Îk〉 = ρ(1)
gg I

(1)
k,gg + ρ(1)

ee I
(1)
k,ee + 2Re

(
ρ(1)

ge I
(1)
k,eg

)
, (10)

since Îk is Hermitian. The first two terms are the dy-
namic supercurrent through the junction and the third term
describes the geometric part of the current.19,20,34,35 The
pumped charge corresponding to the geometric contribution
becomes

QG,k = 2Re

[ ∫ t+T

t

dt ′ρ(1)
ge (t ′)I (1)

k,eg(t ′)
]
, (11)

where T is the length of the closed cycle.
The definition for the different terms in the average current

only applies directly for the adiabatic basis. This implies that
if we pursue to obtain the geometric current using higher-
order bases, ρ(1)

ge should be written using the density-matrix
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FIG. 2. (Color online) Charge pumped through the Cooper pair sluice during one cycle assuming that the temperature of the environment
is TR = 0 (a) with the pumping frequency f = 10, 50, and 100 MHz and (b) f = 100 and 300 MHz. The simulations are carried out setting
the number of coordinate transformations to n = 1, 2, and 3. The physical parameters used in the simulations are T0 = 0.1 K, Rg = 300 k�,
EC/kB = 1 K, Emax

J r /kB = Emax
J l /kB = 0.1 K, εr = εl = 0.03, nmax

g = 0.8, η = 0.25, and ϕ = π/2.

elements in the basis where the evolution takes place in our
calculations. The adiabatic density matrix element can be
written as

ρ(1)
ge = 〈g(1)|ρ̂S |e(1)〉

= 〈0|D̂†
1ρ̂SD̂1|1〉 = 〈0|D̂(n)

S
ˆ̃ρ(n)
S

(
D̂

(n)
S

)†|1〉. (12)

Using this, we can rewrite the integrand in the pumped charge,

Re
{
ρ(1)

ge I
(1)
k,eg

}
= ρ(n)

gg Re
{
I

(1)
k,eg

(〈0|D̂(n)
S |0〉〈0|(D̂(n)

S

)†|1〉
− 〈0|D̂(n)

S |1〉〈1|(D̂(n)
S

)†|1〉)}
+ Re

{
ρ(n)

ge

}
Re

{
I

(1)
k,eg

(〈0|D̂(n)
S |0〉〈1|(D̂(n)

S

)†|1〉
+ 〈0|D̂(n)

S |1〉〈0|(D̂(n)
S

)†|1〉)}
− Im

{
ρ(n)

ge

}
Im

{
I

(1)
k,eg

(〈0|D̂(n)
S |0〉〈1|(D̂(n)

S

)†|1〉
− 〈0|D̂(n)

S |1〉〈0|(D̂(n)
S

)†|1〉)}
+ Re

{
I

(1)
k,eg〈0|D̂(n)

S |1〉〈1|(D̂(n)
S

)†|1〉}. (13)

Equation (13) enables us to calculate the pumped charge when
the time evolution of the nth basis density matrix is known.
Note that for the adiabatic basis, Eq. (13) reduces to the form
corresponding to Eq. (11).

B. Effect of the environment on the pumped charge

We use the parameter cycle shown in Fig. 1(b) for the
pumping and ensure the smoothness of the parameter functions
in time using trigonometric interpolation dividing the total
cycle time into 201 equidistant points. This is a necessary step
for the simulations as exploiting the high-order bases requires
that the high-order temporal derivatives of the parameter
functions stemming from ŵn are nondivergent. The dynamics
of the quantum system are solved numerically from Eqs. (5)
and (6) utilizing the effective Hamiltonians introduced in
Sec. II. The density matrix and any physical observables are
recorded in the steady state, that is, after sufficiently many

cycles such that the system evolution of consecutive cycles is
identical.

We begin by studying the effect of using the higher-
order bases when describing the dynamics of the sluice
in a zero-temperature environment. Using the lowest-order
approximation n = 1, the analytical result of the environment
inducing ground-state evolution in the adiabatic limit has
been demonstrated using numerical simulations of the pumped
charge.34,35 Additionally, increasing the pumping frequency
has been shown to induce regions where either the nonadiabatic
transitions or relaxation dominates depending on the ratio
α1/g. However, it turns out that a region in the (α1,g)
space emerges where the pumped charge is unphysically
overestimated. This is a direct result of the master equation
not strictly ensuring the positivity of the density matrix in any
finite order, that is, it does not reduce to the standard Lindblad
form.

We present the pumped charge using the basis {|g(n)〉,|e(n)〉}
with n = 1,2,3 as a function of the coupling strength g

for different pumping frequencies in Fig. 2(a) assuming a
zero-temperature environment. We explore the regime where
the strength of the environmental coupling is small to ensure
that we remain close to the weak-coupling limit. In the
adiabatic region (f = 10 MHz), all orders of approximation
indicate ground-state pumping for all environmental coupling
strengths as predicted in Sec. III. By increasing the pumping
frequency, we observe the emergence of the two pumping
regimes mentioned above. Additionally, Fig. 2(a) illustrates
how increasing the coupling strength does not lead to ground-
state pumping beyond the adiabatic region for n > 1. The
reason for this phenomenon stems from the structure of the
superadiabatic bases. For nonadiabatic evolution, increasing
the coupling strength leads to relaxation to |g(n+1)〉 up to
the first order in αn, which translates to ideal pumping only
for n = 1 as the system is forced to the solution of the
adiabatic limit, from which the asymptotic solutions for n > 1
generally deviate in all orders of the local adiabatic parameter.
The adiabatic solution for the pumped charge assuming
similar SQUIDS ε = εr = εl has been derived previously19
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FIG. 3. (Color online) Lower eigenvalue κg of the reduced density operator after n = 1, 2, and 3 coordinate transformations from bottom
to top (a) for f = 10 MHz and g = 0.01 and (b) for f = 100 MHz and g = 0.03. Inset of (a) shows κg for f = 10 MHz and n = 2 and 3 from
bottom to top. Other physical parameters are identical to those used in Fig. 2.

as QG = 2e(1 − 2ε cos ϕ). To make the discrepancy between
the high-order bases and the case n = 1 more visible, we
present the pumped charge up to high coupling strengths
in Fig. 2(b). The regime of increased coupling strength is
beyond the range of validity of our approach but shows how
the master equation properly displays the distinctions between
the different bases as they approach the asymptotic relaxation
dominated solutions.

From Fig. 2, it is clear that the charge overestimation
observed for n = 1 is alleviated by utilizing the high-order
bases. As the high-order bases follow the exact evolving closed
system state more closely, the nonadiabatic transitions disturb
the mixed state less. The major contribution in alleviating
the lack of complete positivity is already given by n =
2 and the subsequent third basis rotation has little effect
on the pumped charge in comparison. The effect of using
the higher-order bases is evident from studying not only a
set of observables but from the density matrix itself. We
present the lower eigenvalue κg of the steady-state density
operator ˆ̃ρ(n)

S in Fig. 3. The nonpositivity is greatly reduced
and for some parameter values, completely removed by
doing one or more further rotations beyond the adiabatic
basis.

C. Pumped current and the breakdown of adiabaticity

So far, experimental results for Cooper pair pumping using
the sluice have been scarce.14,20,43 However, the breakdown
of adiabaticity has been observed by studying the pumped
current IG as a function of the pumping amplitude nrange =
max{ng} − min{ng}, that is, at high pumping amplitudes
the pumped current has been noticed to deviate from the
analytical result in the adiabatic limit |IG| = 2enCPf , where
nCP is the number of Cooper pairs transported ideally through
the sluice per cycle.20 The number of transported Cooper
pairs can be experimentally dictated by adjusting the gate
voltage, more specifically, by altering nrange so that the ideally
transported average current corresponds to |IG| = 2enrangef .
Unfortunately, our master equation cannot be directly used to
simulate the effect of altering the pumping amplitude since

it is defined in a two-state basis, which requires that ng

remains approximately half integer during the evolution. Any
selection of the two charge states as the fixed basis enables
the maximum pumping amplitude of one Cooper pair per
cycle.

Even though we cannot modify the pumping amplitude, we
can still simulate the breakdown of the adiabaticity by altering
the pumping frequency. If we assume that the deviation from
the adiabatic behavior in the experiments is due to an increase
in the pumping speed caused by the amplitude growth using
a constant cycle time, the effect of decreasing the total cycle
time should be similar. We choose a frequency range beyond
the strict adiabatic limit to model experiments carried out with
finite cycle times. The pumped current is shown in Fig. 4(a)
using n = 1 and in Fig. 4(b) using n = 3. The behavior of the
pumped current with high frequencies is only suggestive but
clearly indicates that the effect of the number of coordinate
transformations increases with the pumping frequency. The
physically most relevant features are found near the point
where the adiabaticity breaks down. As we utilize a more
accurate description of the dynamics, the point where the
adiabaticity of the system is broken becomes more robust
against changes in the environment. Furthermore, we observe
the emergence of an optimal coupling strength, with which
the ideal ground-state pumping is conserved up to the highest
frequency. This feature could have also been anticipated from
Fig. 2 where we observe the emergence of a maximum
pumped charge as a function of the coupling strength for
any given frequency far from the adiabatic limit if n > 1.
This corresponds to the coupling strength, below which the
nonadiabatic transitions reduce the pumped charge and above
which the relaxation takes the system away from the solution
in the adiabatic limit. The optimal coupling strength can be
probed and exploited utilizing the environment engineering
scheme presented in Ref. 35.

We turn our attention to modeling the breakdown char-
acteristics of the actual experimentally pumped current in
Ref. 20. The simulation is motivated by the above discussion
on the pumping speed and we establish an equality between
the experimental pumping speed n

exp
range × fexp, where fexp is
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FIG. 4. (Color online) Current pumped through the sluice during one cycle as a function of the pumping frequency f with coupling
strengths g = 0.025, 0.05, 0.1, and 0.3 using (a) n =1 and (b) n = 3. Other physical parameters are identical to those used in Fig. 2. The linear
solid line is the ideal pumping curve for the two-state model |IG| = 2ef .

maintained at a constant value, and the pumping speed in
our simulation nsim

range × f , where nsim
range is a constant to ensure

that the two-state approximation holds. A comparison between
the experimental results and our simulations is presented in
Fig. 5.

The system parameters used in the simulations are esti-
mated from the experiments and can contain up to 20% error.
To simulate the experiments, the aforementioned equality
defines the needed frequency by f = n

exp
range × 23.33 MHz so

that the point where the adiabaticity breaks down according to
the experimental data would require a simulation frequency of
approximately 1.1 GHz. This is significantly higher than the
breakdown frequency in our previous simulations and tests the
limits of validity of our approach.

Assuming both vanishing dephasing in Fig. 5(a) and
nonvanishing dephasing in Fig. 5(b), the simulated pumped
current exhibits strong oscillatory behavior allowing for weak
predictability of the exact breakdown characteristics. The
observed behavior is due to quantum interference between
driving-induced excitations generated at different times. The
instantaneous transition probability is not only dependent on
the energy gap but also on the phases accumulated during the
quantum evolution. Especially if the phase difference between
two successive excitations in time is a multiple of 2π , the
transition probability reaches its maximum due to constructive
interference and the geometric current obtains a downward
resonance peak. Studying the phase accumulation during
the quantum evolution allows us to estimate the resonance
peak positions and compare them with the simulated pumped
current.

The time evolution of the energy gap of the system is
symmetric with respect to the midpoint of each pumping cycle
corresponding to times t

(i)
mid = (2i + 1) × T/2, i ∈ {0,1,2 . . .}.

In addition, the energy gap decreases during the two gate
manipulations and as both manipulations in Figs. 5(a) and 5(b)
are symmetric with respect to the degeneracy point ng = 1/2,
the energy gap reaches its minima at points we denote as
ti = (2i + 1) × T/4. Hence it is enough to study the phase
accumulation between different ti to depict the resonance
behavior.

In adiabatic evolution, the number of coordinate transfor-
mations we perform has a profound effect on the observed
accumulated phase, that is, each transformation takes us to a
new basis in which the phase accumulates differently. More
exactly, the closed system state |�(t)〉 follows the Schrödinger
equation ih̄|�̇(t)〉 = ĤS(t)|�(t)〉 at all times. After m trans-
formations, the state |�(m)(t)〉 = D̂1(t)D̂(m)

S (t)|�(t)〉 fol-

lows the transformed equation ih̄|�̇(m)(t)〉 = [ ˆ̃H
(m)

S (t) +
h̄ŵm(t)]|�(m)(t)〉. Assuming adiabaticity in this basis, that
is, the exact evolving state remains in the kth eigenstate of
ˆ̃H

(m)

S (t) + h̄ŵm(t), the m-times transformed evolving state can
be written, similarly to Ref. 44, as

|�(m)(t)〉 = exp

(
iα

(m)
k (t) − 1

h̄

∫ t

tin

dτẼ
(m)
k (τ )

)
|k̃(m)(t)〉,

(14)

where we assumed that |�(m)(tin)〉 = |k̃(m)(tin)〉, [ ˆ̃H
(m)

S (t) +
h̄ŵm(t)]|k̃(m)(t)〉 = Ẽ

(m)
k (t)|k̃(m)(t)〉, and α

(m)
k (t) describes the

geometric phase contribution. Using the familiar notation, this
implies Ẽ

(m)
k (t) = E

(m+1)
k (t) and |k̃(m)(t)〉 = D̂m+1(t)|kf 〉. The

accumulated quantum phases can be obtained from Eq. (14)
following the derivation in Ref. 44. However, in our dissipative
calculations, after n transformations, we take h̄ŵn + ˆ̃V (n) as the
perturbation. This means that for the dissipative simulations,
the relevant reference frame after n transformations is given by

the eigenbasis of ĤS(t) for n = 1 and ˆ̃H
(n−1)

S (t) + h̄ŵn−1(t) for
n > 1, that is, Ẽ(n−1)

k (t) = E
(n)
k (t) and |k̃(n−1)(t)〉 = D̂n(t)|kf 〉.

Concentrating on the two-state model, we present
the accumulated phases after n transformations. We as-
sume that the transitions taking place at ti are instanta-
neous and the system evolves adiabatically between them.
The dynamically accumulated phase obtained during adi-
abatic evolution between ti and ti+1 for the eigenstates
in the relevant reference frame after n transformations is
given by �

(n)
D,k(ti ,ti+1) = − ∫ ti+1

ti
dtE

(n)
k /h̄, k ∈ {g,e}, and it

is equal for any successive two points due to symmetry. The
geometrically accumulated phase �

(n)
G,k(ti ,ti+1) is not the usual
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FIG. 5. (Color online) (a)–(c) Pumped current per cycle given by the experiment (circles) and by the simulation (dashed lines). The linear
solid line is the ideal pumping curve assuming that the number of geometrically transported Cooper pairs is given by the pumping amplitude
|IG| = 2en

exp
rangefexp. The parameters from the experiments are EC/kB = 2 K, Emax

J r /kB = Emax
J l /kB = 0.7151 K, εr = εl = 0.05, ϕ = π/2,

and fexp = 14 MHz. For the simulations, we use TR = 200 mK, Rg = 300 k�, nmax
g = 0.8, and η = 0.25 giving nsim

range = 0.6. The effect of
dephasing is studied by using (a) T0 = 0 K and (b) T0 = 0.1 K, where the coupling strength is g = 0.025, 0.05 from bottom to top. In (c), we
present the pumped current for T0 = 1 K and g = 0.025 (solid), and the averaged pumped current for T0 = 0.1 K and g = 0.025 (dashed). The
corresponding relaxation rate of the system (solid), and the averaged relaxation rate (dashed) are given in (d) as a function of time. Experimental
data courtesy of M. Möttönen, J. J. Vartiainen, and J. P. Pekola.

Berry phase since ti with odd and even i describe different
points in the Hamiltonian space and thus the path traversed
between ti and ti+1 is not closed. Assuming adiabatic evolution,
we can write the noncyclic geometric phase acquired by the kth
eigenstate between two successive transitions using Eq. (14)
as36,44

�
(n)
G,k(ti ,ti+1) = arg{〈k̃(n−1)(ti)|k̃(n−1)(ti+1)〉}

+ i

∫ ti+1

ti

dt〈k̃(n−1)(t)|∂t |k̃(n−1)(t)〉

= arg{〈kf |D̂†
n(ti)D̂n(ti+1)|kf 〉}

+ i

∫ ti+1

ti

dt〈kf |D̂†
n(t) ˙̂Dn(t)|kf 〉. (15)

The geometric phase defined in Eq. (15) is gauge-invariant and
thus only depends on the traversed path. Using our parameter
cycle, the accumulated geometric phase for any successive two
points is the same. Note that as the transformations suppress the
time dependence of the effective Hamiltonians, the geometric
phase is decreased as n increases. The difference in the total

accumulated phase acquired by the eigenstates is

��
(n)
T (ti ,ti+1)

= �
(n)
T ,g(ti ,ti+1) − �

(n)
T ,e(ti ,ti+1)

= arg{〈0|D̂†
n(ti)D̂n(ti+1)|0〉} − arg{〈1|D̂†

n(ti)D̂n(ti+1)|1〉}

+
∫ ti+1

ti

dt
[
w(n)

ee (t) − w(n)
gg (t)

] +
∫ ti+1

ti

dt ω
(n)
01 (t). (16)

For a full cycle, we have ��
(1)
T (ti ,ti+2) ≈ 2(ϕ − 2ε sin ϕ) +∫ ti+2

ti
ω

(1)
01 (t), where we assume similar SQUIDs ε = εr = εl , as

the accumulated geometric phases become the Berry phases
in the adiabatic basis.8,19

In addition to the phases accumulated in adiabatic evo-
lution, we must account for any phase shifts occurring at
the transition. We apply the adiabatic-impulse model45 in
the relevant reference frame and describe the nonadiabatic
transitions taking place at ti as instantaneous processes.
The model is based on the Landau-Zener approximation46

assuming that in the vicinity of each ti , ĤS(t) for n = 1 and
ˆ̃H

(n−1)

S (t) + h̄ŵn−1(t) for n > 1 can be linearized in a fixed
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basis as

Ĥ
(n)
LZ (t) = −�n/2σ̂x ∓ vnt/2σ̂z, (17)

where σ̂x = |0〉〈1| + |1〉〈0|, the upper sign corresponds to odd
i and the lower sign corresponds to even i. The representation
of the Hamiltonian exploiting a time-independent basis is
usually referred to as diabatic. The tunneling amplitude �n

and the slope of the linearized energy bias vn are assumed
real. Our Hamiltonians do not exactly linearize into this form,
but the off-diagonal elements obtain phase factors related to
the phase difference over the sluice for n = 1 and to the
complex phase of w(n)

ge for n > 1. These phase factors can
be accounted for by a transformation to a representation where
the Hamiltonian linearizes to the Landau-Zener form. The
Landau-Zener transition probability from the ground state to
the excited state is given by P

(n)
LZ = exp(−2πδn), where the

adiabaticity parameter is δn = �2
n/(4vn).

We can generally linearize the relevant Hamiltonian after
n transformations in the diabatic representation in the vicinity
of each ti as

Ĥ
(n)
lin (t) = −�n(ti)e

iγn(ti )/2|0〉〈1| − �n(ti)e
−iγn(ti )/2|1〉〈0|

∓ vn(ti)t/2σ̂z, (18)

where γ1(ti) = arg{EJr (ti)e−iϕ/2 + EJl(ti)eiϕ/2} and γn(ti) =
arg{−w(n−1)

ge (ti)} for n > 1. Additionally, we have �1(ti) =
|EJr (ti)e−iϕ/2 + EJl(ti)eiϕ/2| and �n(ti) = |2h̄w(n−1)

ge (ti)| for
n > 1. Since the gate charge is altered symmetrically with re-
spect to the degeneracy point ng = 1/2 in Fig. 5, the lineariza-
tion yields v1(ti) = −2ECṅg(ti) and vn(ti) = −2[Ė(n−1)

g (ti)) +
h̄ẇ(n−1)

gg (ti)] for n > 1. Then the state of the system |ψ(t)〉
evolves according to ih̄|ψ̇(t)〉 = Ĥ

(n)
lin (t)|ψ(t)〉 near ti . Defin-

ing a transformation

Û
(n)
LZ (t) = eiγn(t)/2|0〉〈0| + e−iγn(t)/2|1〉〈1|, (19)

yields that the transformed state |ϕ(t)〉 = [Û (n)
LZ (t)]†|ψ(t)〉

follows ih̄|ϕ̇(t)〉 = Ĥ
(n)
LZ (t)|ϕ(t)〉 near ti and we can apply the

adiabatic impulse model. The evolution operator describing a
single Landau-Zener transition is45

N̂
(n)
LZ (ti − �t,ti + �t)

=
√

1 − P
(n)
LZ e−iϕ̃

(n)
S

∣∣e(n)
LZ(ti)

〉〈
e

(n)
LZ(ti)

∣∣
−

√
P

(n)
LZ

∣∣e(n)
LZ(ti)

〉〈
g

(n)
LZ(ti)

∣∣ +
√

P
(n)
LZ

∣∣g(n)
LZ(ti)

〉〈
e

(n)
LZ(ti)

∣∣
+

√
1 − P

(n)
LZ eiϕ̃

(n)
S

∣∣g(n)
LZ(ti)

〉〈
g

(n)
LZ(ti)

∣∣, (20)

where �t is a short time step, ϕ̃
(n)
S = ϕ

(n)
S − π/2, ϕ

(n)
S =

π/2 + δn(ln δn − 1) + arg{�(1 − iδn)}, � is the gamma func-
tion, and {|g(n)

LZ(t)〉,|e(n)
LZ(t)〉} is the instantaneous eigenbasis

of Ĥ
(n)
LZ (t). The evolution operator describing the Landau-

Zener transition in the original representation is obtained
with a simple back transformation N̂ (n)(ti − �t,ti + �t) =
Û

(n)
LZ (ti)N̂

(n)
LZ (ti − �t,ti + �t)[Û (n)

LZ (ti)]†.
Since the system is in the charging regime, δ1 � 1 implying

that P
(1)
LZ � 1. Furthermore, P

(n)
LZ decreases with increasing

n since δn ∼ α2
n−1. Thus with sufficiently large n, we are

in the slow-passage limit45 and, additionally, the temporal

suppression of the effective Hamiltonians in the adiabatic
renormalization yields that |g(n)

LZ(t)〉 ≈ |0〉 and |e(n)
LZ(t)〉 ≈ |1〉

so that N̂ (n)(ti − �t,ti + �t) becomes approximately diagonal
in the fixed basis. This implies that the transition causes
an impulsive phase difference between the instantaneous
eigenstates of the original effective Hamiltonian as

��
(n)
LZ(ti − �t,ti + �t)

= �
(n)
LZ,g(ti − �t,ti + �t) − �

(n)
LZ,e(ti − �t,ti + �t)

≈ 2ϕ̃S ≈ −π. (21)

Note that in this limit, the transformation Û
(n)
LZ (ti) becomes

negligible and hence the phase factor γn(ti) does not appear in
the impulsive phase difference.

The reference times relevant to the interference are close to
the transitions at ti − �t and ti+1 − �t , and the time evolution
of the system is described by the evolution operator N̂ (n)(ti −
�t,ti + �t)Û (n)(ti + �t,ti+1 − �t), where Û (n)(tin,tfin) de-
scribes the adiabatic evolution in the original representation.
Hence the phase difference between the excitations is the sum
of the impulsive and adiabatic phase differences accumulated
between the states D̂n(t)|0〉 and D̂n(t)|1〉. This implies that the
condition for the maximum constructive interference between
the successive excitations resulting in the maximum transition
probability is achieved with a frequency corresponding to

��
(n)
LZ(ti − �t,ti +�t)+��

(n)
T (ti + �t,ti+1 − �t)=2πN,

(22)

where N ∈ Z. Note that ��
(n)
T (ti + �t,ti+1 − �t) =

��
(n)
T (ti ,ti+1).

In the limit of sufficiently large n, Eqs. (21) and (22) yield
an approximate condition for the frequencies corresponding to
the downward resonance peaks as

��
(n)
T (ti ,ti+1) ≈ 2π

(
N + 1

2

)
. (23)

Note that ��
(n)
T (ti ,ti+1) is dependent on both the driving

frequency and the used basis. The oscillations should only be
present with high frequency and low environmental coupling
strength as decoherence destroys any low-amplitude interfer-
ence effects. We present the accumulated phase difference
��

(n)
T (ti ,ti+1) and compare it with the observed peak posi-

tions in Fig. 6. The resonance frequencies determined from
the pumped current show an excellent agreement with the
condition given in Eq. (23). This reaffirms our assumption
on the origin of the oscillations as being caused by quantum
interference between excitations and offers a way to predict
the resonance behavior in possible experiments. Using the
adiabatic basis also allows for a good estimate for low
frequencies. Furthermore, we conducted simulations similar
to the ones in Fig. 5 using ϕ = 0 and obtained new downward
resonance peak positions. Recalculating the accumulated
phase difference allowed us to verify that the approximate
condition in Eq. (23) still applies with excellent accuracy.
Further results regarding quantum interference in the Cooper
pair sluice, especially with respect to applications in phase
interferometry, have been derived recently.47

Figures 5(a) and 5(b) show that including dephasing
decreases the amplitude of the oscillations. From the point
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FIG. 6. (Color online) Comparison between the accumulated
phase difference and the observed resonance peaks in the pumped
current. The solid lines depict ��

(n)
T (ti ,ti+1) for n = 1 and n = 3

from bottom to top. The dashed vertical lines are the resonance peak
positions determined from the simulated pumped current in Fig. 5(b)
for g = 0.025.

of view of interference effects, this was to be expected as finite
dephasing time implies the excitations to lose some of their
phase coherence during the evolution. The current variation
in the experimental data is significantly lower implying
that the effective dephasing rate is most likely higher in
the experimental setup than in our simulation. However, to
account for the large variation in the gate voltage, a model
accounting for a higher number of energy levels would need
to be introduced resulting in more complex transitions. Thus
we refrain from making further comparisons and study the
breaking point of the adiabaticity.

In an effort to suppress the oscillations, we perform the
simulation for three different intervals for the gate charge
maintaining nrange = 0.6 and take an average over the results.
Moving the midpoint of the gate voltage in our control
cycle slightly from the degeneracy point alters the temporal
dependence of the energy gap, and thus changes the positions
of the resonance peaks. Taking an average should then decrease
the oscillations. We select the ranges as ng ∈ [0.2 + δng; 0.8 +
δng], where δng ∈ {−0.1,0,0.1}, so that the largest possible
range for the gate variation is obtained while maintaining
the two-state approximation with a reasonable accuracy.
The result of such averaging procedure for g = 0.025 with
dephasing is shown in Fig. 5(c). In Fig. 5(c), we also give
the pumped current with the same coupling strength and
increased effective dephasing temperature to suppress the
interference effects. Comparison with the experimental data
shows that we obtain a decent estimate for the breakdown
characteristics with this environmental coupling strength using
both methods. The temporal dependence of the corresponding
relaxation rate of the system �eg = |m(n)

2 |2S(ω(n)
01 ) and of the

relaxation rate averaged over the three different simulations
is presented in Fig. 5(e) at f = 14 MHz. It is evident that
the relaxation is strongest during gate operations due to
nonadiabatic transitions, as expected.

V. CONCLUSIONS

We introduced and demonstrated a method of applying
successive coordinate transformations to describe accurately
the dissipative dynamics of a steered two-level quantum
system. Our method utilizes superadiabatic bases and the
theory for nonsteered systems to obtain a master equation
where the error resulting from the truncation of the perturbative
expansion in the local adiabatic parameter is decreased.

We applied our method to Cooper pair pumping and showed
that in the adiabatic limit, all orders of approximation return
the ideal pumping result. In the zero-temperature limit and
increased pumping frequency, increasing the strength of the
environmental coupling was shown to induce ideal ground-
state pumping only in the lowest order of our description.
Furthermore, using high-order bases was shown to reduce
the overestimation of the pumped charge stemming from the
nonpositivity of the reduced density matrix of the system. This
is due to the high-order bases tracking the exact evolving state
more closely. The major effect of these corrections was shown
to be captured by the basis obtained with two transformations,
i.e., the first superadiabatic basis.

We studied the breakdown of adiabaticity by simulating the
pumped current with increasing pumping frequency. The high-
order theory was shown to provide a more accurate picture of
the robustness of the breakdown frequency against changes
in the environment. An optimal strength of the environmental
coupling was discovered preserving the adiabaticity of the
system for the highest pumping frequency. The recently
proposed35 environment engineering scheme can potentially
be used to probe and exploit this optimal point.

Finally, we applied our theory to model experimental pump-
ing results similar to those of Ref. 20. We altered the pumping
frequency to simulate the increased pumping amplitude and
observed oscillatory behavior of the pumped current caused
by quantum interference between driving-induced excitations
generated at different times. We presented a condition for the
highest excitation probability due to constructive interference
and showed that the observed downward resonance peaks in
the pumped current accurately corresponded to this condition.
Using an averaging procedure and increasing the effective
dephasing rate were methods that enabled us to finally
present an estimate for the relaxation rate of the system.
However, a many-state theory should be developed to facilitate
more accurate predictions allowing us to alter the pumping
amplitude. A seemingly valid approach could exploit the
cyclic nature of the steering utilizing the Floquet theory, which
would possibly allow for generalizations beyond the adiabatic
evolution.48,49
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