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two-band α model

E. G. Maksimov,1 A. E. Karakozov,2 B. P. Gorshunov,3,4,* E. S. Zhukova,3,4 Ya. G. Ponomarev,5 and M. Dressel6
1P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

2L.F. Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region, 142190, Russia
3A.M. Prokhorov Institute of General Physics, Russian Academy of Sciences, 119991 Moscow, Russia

4Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudny, Moscow Region, Russia
5Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia

61. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
(Received 25 July 2011; revised manuscript received 14 October 2011; published 7 November 2011)

The generalized two-band α model of superconductivity is consistently developed by taking into account the
interband electron-phonon interaction. The model is applied to calculate the electronic contribution to the specific
heat, superconducting gaps, and electron-phonon coupling constants of the multiband layered superconductors
MgB2 and Ba(Fe0.925Co0.075)2As2. For both compounds, the energy gaps and electron-phonon coupling constants
are determined, and the temperature behavior of the specific heat is obtained that describes the experimental data
well. It is shown that the well-known two-band α model that assumes independent bands is formally valid only
in the case of relatively strong interband scattering in the band with a smaller gap.
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I. INTRODUCTION

Interest to theoretical investigation of electronic spe-
cific heat of two-band superconductors has reemerged
(see review1 and references therein) after the discovery
of layered superconductors—magnesium diboride and iron-
pnictides/chalcogenides. In this new class of superconductors,
as distinct from classical two-band superconductors (like Nb,
V, and others), the two-band character of superconductivity
reveals itself in an anomalous temperature behavior of the
specific heat, Cs(T ).2,3 The main peculiarities appear in the
Cs(T ) dependences at relatively low temperatures, T ∗� Tc, in
the form of characteristic features whose origin can naturally
be considered as caused by bumps in Cs(T ) coming from
the band with a smaller superconducting (SC) gap �min (in
the case of independent bands, these jumps would be real
specific heat jumps at corresponding critical temperatures
T ∗ ∼ T (0)

c min = �min(0)/1.764).
During the last 10 years, a large amount of theoretical papers

has been published on the properties of layered superconduc-
tors. We briefly review some of them that are directly related
to the present work. They include first-principles calculations
of electron-phonon interaction (EPI) in single crystalline
MgB2,4–6 fundamental investigations of the thermodynamics
of two-band superconductors (Refs. 7 and 8 and detailed
literature review therein), a paper,9 where the role of various
defects in MgB2 is analyzed, and a more recent work.10

In Refs. 7–9, calculations have been made both within the
Eliashberg theory with the first-principles EPI and based on the
model Bardeen–Cooper–Schrieffer (BCS) interaction. Here,
detailed numerical studies of general properties (including
specific heat) of two-gap superconductors were performed.
However, the methods used could hardly be applied to
theoretical analysis of real (polycrystalline and/or containing
impurities/defects) and even of single crystalline samples.
Comparison of EPI parameters obtained in first-principles
calculations by various authors4–6 shows that the absolute

accuracy of the determination of EPI constants is less than
0.1. For interband constants that are of the order of Coulomb
pseudopotential,4–6 this uncertainty is definitely too large
and does not allow correct calculation of the temperature
variation of the smaller gap �min(T ) and specific heat Cs(T )
at temperatures above T ∗ since these two quantities are
strongly sensitive to the value of interband interaction (see
for example Ref. 7). The problem becomes especially serious
while calculating the Leggett modes �L(T ).11 For example,
on the basis of first-principles calculations of EPI, it has
been concluded in Ref. 12 that the Leggett plasmons cannot
propagate in MgB2—in clear contradiction with experimental
data.13 An attempt14 to calculate the specific heat of MgB2

in the frame of classical two-band BCS theory can hardly be
considered as successful.

In order to calculate the Cs(T ) dependences of real two-
band superconductors, a calculation technique is frequently
employed that is known as two-band α model (2Bα model).2

In some cases, the model allows one to relatively simply
and determine rather well, basing on the specific heat Cs(T )
curve, the low temperature values of SC energy gaps. It is
based on a straightforward application of the single-band α

model15 to each band and, thus, does not take into account the
main feature of the two-band superconducting system—the
interband interaction. This model takes into account empirical
parameters α1,2 = �1,2(0)/T

exp
c , and the same dependence of

reduced SC energy gaps δ1,2(t) = �1,2(T /Tc)/�1,2(0) on the
reduced temperatures t = T /T

exp
c is taken that is given by a

standard BCS function δ0(t).15 In reality, this way of analysis
is absolutely unacceptable, at least for the smaller gap δmin(t),
that is strongly depending on the interband interaction and
whose anomalous temperature variation determines specific
behavior of Cs(T ) of two-band superconductors.

For a more correct calculation within the 2Bα-like formal-
ism of δ1,2(t), one should use the BCS-like two-band equations
that take into account some empirical parameters α1,2 in
combination with self-consistency conditions on α1,2 that
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follow from general properties of two-band BCS equations.
We have successfully used this kind of generalization of
the 2Bα model earlier to analyze the tunnel experimental
data of Mg1-xAlxB2 (Ref. 16) and the optical experiments
on Ba(Fe0.9Co0.1)2As2.17 In this communication, we describe
calculations of specific heat of a two-band superconductor
by applying the BCS-like equations under a more general
(compared to Refs. 16 and 17) assumption about weak
coupling in one of the bands—an assumption that is valid
for practically all layered Fe-based superconductors and for
MgB2. We first present a brief review of the main properties
of two-band BCS equations (second section). Main attention
is paid to an analytical exploration of reduced SC energy gaps
and to the dependence on the interband interactions of the
important parameters of empirical models αJ (J = 1, 2)—the
ratios of the superconducting gaps to the critical temperature;
simple analytical expressions for such dependences are derived
that actually represent the self-consistence conditions for α1,2.
Using these conditions, in the third section, we obtain the
BCS-like equations with parameters α1,2 for the case of
weak coupling in one of the bands. Finally, we apply the
developed formalism to analyze experimental dependences
Cs(T ) of Mg11B2 (Ref. 2) and Ba(Fe0.95Co0.075)2As2 (Ref. 3)
and to determine SC energy gaps and EPI constants of these
compounds.

II. SOME GENERAL PROPERTIES OF TWO-BAND
BCS SUPERCONDUCTORS

The two-band BCS equations that determine the tempera-
ture dependence of the SC gaps can be written as:7

�I (T ) =
∑

J=1,2

λIJ �J (T )
∫ �c

0
dξ tanh[EJ (ξ )/2T ]/EJ (ξ ),

(1)

EJ (ξ ) =
√

ξ 2 + �2
J (T ). (2)

Here �c is the characteristic phonon frequency and EJ (ξ )
is the quasiparticles spectrum in the band J (J = 1, 2). The
renormalized EPI coupling constants are expressed via BCS
paring constants λ̃0

IJ as

λ̃0
IJ = λ0

IJ − μ∗
IJ , (3)

where λ0
IJ (I = 1, 2 and J = 1, 2) is the EPI coupling constant

and μ∗
IJ is the Coulomb pseudopotential

λIJ = λ̃0
IJ

/(
1 + λ0

II+λ0
I �=J

)
. (4)

It is convenient to rewrite Eq. (1) in the form16

∫ �c

0
dξ tanh[E1(ξ )/2T ]/E1(ξ ) = λ̃22 − λ̃12θ (T ), (5)

∫ �c

0
dξ tanh[E2(ξ )/2T ]/E2(ξ ) = (λ̃11 − λ̃21)/θ (T ), (6)

θ (T ) ln θ (T ) = −[λ̃11 − λ̃22 − δn12(T )]θ (T )

−λ̃12θ
2(T ) + λ̃21, (7)

where θ (T ) = �2(T )/�1(T ) is the gap ratio, δn12(T ) =
n1(T ) − n2(T ) and nJ (T ) is the normalized quasiparticles
number for the band J :

nJ (T ) = 2
∫ ∞

0
dξf [EJ (ξ )/T ]/EJ (ξ ) (8)

with f [EJ (ξ )/T ] being the quasiparticles distribution function
and λ̃IJ the effective coupling constant:

λ̃IJ = λIJ

λ11λ22 − λ12λ21
= λIJ

λ11λ22

1

[1 − λ12λ21/(λ11λ22)]
.

(9)

To obtain a self-consistent solution, any convenient pair of
equations of Eqs. (5)–(7) can be taken. Obviously, the effective
coupling constants λ̃IJ given in Eq. (9), and especially the
interband (I �= J ) coupling constants, are strongly sensitive
to the relative magnitude of the interband interaction. (Typical
values of λ̃IJ are given in Table I.) The situation when the
determinant of Eq. (1) vanishes, λ11λ22 − λ12λ21 → 0, does
not represent any special interest; in this case, the gap ratio
does not depend on temperature, θ (T ) = λ21/λ11 = λ22λ12 =
const, as can easily be shown using Eq. (1).

Knowing the available data on the EPI in layered
superconductors,4–6 in the following, we consider only positive
effective coupling constants λ̃IJ , Eq. (9). Then for T = 0, the
task is reduced to finding of a suitable θ (0) that provides the
solution of Eq. (7)

λ̃11 − λ̃22 = − ln θ (0) − λ̃12θ (0) + λ̃21/θ (0) (10)

with subsequent determination of the gaps �1,2(0) according
to the following expressions

ln[2�c/�1(0)] = λ̃22 − λ̃12θ (0),
(11)

ln[2�c/�2(0)] = λ̃11 − λ̃21/θ (0).

Below, we consider some general properties of the two-
band superconductor that is described by Eqs. (5)–(7), at finite

TABLE I. Parameters of the superconducting state calculated for a superconductor in the weak coupling regime (1 and 2), a layered
superconductor of the family Mg1-xAlxB2 with Tc = 32 K (Ref. 16) (MgB2), and an example that demonstrates the dependence of α1 (and Tc)
on interaction λ̃12 (labeled “MgB2”).

Sample λ0
11 λ0

22 λ0
12 λ0

21 μ∗ θ (0) λ̃11 λ̃22 λ̃12 λ̃21 α1 α
exp
1

1 0.4 0.2 0.2 0.15 0.1 0.29 16.2 6.4 5.4 3.2 2.04 2.04
2 0.4 0.12 0.2 0.15 0.1 0.29 13.9 5.2 0.93 2.62 1.82 1.82
MgB2 0.82 0.43 0.124 0.157 0.12 0.29 5.12 2.78 0.03 0.33 1.78 3.08
“MgB2” 0.29 5.107 0.33 3.08

174504-2



ELECTRONIC SPECIFIC HEAT OF TWO-BAND LAYERED . . . PHYSICAL REVIEW B 84, 174504 (2011)

temperatures and under the assumption �1(0) > �2(0). It is
easy to show that, in this case, due to different amounts of
quasiparticles [Eq. (8)] in the bands, n1(t) < n2(t), and during
growth of the temperature, the gap ratio θ (T ) will decrease
down to its minimal value reached at Tc

θ (Tc) = 1

2λ̃12
[−λ̃11 + λ̃22 +

√
(λ̃11 − λ̃22)2 + 4λ̃12λ̃21]

(12)

with the critical temperature determined from

ln
2γE�c

πTc

= 1

2
[λ̃11 + λ̃22 −

√
(λ̃11 − λ̃22)2 + 4λ̃12λ̃21].

(13)

We note that, in the above two expressions, the signs of the
square roots correspond to the case λ̃IJ > 0; otherwise, these
signs should be inverted. Equations (10)–(13) allow one to
determine the important parameters of the theory—the ratios
of the superconducting gaps to the critical temperature αJ =
�J (0)/Tc:

α1 = α0e
�1 , α2 = α0e

�2 ≡ α1θ (0), (14)

�1 = λ̃12θ (0) − 1

2
[
√

(�̃12)2 + 4λ̃12λ̃21 − �̃12], (15)

where α0 = π/γE ≈ 1.764, and �̃12 is the right part of Eq. (10).
The so-determined parameters �1,2 (and αJ ) depend only on
the values of θ (0) and of effective interband constant λ̃IJ . In
order to evaluate α1, Eq. (14) has to be rewritten in a more
visual form

�1 = λ̃12{θ (0) − θ (Tc)} > 0. (16)

It is easily seen that, even in conditions of a relatively
weak interband interaction when the parameter θ (0) depends
mainly on intraband coupling constants and θ (Tc) ∼ λ21, for
λ12 > λ21 the ratio α1 of �1(0) to the critical temperature can
be rather large—even for weak coupling superconductors (see
Table I). This means that, opposite to conventional regular
superconductors, in the two-band superconductors, the large
values of α1, α1 > 1.764 , are not unambiguously indicative
of strong EPI.

The three parameters θ (0), λ̃12, and λ̃21 represent a complete
set of the two-band BCS equations for the reduced gaps δJ (t) =
�J (t)/�J (0) at finite temperatures:

ln δ1(t) = −n1(t) − λ̃12θ (0)[1 − δ2(t)/δ1(t)], (17)

ln δ2(t) = −n2(t) − λ̃21/θ (0)[1 − δ1(t)/δ2(t)], (18)

nJ (t) = 2
∫ ∞

0
dωf [αJ εJ (ω)/t]/εJ (ω), (19)

εJ (ω) =
√

ω2 + δ2
J (t). (20)

In Eqs. (19) and (20), εJ (ω) is the reduced spectrum
of a superconductor and t = T /Tc is the reduced tem-
perature. It is seen that Eqs. (17) and (18) are much
simpler than initial Eq. (1), and this allows one to easily
determine the dependences of reduced gaps on the interband
interaction.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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δ 2(t
)

t

FIG. 1. Dependence of reduced gaps δ2(t) = �2(t)/�2(0) on the
reduced temperature t = T /Tc calculated with θ (0) = 0.275, α1 =
1.78 for two superconductors with different interband couplings, (a)
λ̃12 = 0.05 and λ̃21 = 0.1 (filled symbols) and (b) λ̃12 = 0.22 and
λ̃21 = 0.8 (open symbols). Dashed line shows the δ0(t) dependence
calculated according to the two-band α model that does not consider
the interband interaction. [In the two cases, the reduced gaps δ1(t)
practically coincide with δ0(t) and are not shown.]

The quantities α1,2, λ̃12, and λ̃21 that enter Eqs. (17) and
(18) characterize the intraband and the interband fluctuations,
respectively. Let us consider the contribution of interband
fluctuations. The ratio δ2(t)/δ1(t) = θ (t)/θ (0) < 1 and
decreases with increasing temperature. For that reason, the
contribution of interband fluctuations leads to the decrease
of the gap δ1(t) and to an increase of δ2(t); this contribu-
tion, however, will never overcome the intraband one. This
implies that, for large interband constants, λ21 > λ22, the
gaps values become equal: δ2(t) → δ1(t) and α1 → α0 [see
Eq. (16)], and the values of both reduced gaps approach
δ0(t)—the solution of a standard BCS equation. Note that
the amplitudes of reduced gaps, δ1,2(t), at any temperature
do not exceed the value δ0(t), and their temperature depen-
dences at t → 1 are weaker compared with the dependence
δ0(t).

Figure 1 shows the dependence of the reduced gap δ2(t)
on interband constants values λ̃IJ ; the data in this figure are
calculated for two kinds of superconductors, (a) and (b), that
have the same ratios of the gaps θ (0) and the same ratios α1,2

of the gaps to the critical temperature, but different interband
interactions: (a) λ̃12 = 0.05,λ̃21 = 0.1; (b) λ̃12 = 0.22,λ̃21 =
0.8. For comparison, also the reduced gap is plotted calculated
according to the well-known two-band α model that assumes
δ1,2(t) equal to δ0(t). The crucial role played by interband
interaction is clearly seen.

The temperature dependence of the specific heat Cs

of a superconductor is usually characterized by the ratio
Cs(T )/γnTc. For a two-band superconductor, the specific heat
can be calculated in a usual manner.1,15 Writing down the
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expression for the entropy SJ (T ) [or normalized entropy
sJ (t) ≡ SJ (t)/γJ Tc] of a free Fermi gas with the spectrum
given by Eqs. (2) and (20)

SJ (T ) = 2NJ (0)
∫ ∞

−∞
dξ ([EJ (ξ )/T ]f [EJ (ξ )]

− ln{f [−EJ (ξ )]}), (21)

sJ (t) = 3αJ /π2
∫ ∞

−∞
dω([αJ εJ (ω)/t]f [αJ εJ (ω)/t]

− ln{f [−αJ εJ (ω)/t]}), (22)

where γJ = 2π2N (0)/3 is the coefficient of normal electronic
specific heat of the band J (γn = γ1 + γ2), we get

[cs(t)/γnTc]/t = d

dt

[
γ1

γn

s1(t) + γ2

γn

s2(t)

]
. (23)

The dependences of the electronic specific heat on interband
interaction, again for the two kinds of superconductors,
(a) and (b), are shown in Figs. 2 and 3. For comparison,
these figures contain also the correspondent curves calculated
within the standard (no interband interaction considered)
two-band α model2 with the same values of α1,2 as in (a)
and (b). Figure 2 clearly demonstrates all peculiarities of
the temperature behavior of the specific heat of a two-band
superconductor. There is a feature around T ∗(α2)—a smeared
(by the interaction λ̃21) kink in the specific heat of the band with
a smaller gap. In the limit λ̃21 
 1 [corresponding to δ2(t) →
δ0(t), as we have seen, i.e. to the standard two-band α model]
the kink becomes much smoother. In the same manner, the
interaction λ̃12 smoothes the kink around Tc that is connected
to the first band. From Eq. (23), it is seen that the feature

FIG. 2. Temperature dependence of normalized electronic spe-
cific heat of the band with smaller gap calculated with θ (0) = 0.275,
α1 = 1.78 for two superconductors with different interband coupling,
(a) λ̃12 = 0.05 and λ̃21 = 0.1 (filled symbols) and (b) λ̃12 = 0.22 and
λ̃21 = 0.8 (open symbols). Dashed line shows calculation according
to the two-band α model that does not consider the interband
interaction.

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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γ nT
c)

/t

t

FIG. 3. Temperature dependence (t = T /Tc)of normalized elec-
tronic specific heat calculated with θ (0) = 0.275, α1 = 1.78 for
two superconductors with different interband couplings, (a) λ̃12 =
0.05 and λ̃21 = 0.1 (filled symbols) and (b) λ̃12 = 0.22 and
λ̃21 = 0.8 (open symbols). Dashed line corresponds to calculations
according to the two-band α model with γ1/γn = 0.55 and
γ2/γn = 0.45.

originating from the band with a smaller gap is more developed
when the weight γ2/γn of this band is large enough and when
θ (0) � 1 (at T ∗ � Tc).

We conclude this section by briefly discussing how the
two-band α approach can be used for determination of the gaps
values from the temperature dependences of the specific heat.
One of the merits of the two-band α model is the possibility
to correctly determine the value of the smaller gap (α2) by
considering the experimental data at lower temperatures; after
that, the larger gap (α1) can also be found from the jump
of the specific heat within the temperature interval closer to
Tc. The amplitude of this jump is easily found within the
two-band α model by direct calculations of the normalized
specific heat, Eq. (22) C̃s at the transition point by using
the known dependence from the BCS theory δ0(t → 1)
(Ref. 18)

C̃sJ = 1 + 12

7ζ (3)

(
αJ

α0

)2

, (24)

C̃s = 1 + 1.426

(
α1

α0

)2
γ1 + γ2θ

2(0)

γn

. (25)

Here, ζ is the zeta-function. According to Eqs. (17) and
(18), the two-band α approach is indeed theoretically correctly
describing the temperature dependences of the gaps values
(and of the specific heat) at temperatures T � T ∗ (see also
Figs. 2 and 3 where the symbols represent the accuracy
that could be obtained in experiment). However, in order to
approximate the experimental curve in a larger temperature
interval up to T ∼ T ∗, one would have, generally speaking,
to decrease the magnitude of the smaller gap (α2) relative
to its real value. Note, however, that even with this kind
of fitting, the data can be realized only in the case of
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relatively strong interband interaction (or in dirty enough
superconductors). Due to a weaker temperature dependence of
δ1,2 compared to δ0(t), the specific heat jump in the two-band
BCS superconductor appears to be smaller than the jump
obtained within the two-band α model. This means that, in
order to approximate the curve Cs(t) with the two-band α

model at temperatures around Tc, the larger gap has to be
reduced relative to its real value. Formally, in the two-band
α model, the gaps values can be determined more precisely
only for interaction strengths λ21 > λ22. This model, still,
can describe the experimental data rather well (depending on
experimental uncertainty) and provide reasonable estimates of
α1,2 values also under more soft condition λ21 ∼ λ22. However,
it is not able at all to deliver a correct temperature variation
of energy gaps (Fig. 1) and more so the values of the EPI
constants of the considered compounds.

III. ELECTRONIC SPECIFIC HEAT OF LAYERED
TWO-BAND SUPERCONDUCTORS

The properties of conventional superconductors at low
temperatures are well described within the BCS approach
where the EPI coupling constants and the energy �c are
determined by the EPI spectral function α2(ω)F (ω). (A
detailed discussion is presented in Ref. 19.) However, at finite
temperatures, the properties of real superconductors can be
noticeably different from those predicted by the BCS theory,
Eq. (1). In particular, application of the BCS formalism to
the strong coupling superconductors overestimates the value
of Tc (and correspondingly underestimates the value of α),
see Table I. Nevertheless, while calculating the properties
of conventional strong-coupling superconductors, the BCS
theory can be successfully applied also for finite temperatures
according to an empirical recipe given by the α model.15

In particular, to calculate the electronic specific heat within
the α model, one has to use the BCS expression Eq. (22)

with the spectrum ε(ω) =
√

ω2 + δ2
0(t = T /T

exp
c ) and to set

α = αexp.
The success of the α model is based on the fact that its

results can be obtained theoretically by formally introducing
the kernel of the correction term kα = T

exp
c /T 0

c into the BCS
equation

ln[�(T )/�(0)]

= −2
∫ �c

0
dξf

{(
T exp

c /T 0
c

)
[EJ (ξ )/T ]

}
/EJ (ξ ). (26)

This guarantees that the correct value of Tc = T
exp
c is then

obtained. Along with that, the BCS-like Eq. (26) looks exactly
the same as the BCS equation for the reduced gap dependent
on the reduced temperature, δ(t). To make a clear distinction
to the empirical α model, this kind of theoretical approach
should more appropriately be named as α approximation.

In the two-band case, the α approximation, Eq. (26),
also provides a correct value of Tc keeping the form of
Eqs. (17) and (18) unchanged. Such approach, however, is
not universal because the strong coupling corrections are
different for the two bands. This can be easily shown taking
as an example the nearly independent (λ̃12 → 0, λ̃21 → 0)
bands with strong and weak coupling �1(0) > �2(0). In

such case α1 → α0 and α2 → α0(T 0
c2/T

0
c1), implying that

for reduced temperatures t � t∗ = T 0
c2/T

0
c1 < 1 the gap value

δ2(t) → 0. Thus, the critical temperatures Tc1 and Tc2 ≈ T ∗
in independent bands appear to be equal to Tc1 = T

exp
c and

Tc2 = T 0
c2(T exp

c /T 0
c1) � T 0

c2, respectively. This example shows
that in order to improve the α approximation-like Eqs. (17)
and (18), the two correction coefficients of the type k1,2 =
β1,2(λIJ )kα have to be taken into account, providing on the
one hand the correct values of Tc = T

exp
c and on the other

hand the correct behavior of the weak-coupling band in the
limit of independent bands. In Eqs. (17) and (18), this will
lead to the formal redefinition of α1,2, i.e. of �1,2(0) and θ (0),
since Tc [Eq. (13)] depends only on the coupling constants
and is not changed during such redefinition. In the general
case, this kind of procedure is difficult to realize. At the same
time, for the bands with strong and weak coupling in the limit
λ̃12 � 1 the correction coefficients are easily found: k1 = kα ,
k2 = 1. Here, α1 = α0, α2 = α

exp
2 , and assuming indepen-

dent bands, the critical temperatures become Tc1 = T
exp
c and

Tc2 = T 0
c2.

The above example can easily be generalized to the case
of finite λ̃12 by redefining the parameters in Eqs. (17) and
(18): α2 = α

exp
2 and α1 → α

′
, where α

′
is determined by

Eq. (14) and by a self-consistency condition α′1θ ′(0) = α
exp
2 .

This approximation can be named an α
′
approximation. Here,

the parameter t keeps the meaning of a reduced temperature
[δ1,2(t = 1) = 0, t = T /T

exp
c ] and the auxiliary parameters α

′

and θ
′
(0) are purely formal and carry no particular physical

sense. (We note that the BCS-like equations within the α and
α

′
approximations keep the same form of the BCS equations

whose properties are described in detail in Sec. II). Now, the
spectral functions εJ (ω) = √

ω2 + δ2
J (t), found with the help

of two-band BCS-like equations, can be used for generalization
of the standard two-band α model.

We have applied the so-generalized two-band α model
in Ref. 16 to analyze the tunnel experiments on the two-
gap superconductors Mg1-xAlxB2. The EPI seed coupling
constants have been unambiguously calculated for �c =
67.76 meV and for μ∗

IJ ≈ 0.12 based on the experimental
values of �1,2(0) and of Leggett mode energy �L(0) (Ref. 11)
with the values of θ (T → Tc) considered; note that the
Leggett mode energy is extremely sensitive to the interband
as well as the intraband interactions. Calculations within
the α

′
approximation give a very good agreement with

experimental results presented in Ref. 13 and obtained not
only for the temperature variation of both gaps �1,2(T ) but
also for the Leggett mode energy �L(T ) (see Fig. 4). We have
applied the same technique for calculations of the temperature
variation of the superconducting condensate density and of the
London penetration depth determined for Ba(Fe0.9Co0.1)2As2

in Ref. 20. The results of our calculations according to the
α and α

′
approximations are presented in Figs. 4 and 5,

together with the results obtained according to the standard
two-band α model. We see that the experimental data are
well reproduced by calculations performed within the α

′

approximations. Unfortunately, there are no specific heat data
for the samples measured in Refs. 13 and 20, and a comparison
with our calculations is not possible.

Up to now, the properties of most layered superconductors
are not studied in all details, and rather often, their char-
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FIG. 4. Temperature dependence of the gap 2�π (filled symbols)
and of the Leggett mode energy �L (empty symbols) of Mg1-xAlxB2

with Tc = 32 K (Ref. 13). Thick and thin solid lines are calculations
within the α

′
approximation of the gap and Leggett mode energies,

respectively. Lines with filled and empty square symbols are calcula-
tions according to the α approximation of the gap and Leggett mode
energies, respectively. Grey line shows calculation according to α

approximation.

acteristics are determined by using indirect methods based
on theoretical models. For example, in Refs. 2 and 3, the
two-band α model was employed to determine the gaps values
�1,2(0) from the temperature variation of the specific heat
Cs(T ). In these publications, surprisingly, a good agreement
has been found in the whole temperature interval, between the
two-band α calculations and experimental dependences Cs(T )
for Mg11B2 (Tc = 38.7 K) (Ref. 2) and Ba(Fe0.95Co0.075)2As2

(Tc = 21.4 K).3 As was discussed in Sec. II, such good
agreement can be achieved in the two-band BCS-model (and
in generalized two-band α model) under condition λ21 � λ22,
i.e. within the whole range of EPI constants. This assumes
some uncertainty in the definition of EPI constants from
experimental data in such cases. Calculation of electronic
specific heat of such superconductors allows one to estimate
potentialities of the generalized two-band α model when
analyzing available experimental data of the specific heat
Cs(T ).

We have used the α
′
approximation to calculate the specific

heat of Mg11B2 and of Ba(Fe0.95Co0.075)2As2 [referred to
as Ba(FeCo)As in Table II]. The results are presented by

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t

ρ S
/ρ

S
(0

)

FIG. 5. Temperature dependence of normalized superconducting
condensate density of Ba(Fe0.9Co0.1)2As2 (Ref. 20) (symbols). Lines
correspond to calculations according to the α

′
approximation with

λ̃12 ∼ λ̃21 ∼ 0.1 (thick), α approximation (thin) and two-band α

model (grey).

Figs. 6 and 7 and in Tables II and III. It can be seen
that within the experimental accuracy the specific heat data
obtained in Refs. 2 and 3 are very well approximated by a
set of curves with effective coupling constants λ̃12 � λ̃max

12 ,
λ̃21 � λ̃min

21 and parameters α1,2 that are changing from the
values indicated in Table II (fit max-min) to the values
calculated within the two-band α model. These latter values are
obtained for the interband interaction λ̃12 ∼ 0.1 � λ̃21 ∼ 3.5
(fit min-max). According to the formal approximation criteria,
the parameters of the min-max fit are close to optimal. In
Figs. 6 and 7, the fit min-max curves are shown with empty
symbols. The fit min-max curves that are coinciding with
those obtained within the two-band α model are not shown
here.

A comparison of the gaps �1,2(0) in Mg11B2 (Tc =
38.7 K) given in Table II with their values in MgB2 (Tc =
40.5 K) �1(0) ≈ 10 meV, �2(0) ≈ 2.6 meV (Ref. 13)
indicate different degrees of imperfection of the samples
studied in Refs. 2 and 13. The difference, however, cannot
be accounted for by elastic interband scattering on impurities
that would lead to an increase of the smaller gap.9 It looks
more probable that the difference should be connected to the
different electron-phonon scattering caused by defects in the
crystal structure. The smaller gap in Ba(Fe0.925Co0.075)2As2

(Tc = 21.4 K) agrees well with the values reliably determined
from the optical experiments20 Ba(Fe0.9Co0.1)2As2 (Tc ≈
20 K): �2(0) ≈ 15 cm−1 (1.85 meV) and �1(0) ≈ 30 cm−1

(3.9 meV).

TABLE II. Gap values and coupling and other parameters characterizing superconducting Mg11B2 (Ref. 2) and Ba(Fe,Co)2As2 (Ref. 3).

Sample/reference Fit λ̃max
12 λ̃min

21 α1(λ̃max
12 ,λ̃min

21 ) α2(λ̃max
12 ,λ̃min

21 ) �1 meV �2 meV

Mg11B2 (Ref. 2) α
′

1.9 2.75 2.3088 0.6 7.77 2.0
Two-band α 2.2 0.6 7.337 2.0

Ba(Fe,Co)2As2 (Ref. 3) α
′

0.45 0.25 2.4875 0.9748 4.587 1.797
Two-band α 2.2 0.95 4.057 1.752
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FIG. 6. Temperature dependence of electronic specific heat of
Mg11B2 (Ref. 2) (filled symbols). Grey line shows calculations
according to the two-band α model; open symbols represent cal-
culation according to the α

′
approximation with parameters given in

Table II.

The method we have used for our calculations allows one to
determine not only the effective interband coupling constants,
but also all EPI coupling constants of the samples. Assuming
�c = 67.76 meV (Mg11B2), �c ≈ 30 meV [Ba(FeCo)As],21

μ∗ = 0.12 and using Eqs. (11), (9), and (4), we find the EPI
seed constants λ0

IJ that are given in Table III. It is seen from the
table that the lowest accuracy of EPI constants determination
that can be reached in the generalized two-band α model
is not better than the best accuracy of the first-principles
calculations,4–6 and this fact in our opinion is quite a good
result. In this table, we also present for comparison the data
for MgB2 (Tc = 40.5 K) determined in our early tunnel
experiments.16 Comparison of the EPI strengths in Mg11B2

(data from Ref. 2) and in MgB2 (data from Ref. 16), really
reveals significant differences. First, the interband EPI is
much larger in Mg11B2 (Ref. 2) compared to MgB2 (Ref. 16;
see Table III). Second, an appreciable increase (actually an
equalization) of interband and intraband scattering in the
π band is observed in Mg11B2.2 These kinds of effects
can be caused by the defects in the magnesium plane.9 In
Ba(Fe0.925Co0.075)2As2, the calculated value of the intraband
constant λ0

22
� 0.53 is in good accordance with the value

estimated from the optical experiments λ0
22

≈ 0.45.17 We note

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 7. Temperature dependence of electronic specific heat of
Ba(Fe0.925Co0.075)2As2 (Ref. 3) (filled symbols). Grey line shows cal-
culations according to the two-band α model; open symbols represent
calculations according to the α

′
approximation with parameters given

in Table II.

that the optimal EPI constants (fit min-max) determined by
us satisfy, as expected, the applicability criteria of the 2Bα

model.

IV. CONCLUSIONS

The well known two-band α model considering indepen-
dent bands is generalized by consistently taking into account
the interband electron-phonon interaction. The validity of
the obtained generalized BCS-like equations is verified by
analyzing different experiments on different compounds—the
data of the tunnel experiments on Mg1-xAlxB2 and optical
experiments on [Ba(Fe0.9 Co0.1)2As2]. It is demonstrated that
the two-band α model that leaves out the interband interaction
is formally valid only in the case of relatively strong interband
scattering (when it is larger or of the order of intraband
scattering) in the band with a smaller superconducting gap and
that the values of the gaps determined within this model are
understated. Within the developed formalism, the temperature
dependences of the electronic specific heat of Mg11B2 and
Ba(Fe0.95Co0.075)2As2 are analyzed, and the values of energy
gaps and coupling constants of the compounds are determined

TABLE III. Electron-phonon interaction constants of superconductors MgB2 (Ref. 6), Mg11B2 (Ref. 2), and Ba(FeCo)As (Ref. 3). For
comparison, the data obtained for MgB2 (Tc = 40.5 K) determined from the tunnel experiments results (Ref. 16) is also presented.

Sample/reference Fit λ0
11 λ0

22 λ0
12 λ0

21 μ∗ �c (meV) θ (0) Tc (K)

MgB2 (Ref. 16) 0.921 0.43 0.124 0.157 0.12 67.76 0.25 40.5
Mg11B2 (Ref. 2) Max-min 0.78 0.228 0.205 0.209 0.12 67.76 0.26 38.7

Min-max 0.767 0.204 0.124 0.22
Ba(FeCo)As (Ref. 3) Max-min 0.889 0.531 0.204 0.157 0.12 ≈30.0 0.39 21.4

Min-max 0.85 0.289 0.128 0.275
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basing on the known specific heat data. The values of obtained
parameters are close to those of analogous compounds studied
by us earlier, with the EPI constants in bands with smaller gaps
fitting the criteria of applicability of the 2Bα model to the case
of superconducting Mg11B2 and Ba(Fe0.95Co0.075)2As2.
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