
PHYSICAL REVIEW B 84, 174441 (2011)

Topological liquids and valence cluster states in two-dimensional SU(N) magnets

Michael Hermele and Victor Gurarie
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

(Received 19 September 2011; published 30 November 2011)

We study the zero-temperature phase diagram of a class of two-dimensional SU(N ) antiferromagnets. These
models are characterized by having the same type of SU(N ) spin placed at each site of the lattice, and share the
property that, in general, more than two spins must be combined to form a singlet. An important motivation to study
these systems is that they may be realized naturally in Mott insulators of alkaline-earth atoms placed on optical
lattices; indeed, such Mott insulators have already been obtained experimentally, although the temperatures are
still high compared to the magnetic exchange energy. We study these antiferromagnets in a large-N limit, finding a
variety of ground states. Some of the models studied here have a valence-bond solid ground state, as was found in
prior studies, yet we find that many others have a richer variety of ground states. Focusing on the two-dimensional
square lattice, in addition to valence cluster states (which are analogous to valence-bond states), we find both
Abelian and non-Abelian chiral spin liquid ground states, which are magnetic counterparts of the fractional
quantum Hall effect. We also find a “doubled” chiral spin liquid ground state that preserves time-reversal
symmetry. These results are based on a combination of rigorous lower bounds on the large-N ground-state
energy and a systematic numerical ground-state search. We conclude by discussing whether experimentally
relevant SU(N ) antiferromagnets, away from the large-N limit, may be chiral spin liquids.
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I. INTRODUCTION

Since their discovery nearly 30 years ago, fractional
quantum Hall (FQH) liquids continue to be a rich source
of novel and exciting physics.1,2 FQH liquids belong to an
intriguing class of quantum states of matter: they do not
fall into the conventional classification in terms of broken
symmetry, electron band structure, and Fermi-liquid theory,
but instead are characterized by the notion of topological
order.3,4 In FQH liquids, topological order is directly responsi-
ble for the celebrated properties of fractional charge, fractional
and non-Abelian statistics, and gapless chiral edge states.
While the phenomenon of topological order is not limited
to FQH systems in principle, they remain its only known
experimental realization, recent progress with rotating cold
atomic condensates notwithstanding.5 It is thus important to
ask in which other systems we might find topologically ordered
states of matter.

Over the past several years, there has been considerable
progress identifying model quantum spin systems exhibiting
topological order.6–13 The ground states of these models
typically have no spontaneously broken symmetries, and are
thus referred to as quantum spin liquids; these are concrete
realizations of Anderson’s idea of resonating valence bonds.14

The models that can be shown to exhibit topological order are
generally not very realistic, but many are built from realistic
degrees of freedom without any special symmetries, making it
clear that there is no in-principle obstacle for topological order
to exist in real quantum spin systems. Despite this progress,
we know of no candidate materials for a topologically ordered
spin liquid. While a few solid-state quantum magnets are
quantum-spin-liquid candidates,15–20 all these systems seem
to have gapless excitations and are thus not natural candidates
for topological order.

Here, we discuss a class of spin systems with topologically
ordered spin-liquid ground states. While the systems we
study are not realistic for solid-state materials, they can

be realized naturally—without complicated engineering of a
special Hamiltonian—using fermionic ultracold alkaline-earth
atoms (AEA) in optical lattices.21 While most ultracold atom
experiments to date involve alkali atoms, AEA are promising
systems to study many-body physics, and experiments in this
direction are progressing rapidly.22–31 An important feature
of these systems is the presence—without fine tuning—of a
large SU(N ) spin-rotation symmetry, where N = 2I + 1, and
I is the nuclear spin.21,32 The nuclear spin can be as large
as I = 9/2 for 87Sr, so N can be as large as 10. The focus
of this paper is primarily on the models themselves and not
their cold-atom realizations; nonetheless, for completeness,
we review in Appendix A the realization of the spin systems
of interest using AEA. Further information along these lines
can be found in Ref. 21.

The models we study are two-dimensional SU(N ) anti-
ferromagnets where the SU(N ) representation (i.e., type of
spin) is the same on every lattice site—the simplest case is
the N -dimensional SU(N ) fundamental representation. More
generally, we consider spins in the SU(N ) irreducible repre-
sentation labeled by a m × nc Young tableau with m < N rows
and nc columns (Fig. 1). We will refer to such a representation
as the m × nc representation. These models differ crucially
from solid-state SU(2) magnetism in that, in general, more
than two spins are required to form a SU(N ) singlet. This
means that singlets are not two-site valence bonds, but rather
are multisite “valence clusters.” The cases nc = 1 and 2 can
both be realized as AEA Mott insulators (Appendix A). While
a variety of values of m can be realized, m = 1 is of greatest
interest because it best avoids issues of three-body and other
losses. For SU(2) spins, m = 1 and nc = 2S, so that nc = 1,2
correspond to S = 1/2,1, respectively. It should be noted that
these models are distinct from a much-studied class of SU(N )
spin models, where (inequivalent) conjugate representations
occupy the two sublattices of a bipartite lattice.33,34

In Ref. 35, together with Rey, we considered the semi-
classical limit m = 1 and nc → ∞. This is analogous to
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FIG. 1. The Young tableau corresponding to the m × nc irre-
ducible representation of SU(N ). We consider spin models where
the spin at each lattice site transforms in this representation.

the large-S limit for SU(2) spins, and, indeed, reduces
to it when N = 2. The limit nc → ∞ is biased toward
magnetically ordered ground states because the spins become
classical N -component complex vectors. However, it turns
out that the ground-state manifold is in general extensively
degenerate (precisely, its dimension is proportional to the
number of sites in the system). On the square lattice with
nearest-neighbor exchange, this occurs for N � 3, with the
degree of extensive degeneracy growing with N . This situation
sometimes occurs in geometrically frustrated magnets, where
a common consequence is that magnetic order is strongly
suppressed, and sometimes even destroyed, by large very
low-energy fluctuations.36 Given that this occurs even in a
limit that is deliberately biased in favor of magnetic order,
nonmagnetic ground states are likely for the nc = 1,2 cases
of greatest interest. (We note that recent work has given
strong evidence that a magnetically ordered ground state does
occur for m = nc = 1 and N = 3 on the square lattice.37 For
N = 4, while prior exact diagonalization38 and variational
wave-function39 studies favored a nonmagnetic ground state,
a very recent study employing both projected entangled pair
states and exact diagonalization found evidence in favor
of magnetic order.40 These results are consistent with the
expectation that nonmagnetic ground states are more likely
for larger values of N , where the extensive degeneracy in the
semiclassical limit is larger.)

This paper is concerned with the ground states of these
SU(N ) antiferromagnets in a solvable large-N limit suitable
for addressing the competition among nonmagnetic states.41,42

With Rey in Ref. 35, we studied the case nc = 1 on the square
lattice in the large-N limit and announced a number of results.
Here, we study the case of arbitrary nc on general lattices, with
a focus on the square lattice for nc = 1,2. We also provide more
detail on the results already reported in Ref. 35.

In the large-N limit, N and m are taken to infinity,
while N/m = k and nc are held fixed. The parameter k,
which we choose to be an integer greater than unity, plays
a very important role in our analysis: k is the minimum
number of spins needed to form a SU(N ) singlet. Given this
physical interpretation of k, the large-N limit can thought
of as a solvable generalization of the model with SU(k)
symmetry, m = 1, and the same fixed nc. Readers primarily
interested in the implications of our results for real AEA Mott
insulators can interpret our large-N results as a prediction
for the ground state of these physically realizable m = 1

models. This bold prediction will need to be tested further
in future work; see Sec. VII for further discussion along these
lines.

In general, the SU(N ) singlets are k-site valence clus-
ters. Based on the observation that, when k = 2, sin-
glets are two-site valence bonds, the case k = 2 has been
studied as a solvable large-N generalization of SU(2)
antiferromagnetism.34,41–43 For the same reason, the k >

2 case does not provide a good generalization of SU(2)
antiferromagnetism. Under very general conditions in the
k = 2 large-N limit, the ground state is a valence-bond solid
(VBS) that spontaneously breaks lattice symmetries.43 One
of the striking results of this paper (and Ref. 35) is that the
large-N ground states are much richer in the less-studied case
k > 2.

While SU(N ) spin models with the same representation on
every lattice site have not received extensive attention (except
in the case of self-conjugate representations, i.e., k = 2),
there have been several earlier studies. While our focus is
primarily on two dimensions, we note that the one-dimensional
chain with m = nc = 1 was solved exactly for all N ,44 and
the effective field theories of it and other chains were also
studied.45 In two dimensions, most work focused on the
m = nc = 1 model with either N = 3 or 4. The former case
arises as a special point of an S = 1 spin model with bilinear
and biquadratic exchange terms,37,46 while the latter is a
highly symmetric point of an S = 1/2 Mott insulator with
an additional twofold orbital degeneracy,38,39,47,48 or a special
point of a model with Sp(4) symmetry.49 We also note a
further very recent study of the N = 4, m = nc = 1 model
on the square lattice.40 Models on the cubic lattice have been
studied in high-temperature series expansion,50 and a class of
exactly solvable models with nc > 1 was studied in Ref. 51.
Finally, effective models of valence cluster degrees of freedom,
analogous to more familiar quantum dimer models, have been
studied.52,53

Returning for a moment to the ultracold atom realization
of our models, it should be mentioned that high-spin quantum
magnets can also be realized using alkali atoms, and in that
context also have spin symmetry enhanced above SU(2).49

However for an N -component system, the symmetry is
generically less than SU(N ). For example, in a spin-3/2
alkali system, the spin symmetry is expected generically to
be Sp(4) and not SU(4).49 While these systems share with
SU(2) magnets the property that two spins can be combined
to form a singlet, they are also likely to be fertile ground for
the realization of a variety of interesting ground states.49,54–59

In close relation to quantum magnetism, half-filled repulsive
SU(N ) Hubbard models have also been studied in the context
of ultracold atoms.60,61 Very recently, the repulsive SU(3)
Hubbard model was studied for arbitrary filling.62

We now summarize our results for the square lattice
with nc = 1,2. (A graphical summary for nc = 1 can be
found in the phase diagram of Fig. 6, discussed in Sec.
VII.) Depending on k, we find valence cluster states (VCS)
that break lattice symmetries and are formed by tiling
the lattice with multisite singlet clusters, and three distinct
types of topologically ordered spin liquids. Two of the spin
liquids are chiral spin liquid (CSL) states.63–65 The CSL
is a spin-system analog of an FQH state; it spontaneously
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breaks parity and time-reversal symmetry (symmetries that
are broken explicitly by the magnetic field in FQH systems),66

supports excitations with fractional quantum numbers and
statistics, and has gapless chiral edge states that carry
spin.

We find both an Abelian chiral spin liquid (ACSL) (for nc =
1 and k � 5) and a non-Abelian chiral spin liquid (nACSL) (for
nc = 2 and k � 6). The ACSL is described at low energies by
a U(1)N Chern-Simons theory and has fractional statistics. The
nACSL, on the other hand, is described by a U(1)2N × SU(2)N
Chern-Simons theory, and supports non-Abelian statistics.
The third state we find is distinct from these CSL states in
that it preserves time-reversal symmetry. At the mean-field
level, it appears as two copies of the ACSL, with opposite
chiralities, and we thus dub it a doubled chiral spin liquid
(dCSL); its low-energy theory is a U(1) mutual Chern-Simons
theory. A more concrete way of describing all these states
is in terms of Gutzwiller projected trial wave functions, as
described in Sec. III. The dCSL is found for nc = 2 and
has the same energy as the nACSL in the N → ∞ limit.
Presumably, 1/N corrections select one of these states as a
ground state; we have not computed these since, in our view,
the large-N limit is primarily useful as a tool to determine likely
ground states of physically realizable models, and ultimately
the issue of whether the dCSL or nACSL (or some other
state) is lower in energy will need to be determined by
directly studying those models (occurring at finite N ). We
find VCS states for nc = 1,2 and 2 � k � 4, as well as a
more complicated inhomogeneous ground state when nc = 2
and k = 5. These results are obtained via a combination of
exact lower bounds on the large-N ground-state energy (gen-
eralizing the results of Ref. 43), and a systematic numerical
search.

A current interest in states that support excitations with
non-Abelian statistics is fueled by the expectation that they
could be used to build a topologically protected quantum
computer.10 The simplest non-Abelian statistics is described
by an SU(2)2 Chern-Simons theory. It is believed to be realized
in the quantum Hall effect at the filling fraction 5/2,67,68 as well
as in a variety of setups involving Majorana fermions.69–75

However, it is not rich enough to support universal quantum
computations.76 Non-Abelian statistics described by SU(2)N
Chern-Simons theory for N > 2 is significantly richer and,
in fact, gets richer as N increases. In particular, N = 3
or N � 5 is known to be sufficient for universal quantum
computations.77 Some fractional quantum Hall states in the
first excited Landau level are believed to realize these types of
non-Abelian statistics for moderate N , at least for N = 3.78,79

We observe that the non-Abelian statistics proposed here can
be as high as SU(2)10 (in case of 87Sr), thus, it is inherently
very rich.

We note that solvable spin models with CSL ground
states have been found previously.80–86 One of these82 is a
generalization of the Kitaev model on a decorated honeycomb
lattice. The models of Refs. 83–86 involve long-range six-spin
interactions. References 80 and 81 found that a CSL was the
large-N ground state of a SU(N ) spin model of a different
type from those considered here, where in addition a four-spin
ring exchange term, which explicitly broke time-reversal
invariance, was added to the Hamiltonain. Very recently, also

motivated by ultracold alkaline-earth atoms, Szirmai et al.
studied the same type of spin model discussed in this paper for
nc = 1 and k = 6 on the honeycomb lattice, and found a CSL
ground state in the large-N limit.87

We now give an outline of our paper. In Sec. II, we define
a broad class of SU(N ) Heisenberg models in terms of slave
fermions; this is convenient for understanding the large-N
limit, which is also described in this section. In Sec. III,
we discuss the properties of the Abelian chiral spin liquid,
non-Abelian chiral spin liquid, and doubled chiral spin liquid,
including their wave functions and edge states. We spend the
rest of the paper arguing that these states indeed appear in the
large-N limit of the appropriate models. In particular, in Sec.
IV, we discuss the solution to the large-N limit of our models
on general lattices. We give examples of lattices where the
large-N solution can be proven to be a VCS by generalizing
results of Ref. 43 to k > 2. The principal tool of analysis is
a rigorous lower bound on the large-N ground-state energy,
which is saturated by certain VCS states. We also give general
arguments that VCS are not the only states possible on generic
lattices, and other states, including spin-liquid states, should
naturally appear in appropriate cases. In Sec. V, we specialize
to bipartite lattices, showing that a stricter lower bound on the
energy can be obtained in this case (when k > 2). Finally, in
Sec. VI, we further specialize to the square lattice. Using the
rigorous lower bounds, we show that the large-N ground state
is a VCS for k = 2,3,4 for both nc = 1 and 2. Next, employing
a numerical analysis, we show that the large-N ground state
at nc = 1 on the square lattice is the ACSL for 5 � k � 8.
Moreover, at nc = 2, we show that nACSL and dCSL are
the degenerate ground states at k = 6,7. Closely tied to these
results is the discussion of Appendix E, where we discuss the
possible ground states in the limit of large k. In particular,
for nc = 1, we show that the ACSL wins over VCS states as
well as a trial uniform gapless state, giving us ammunition to
conjecture that ACSL is the ground state for all k � 5. The
same analysis goes over to nc = 2 and leads us to conjecture
that the nACSL and dCSL are degenerate ground states for all
k � 6.

We would not have studied these models if it were not
for the strong potential to realize them in systems of AEA
on optical lattices. The paper concludes with a discussion
in Sec. VII focusing on the prospects to find chiral spin
liquids in those spin models that can be realized in cold-atom
experiments. In particular, we discuss the phase diagram in
the k-m plane (Fig. 6). Finally, we mention some directions
for future study; one such direction is to understand how
fractional or non-Abelian particles may be localized and
braided in these systems, with an eye toward detection
of fractional or non-Abelian statistics. In Appendix F, we
further discuss some ideas in this direction, describing how
fractional holons (which carry conserved atom number but
not spin) may be localized by applying an external poten-
tial.

In Appendix A, we review some aspects of the cold-atom
realizations of these systems. Moreover, starting from the
Hubbard model describing AEA on an optical lattice in the
large-U limit, we derive the appropriate Heisenberg models
using degenerate perturbation theory. Some technical details
are given in Appendices B–D.
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II. MODELS AND LARGE-N LIMIT

Here, we introduce the SU(N ) spin models and construct
the solvable large-N limit, which allows us to address the
competition among nonmagnetic ground states. We shall
define the models in terms of the fermionic spinon operators
f

†
raα . Here, r labels lattice sites, α = 1, . . . ,N is the SU(N )

spin index, and a = 1, . . . ,nc will be called a “color” index.
The α index transforms in the fundamental representation of
SU(N ) spin rotations; that is, a global SU(N ) rotation acts by

fraα → Uαβfraβ , (1)

where U is an arbitrary SU(N ) matrix. (Here, and throughout
the paper, summation over repeated indices is implied. This
does not apply to repeated site labels r .) Similarly, the a

index transforms in the fundamental representation of SU(nc)
color rotations. It is important to distinguish the spinons from
the physical fermions of an underlying Hubbard model (as
in Appendix A); we elaborate on this distinction and its
importance below.

Before defining the Hamiltonian, we must specify the type
of spin at each lattice site. This is accomplished by a pair of
local constraints

f
†
raαfraα = ncm, (2)

f
†
raαT A

abfrbα = 0. (3)

Here, A = 1, . . . ,n2
c − 1 labels the traceless, Hermitian nc ×

nc matrices T A that generate infinitesimal SU(nc) rotations.
The proper interpretation of these constraints is that, for each
lattice site, we restrict to the subspace of the fermion Hilbert
space spanned by eigenstates of the left-hand sides of Eqs. (2)
and (3), with eigenvalues given by the right-hand sides. The
first constraint specifies a fixed number of fermions on each
lattice site, and the second constraint dictates that each site
is a color singlet. The second constraint is omitted when
nc = 1. These constraints project out the “charge” (conserved
number) and color degrees of freedom of the spinons, which
are not physical at the microscopic level, but are important for
understanding the low-energy effective theories obtained in the
large-N limit. While the constraint (3) may appear mysterious,
in the case nc = 2, it arises naturally in the large-U limit of the
Hubbard model describing one type of AEA Mott insulator, as
described in Appendix A.

Taken together, the constraints imply that the spin at
each site transforms in the SU(N ) irreducible representation
with a m × nc rectangular Young tableau: this is shown in
Appendix B. Since all physical operators must commute with
these local constraints, which together form a U(nc) algebra,
in this choice of variables, there is a local U(nc) redundancy.
This is intimately related to the fact that, in the large-N limit,
the low-energy effective theory is a U(nc) gauge theory; we
shall see this below. This type of slave particle representation
has been employed before.11,34,61

The SU(N ) spin operators are defined to be

Sαβ (r) =
∑

a

f †
raαfraβ , (4)

and the Hamiltonian is

H =
∑
(r,r ′)

Jr r ′Sαβ(r)Sβα(r ′). (5)

Here, the sum is over all pairs of sites (r,r ′). The cases nc =
1,2 are realizable with alkaline-earth atoms, as discussed in
Appendix A, and most of our analysis is focused on these
cases. We shall always consider m = N/k, where k � 2 is
an integer. The parameter k, as introduced in Sec. I, is the
minimum number of spins required to form a SU(N ) singlet.
This model becomes exactly solvable in the limit where N

and m are taken to infinity, while k and nc are held fixed. For
technical convenience, we also write Jr r ′ = Jr r ′/N and hold
Jr r ′ fixed; this corresponds merely to multiplication of the
Hamiltonian by a constant. The case of greatest experimental
interest is m = 1, and the large-N limit with fixed k and nc

should be thought of as a solvable limit of the model with
m = 1 and N = k; the minimum number of spins required to
form a singlet is the same as in this model.

We now describe in detail the large-N solution, which
follows the work of Affleck and Marston41,42 and also Read and
Sachdev.34 Affleck and Marston studied the case nc = 1 and
m = N/2, while Read and Sachdev generalized their results to
arbitrary nc while still fixing m = N/2. The formal structure
of the large-N solution is the same as in the earlier works,
but, as is discussed in the following sections, the nature of the
ground states is dramatically different.

We first consider separately the case nc = 1 for its greater
simplicity. The starting point is the imaginary-time functional
integral for the partition function

Z =
∫

Df Df̄ Dχ Dλ exp[−S(f,f̄ ,χ,λ)], (6)

where the action is

S =
∫ β

0
dτ

∑
r

[f̄rα∂τfrα + iλr (f̄rαfrα − m)]

+
∫ β

0
dτ

∑
(r,r ′)

′ N

Jr r ′
|χr r ′ |2

+
∫ β

0
dτ

∑
(r,r ′)

′(χr r ′ f̄rαfr ′α + H.c.). (7)

Here, the fermionic variables frα(τ ) and f̄rα(τ ) are the usual
Grassmann variables. λr (τ ) is a real Lagrange multiplier field
that implements the constraint f

†
rαfrα = m. The primed sum∑′

(r,r ′) in the last two terms is over only those bonds (r,r ′)
where Jr r ′ �= 0, and χr r ′(τ ) is a complex field defined on the
same set of bonds. Upon integrating out χ , one obtains the
Hamiltonian Eq. (5), which is quartic in fermion operators.
We focus on the zero-temperature limit β → ∞.

We can formally integrate out the fermions and obtain an
effective action

Seff(χ,λ) =
∫ β

0
dτ

∑
(r,r ′)

′ N

Jr r ′
|χr r ′ |2 − im

∫ β

0
dτ

∑
r

λr

+NTrlnQ(χ,λ), (8)

where Q is the quadratic form characterizing the fermionic part
of the action Eq. (7). Since m = N/k, Seff has a prefactor of
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N and no other N dependence, implying that, when N → ∞,
the functional integral over χ and λ can be done exactly using
the saddle-point approximation. We therefore replace χ and λ

by nonfluctuating fields

χr r ′ → χ̄r r ′ , (9)

λr → iμr , (10)

which are substituted into Eq. (7) to obtain a theory of
noninteracting fermions subject to the mean-field Hamiltonian

HMFT =
∑
(r,r ′)

′ N

Jr r ′
|χ̄r r ′ |2 + m

∑
r

μr

+
∑
(r,r ′)

′(χ̄r r ′f †
rαfr ′α + H.c.) −

∑
r

μrf
†
rαfrα . (11)

The imaginary saddle point λr → iμr is needed for the mean-
field Hamiltonian to be Hermitian. We emphasize that, despite
the appearance of the term “mean field,” and the appearance
of mean-field equations and a mean-field Hamiltonian, we are
not making any sort of mean-field approximation. That is,
in the N → ∞ limit, the specific mean-field decoupling we
consider (and only this decoupling) becomes exact. The results
we present are thus exact for the Heisenberg spin model in the
N → ∞ limit.

In order for this to be a legitimate saddle point, we must
satisfy the extremum condition

δ

δχr r ′
Seff

∣∣∣∣
χ→χ̄ ,λ→iμ

= δ

δλr
Seff

∣∣∣∣
χ→χ̄ ,λ→iμ

= 0. (12)

In the low-temperature limit, the ground-state energy EMFT of
HMFT satisfies Seff(χ → χ̄ ,λ → iμ) = βEMFT, so satisfying
Eq. (12) is equivalent to extremizing the ground-state energy.
The saddle-point equations of Eq. (12) are equivalent to the
more convenient expressions

χ̄r r ′ = −Jr r ′

N
〈f †

r ′αfrα〉, (13)

m = 〈f †
rαfrα〉. (14)

Here, the expectation values are calculated using the noninter-
acting Hamiltonian HMFT.

Now that we have discussed the simpler case nc = 1, we
discuss the general case nc > 1, describing only those aspects
that differ from nc = 1 and making some definitions that will
be useful later on. The principal difference is that now the fields
χ and λ are nc × nc matrices: χab

r r ′(τ ) is a general complex
nc × nc matrix, and λab

r (τ ) is a nc × nc Hermitian matrix. The
partition function is of the same form as Eq. (6), where the
integration over λ is understood to be over the restricted space
of Hermitian matrices. The action is now

S =
∫ β

0
dτ

∑
r

[
f̄raα∂τfraα + i

(
λba

r f̄raαfrbα − mtr(λr )
)]

+
∫ β

0
dτ

∑
(r,r ′)

′ N

Jr r ′
tr(χ †

r r ′χr r ′)

+
∫ β

0
dτ

∑
(r,r ′)

′[χab
r r ′ f̄raαfr ′bα + H.c.

]
. (15)

The traces in this expression are in the color space. The field
λr is again a Lagrange multiplier, now implementing both the
constraints of Eqs. (2) and (3). Again, integrating out χr r ′ , we
obtain the Hamiltonian Eq. (5).

The saddle-point values of the fields take the form

χab
r r ′ → χ̄ ab

r r ′ , (16)

λab
r → iμab

r , (17)

where μr is a Hermitian matrix. The mean-field Hamiltonian is

HMFT =
∑
(r,r ′)

′ N

Jr r ′
tr(χ̄ †

r r ′ χ̄r r ′)

+m
∑

r

tr(μr ) + HK + HV, (18)

where

HK =
∑
(r,r ′)

′(χ̄ ab
r r ′f

†
raαfr ′bα + H.c.

)
, (19)

HV = −
∑

r

μba
r n̂ab

r . (20)

Here, we have defined the color density

n̂ab
r = f †

raαfrbα . (21)

Note that we can also write HV = −∑
r tr(μr n̂r ). The

saddle-point equations are now

χ̄ ab
r r ′ = −Jr r ′

N
〈f †

r ′bαfraα〉, (22)

m δab = 〈
n̂ab

r

〉
. (23)

When analyzing the mean-field Hamiltonian, we shall always
work in the canonical ensemble for the conserved fermion
number.

This discussion shows that finding the ground state in the
large-N limit reduces to finding the saddle point with lowest
energy EMFT. In general, this task, while a great deal simpler
than finding the ground state of the original quantum problem,
is still nontrivial. We shall make progress below using a
combination of exact lower bounds on EMFT and numerical
methods to search for ground states.

As mentioned above, it is important to recognize that
the f

†
raα spinon operators are not the same as the physical

fermions of the Hubbard model discussed in Appendix A. We
are describing a spin model, and there are only SU(N ) spin
degrees of freedom. In addition to spin degrees of freedom,
the physical alkaline-earth-atom fermions have degrees of
freedom associated with their conserved number as well as
with their 1S0 and 3P0 electronic states. These degrees of
freedom are not present in the model; this is appropriate for
a low-energy description of the Mott insulating states we are
describing, where excitations associated with these degrees of
freedom are gapped. (To describe such gapped excitations, one
must return to the original Hubbard model.)

The difference between the spinons and the physical
fermions is manifest when we consider the fluctuations about
a mean-field saddle point. This allows us to construct a low-
energy effective theory, which goes beyond mean-field theory
for a given saddle point. The spinons in this effective theory
should not be interpreted as a microscopic representation of
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the spins, but as low-energy effective degrees of freedom. As
we shall see below, the spinons are minimally coupled to a
fluctuating U(nc) gauge field. On the other hand, the physical
fermions of the underlying Hubbard model are uncharged
under this U(nc) gauge field and do not couple to it directly.

We consider fluctuations of the form

λab
r (τ ) = iμab

r + aab
rτ (τ ), (24)

χab
r r ′(τ ) = {χ̄r r ′ exp[iar r ′(τ )]}ab, (25)

where ar r ′(τ ) is a nc × nc Hermitian matrix, so that eiar r′

is unitary. While other fluctuations are typically trivially
massive (e.g., amplitude fluctuations in χ ), these fluctuations
take the form of a U(nc) gauge field minimally coupled to
the spinons. Specifically, arτ and ar r ′ form the time and
space components, respectively, of the fluctuating U(nc) vector
potential. Gauge fluctuations can and do dramatically modify
the properties of the mean-field state and therefore should not,
in general, be neglected. For example, if the gauge field is in a
confining phase, then the spinons will not be good quasiparticle
excitations, as a naive mean-field analysis would suggest (this
indeed occurs in the VCS ground states). On the other hand, in
the CSL and dCSL phases, Chern-Simons terms for the gauge
field are present; this not only prevents spinon confinement, it
converts the spinons from fermions into anyons.

III. PROPERTIES OF TOPOLOGICAL LIQUID
GROUND STATES

Anticipating the results on energetics discussed below, in
this section, we discuss the properties of the three topological
liquid ground states on the square lattice. Since the main
focus of this paper is on energetics, we shall content ourselves
primarily with deriving low-energy effective field theories for
each state, and shall not discuss the resulting properties in
detail.

A. Abelian chiral spin liquid

The Abelian chiral spin liquid (ACSL) occurs for nc = 1
and corresponds to a mean-field saddle point

χ̄r r ′ = χeia0
r r′, (26)

μr = 0, (27)

where χ is real and positive and a0
r r ′ is chosen so that 2π/k

magnetic flux pierces each plaquette of the square lattice. The
band structure consists of k bands, of which the lowest is full
and the others are empty, resulting in a Hall conductance (for
the mean-field fermions) of σxy = N .

To understand the properties of this state, it is necessary
to go beyond mean-field level and couple the fermions to the
fluctuating U(1) gauge field. However, some properties can
already be understood at mean-field level. In particular, we
see that parity (i.e., reflection) and time-reversal symmetries
are spontaneously broken, while the other symmetries of the
square lattice [as well as SU(N ) spin rotation] are preserved.
To see this, it is important to recall that, in a slave-particle
gauge theory such as this one, symmetry operations act
projectively on the fermions.88 For example, if S : r → S(r)
is a space-group operation, then acting on a fermion it may

be supplemented by a general space-dependent U(1) gauge
transformation:

S : frα → eiλS
r fS(r)α . (28)

An operation S is a symmetry if and only if it is possible to
find a gauge transformation λS

r such that the above transfor-
mation leaves the mean-field Hamiltonian invariant. For the
CSL saddle point, this is nothing but the familiar magnetic
translation group (expanded to include all symmetries, not
only translations). Because reflections and time reversal both
change the sign of the gauge-invariant magnetic flux through
each plaquette, they are spontaneously broken in the ACSL.
Other operations leave the flux invariant and are indeed
symmetries of the ACSL.

To go beyond mean-field theory, we couple the fermions
to the fluctuating U(1) gauge field. Since the fermions are
gapped, we can integrate them out, resulting in the following
imaginary-time continuum effective action for the gauge field:

S =
∫

dτ d2r

[
iN

4π
εμνλaμ∂νaλ + 1

2e2

(∑
μ

εμνλ∂νaλ

)2]
.

(29)

This is simply Maxwell-Chern-Simons theory. The coefficient
of the Chern-Simons term is determined by σxy = N , while
the coefficient of the Maxwell term is nonuniversal (in the
large-N limit, it is determined by details of the fermion band
structure). Various properties of the ACSL can be derived from
this effective action: notably, it implies that the fermions are
converted via flux attachment into anyons with statistics angle
π ± π/N .

A different, and particularly concrete, route beyond mean-
field theory is to construct a wave function for the ACSL. One
starts with the ground state of the mean-field Hamiltonian,
which for the ACSL is simply an integer quantum Hall state
with the lowest (lattice) Landau level filled. One applies the
Gutzwiller projection operator P , which simply projects onto
the subspace with exactly m fermions on every lattice site. By
construction, |ψ〉 = P|ψ0〉 satisfies the local constraint Eq. (2)
and is thus a legitimate wave function for the spin model.
Such Gutzwiller projected wave functions have been studied
and discussed in a variety of contexts (for a few examples,
see Refs. 88–91), and properties of such wave functions can
be computed numerically using a Monte Carlo technique.89 It
is reasonable to expect that |ψ〉 should correctly capture the
properties of the corresponding low-energy effective gauge
theory; for example, it has been shown that a class of projected
wave functions associated with an effective Z2 gauge theory
capture the expected Z2 topological order.92,93 However, this
expectation will need to be tested by future detailed studies
of the wave function. In the present case, the projected wave
function may be a useful tool for future microscopic analysis
away from the large-N limit, in particular, to help assess the
prospects for ACSL in physically realizable models.

Another important property of the ACSL is the presence
of gapless chiral edge states, which are described by a
chiral SU(N )1 Wess-Zumino-Witten (WZW) model. A simple
argument for this can be given following Ref. 94: Rather than
consider the low-energy effective field theory of fermions
coupled to a gauge field, we consider the projected wave
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function described above. Before projection, the edge mode
consists simply of N chiral fermions. Using non-Abelian
bosonization, the edge theory can be cast as two decoupled
theories: a chiral SU(N )1 Wess-Zumino-Witten model and
a chiral U(1) Luttinger liquid.95,96 This is an instance of
spin-charge separation, where the SU(N ) spin degrees of
freedom are associated with the SU(N )1 WZW model, and the
fermion “charge” with the Luttinger liquid. Upon projection,
the “charge” degrees of freedom are removed, and hence so is
the U(1) Luttinger liquid, while the spin degrees of freedom
and the SU(N )1 WZW model survive.

Finally, we mention an alternate route to construct a
low-energy effective theory for the ACSL that does not
require integrating out the fermions. This approach is based
on the Chern-Simons effective theory for Abelian quantum
Hall states.97 In this approach, one pays the price that the
SU(N ) symmetry is broken down to U(1)N−1, but this is
not expected to affect any topological properties of the state.
Before coupling to the gauge field, each spin species of fermion
is in an integer quantum Hall state, and the current of the
fermions of spin α (where α = 1, . . . ,N) can be represented
in terms of a U(1) gauge field:

J α
μ = 1

2π
εμνλ∂νb

α
λ . (30)

The corresponding integer quantum Hall state is captured
by a Chern-Simons term for bα , which gives the following
contribution to the real-time Lagrangian:

Lα = 1

4π
εμνλb

α
μ∂νb

α
λ . (31)

Moreover, the coupling of the fermions of spin α to the gauge
field aμ is simply given by

aμJ α
μ = 1

2π
εμνλaμ∂νb

α
λ . (32)

Finally, the aμ gauge field has no bare Chern-Simons term;
it is a Lagrange-multiplier field whose role is to make the
total U(1) fermion current vanish. (The Chern-Simons term
derived above for aμ came from integrating out the fermions.)
By combining the above results, we have the Lagrangian in
K-matrix form

L = 1

4π
KIJ AI

μεμνλ∂νA
J
λ , (33)

where I = 1, . . . ,N + 1, A1
μ = aμ, AI = bα−1

μ for I > 1, and
the (N + 1) × (N + 1) K matrix is

K =
(

0 IT

I 1N×N

)
. (34)

Here, 1N×N is the N × N identity matrix, and IT = (1, . . . ,1)
is an N -element vector. Following Ref. 97, both bulk and
edge topological properties can be deduced from this effective
theory. We note that the K matrix has N positive eigenvalues
and one negative eigenvalue, and thus gives rise to N

copropagating edge modes and one counterpropagating mode.
The counterpropagating mode and one of the copropagating
modes are singlets under U(1)N−1 spin rotations, and these
singlet modes generically are expected to acquire a gap,
leaving N − 1 gapless copropagating modes: this is nothing

but the free boson description of the SU(N )1 chiral WZW
model.

B. Non-Abelian chiral spin liquid

The non-Abelian chiral spin liquid (nACSL) occurs for
nc = 2 and corresponds to a mean-field saddle point

χ̄ ab
r r ′ = χeia0

r r′ δab, (35)

μab
r = 0, (36)

where χ is real and positive, and again a0
r r ′ is chosen so that

2π/k magnetic flux pierces each plaquette of the square lattice.
This state has a U(2) = U(1) × SU(2) gauge structure, and
upon going beyond mean-field theory, the fermions are coupled
to a U(2) gauge field. The background magnetic flux is a U(1)
flux; the background SU(2) flux is zero. The band structure can
be thought of as k 2N -fold degenerate bands, where the lowest
band is filled and all others are empty. The mean-field fermions
have a Hall conductance σxy = 2N . As above, parity and time
reversal are spontaneously broken, while other symmetries are
preserved.

In the large-N limit, the ground-state energy of the nACSL
is precisely twice that of the ACSL. This occurs because, at the
mean-field level, the nACSL is simply two decoupled copies
of the nc = 1 ACSL, each with the same magnetic flux.

Upon integrating out the fermions, we obtain the following
action:

S = 2Ni

4π

∫
dτ d2r εμνλaμ∂νaλ

+ iN

4π

∫
dτ d2r εμνλtr

[
αμ∂ναλ − 2i

3
αμαναλ

]
. (37)

Here, aμ is the U(1) gauge field, αμ = ∑3
i=1 αi

μσ i is the SU(2)
gauge field (σ i are the usual Pauli matrices), and we omitted
the Maxwell terms that are also present. The second term is the
level-N Chern-Simons term for the SU(2) gauge field, which
gives rise to the non-Abelian statistics of the nACSL.

As above for the ACSL, one can construct a wave function
for the nACSL. One proceeds as above, but now must apply
a projection operator to enforce both the local constraints (2)
and (3).

The chiral edge states of the nACSL can be understood in
terms of an argument very similar to that given above for the
ACSL. In mean-field theory, there are 2N chiral fermions on
the edge of the system. Following Affleck,98 this free-fermion
theory can be bosonized to a chiral SU(N )2 WZW model
(carrying spin excitations), a chiral SU(2)N WZW model
(carrying color), and a chiral U(1) Luttinger liquid. Now,
the projection removes both the “charge” and color degrees
of freedom of the fermions, leaving only the chiral SU(N )2

WZW model.

C. Doubled chiral spin liquid

The doubled chiral spin liquid (dCSL) occurs for nc = 2
and corresponds to a mean-field saddle point

χ̄ ab
r r ′ =

(
eia0

r r′ 0

0 e−ia0
r r′

)
, (38)

μab
r = 0, (39)
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where χ and a0
r r ′ are as above. In contrast to the nACSL,

there is now a SU(2) background magnetic flux, but no U(1)
flux. Following the reasoning of Ref. 99, the presence of the
nontrivial SU(2) flux breaks the SU(2) gauge structure down to
U(1). More precisely, the α1 and α2 components of the SU(2)
gauge field acquire a mass due to the presence of the flux, while
the α3 component is unaffected. Therefore, for the purposes of
understanding the low-energy physics, we can drop the α1 and
α2 components of the SU(2) gauge field and consider a theory
of fermions coupled to the two U(1) gauge fields aμ and α3

μ. It
should be noted that the special role of α3

μ, as compared to α1
μ

and α2
μ, is determined by the choice of gauge made in writing

Eq. (38); a global SU(2) gauge transformation can be made to
select any desired preferred axis.

In the large-N limit, the ground-state energy of the dCSL
is again precisely twice that of the ACSL because, again, at
the mean-field level, the dCSL is two decoupled copies of the
nc = 1 ACSL, but now with opposite magnetic fluxes. This
means that, in the N → ∞ limit, the dCSL and nACSL have
exactly the same energy. This degeneracy is expected to be
lifted by 1/N corrections that can in principle be computed;
this is left for future work.

The dCSL actually respects time-reversal symmetry, which
is implemented by the operation

T : fraα → (iσ 2)abfrbα . (40)

[This operation can be supplemented as well with a SU(N )
rotation, but due to the SU(N ) symmetry, this is not essential.]
The crucial point is that the gauge rotation in the color space
compensates for the fact that complex conjugation reverses the
flux. Reflection symmetry R : r → r ′, where r ′ = (−rx,ry),
is similarly preserved, and

R : fraα → (iσ 2)abfr ′bα . (41)

The other symmetries [lattice translations and rotations, and
SU(N ) spin rotations] are preserved in the dCSL as they
are in the above two states. The dCSL therefore does not
spontaneously break any symmetries, in contrast to the ACSL
and nACSL.

Upon integrating out the fermions, we obtain the following
mutual Chern-Simons action:

S = iN

π

∫
dτ d2r εμνλ aμ∂να

3
λ. (42)

Here, we have again omitted the Maxwell terms that will also
be present; the mutual Chern-Simons term fully gaps out both
gauge fields, and the Maxwell terms play only the quantitative
role of setting the scale of the gap to gauge-field excitations.
It should be noted that similar spin-liquid states, but with an
additional non-Abelian gauge structure, were considered in
Ref. 11. [There, however, the analog of the α3

μ gauge field
was incorrectly dropped and, therefore, a U(1) mutual Chern-
Simons term was missed.] It can be seen that this term also
converts the mean-field fermionic excitations into anyons with
statistics angle π ± π/N , which can occur in a time-reversal-
invariant fashion due to the color index. We note that the same
procedure described for the nACSL can be applied here to
produce a wave function for the dCSL.

Because the dCSL respects time-reversal symmetry, it lacks
chiral edge states. However, it is interesting to note that, when
N is odd, the edge states are protected at the mean-field
level because the mean-field Hamiltonian has a nontrivial Z2

topological invariant100 for odd N . It is therefore conceivable
that topologically protected edge states could survive coupling
of the mean-field fermions to the fluctuating gauge fields, and
it would be interesting to study this question. Presumably, such
protection, if it occurs, would only hold if one assumes that
no spontaneous breaking of time-reversal symmetry occurs at
the edge.

Finally, we can also construct a K-matrix Lagrangian for
the dCSL as above for the ACSL. We let A1

μ = aμ and A2
μ =

α3
μ. Next, for I = 3, . . . ,N + 2, AI

mu represents the current
of fermions with a = 1 and spin α = I − 2 [as in Eq. (30)],
while for I = N + 3, . . . ,2N + 2, AI

μ represents the current
of fermions with a = 2 and spin α = I − (N + 2). Following
essentially the same reasoning as in Sec. III A, we have the
(2N + 2) × (2N + 2) K matrix

K =

⎛
⎜⎜⎜⎝

0 0 IT IT

0 0 IT −IT

I I 1N×N 0N×N

I −I 0N×N −1N×N

⎞
⎟⎟⎟⎠ , (43)

where 0N×N is the N × N matrix of zeros.

IV. LARGE-N LIMIT: GENERAL LATTICES

In Ref. 43, Rokhsar derived an exact lower bound on the
large-N ground-state energy EMFT for the case nc = 1 and
k = 2. He further showed that this bound is saturated by a
VBS under conditions that are satisfied for the great majority
of lattices that one encounters. More precisely, let us define
Jmax to be the largest of the exchange couplings Jr r ′ . (Note
that we do not restrict to only nearest-neighbor exchange.)
Following Rokhsar, we say that a lattice is dimerizable with
respect to Jmax when it is possible to partition the lattice into
two-site dimers, such that the two sites (r,r ′) in each dimer
have Jr r ′ = Jmax. Each lattice site must belong to precisely
one dimer. For a fixed partition into dimers, let the set of bonds
(r,r ′) that connect the two sites of a dimer be B. Rokhsar
considered the VBS saddle point defined by

χr r ′ = χ �= 0, (r,r ′) ∈ B,
(44)

χr r ′ = 0, (r,r ′) /∈ B

and showed that it is a ground state (its energy saturates the
bound on EMFT). Except in the case of disordered systems
lacking translation symmetry, most familiar lattices (and
associated sets of Jr r ′) are dimerizable with respect to Jmax.43

Therefore, when k = 2, one has to consider a relatively unusual
lattice to find anything other than a VBS ground state in the
large-N limit. (See Ref. 43 for an example of a lattice that is
not dimerizable with respect to Jmax.)

Here, we generalize Rokhsar’s bound to the case of arbitrary
k and nc (Sec. IV A). In Sec. IV B, we derive necessary and
sufficient conditions to saturate the bound. Next, in Sec. IV C,
we show that the analog of Rokhsar’s VBS saddle point is
a k-simplex VCS state, where the lattice is decomposed into
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k-site simplices (k-simplices for short), in which every site is
connected to the other k − 1 sites by an exchange coupling
Jr r ′ = Jmax. As soon as k > 2, many lattices can not be
decomposed into k-simplices, and for k � 5, we show that
no lattice can be decomposed into k-simplices without fine
tuning of the exchange couplings. Therefore, it becomes more
and more difficult to saturate the bound as k increases.

A. Derivation of the bound

Our starting point is the mean-field Hamiltonian HMFT for
general nc [Eq. (18)], where χ̄ ab

r r ′ and μab
r are chosen to satisfy

the saddle-point equations (22) and (23). The bound is derived
in two steps: first we will show EMFT � E′

MFT (defined below),
then we will show E′

MFT � Ebound. The first step was actually
omitted in Ref. 43. While this step should not be omitted even
in the special case considered there, none of the results of
Ref. 43 are affected by this omission.

Recalling the definitions of HMFT in Eq.(18) and HK in
Eq. (19), we begin by defining

H′
MFT =

∑
(r,r ′)

′ N

Jr r ′
tr(χ̄ †

r r ′ χ̄r r ′) + HK, (45)

where χ̄ ab
r r ′ is the same as in HMFT. That is, we obtain H′

MFT by
starting with HMFT and setting μab

r to zero. The ground-state
energy ofH′

MFT is E′
MFT. Note that, in general, the ground state

of H′
MFT will not satisfy the saddle-point equations.

Now, EMFT = 〈HMFT〉, where the expectation value is taken
using the ground state of HMFT. Using Eq. (23), we note that
〈HV 〉 = −m

∑
r tr(μr ); this cancels the second term in HMFT,

so we have

EMFT =
∑
(r,r ′)

′ N

Jr r ′
tr(χ̄ †

r r ′ χ̄r r ′) + 〈HK〉. (46)

Letting EK be the ground-state energy ofHK , we have 〈HK〉 �
EK , and so

EMFT � E′
MFT = N

∑
(r,r ′)

′ |χr r ′ |2
Jr r ′

+ EK . (47)

This is the first of the two desired inequalities.
We shall now deal with H′

MFT and E′
MFT, and establish a

lower bound on E′
MFT. To do this, we generalize Rokhsar’s

argument43 to the case of general m and nc. Let Ns be the
number of sites of our lattice. We label the single-particle
energy levels of HK by an index q; the energies are εq . HK is
specified by the ncNNs × ncNNs Hermitian matrix

(HK )raα;r ′bβ = δαβχab
r r ′ , (48)

where

χr ′ r = χ
†
r r ′ . (49)

Because this is traceless (all diagonal entries are zero), we
have ∑

q

εq = 0. (50)

The ground state of HK (and hence of H′
MFT) is obtained by

filling the lowest ncmNs energy levels with fermions. We call

the set of such energy levels L. The other nc(N − m)Ns levels,
which we denote by the set U , are empty.

It will be useful to define averages over the sets of levels L
and U :

[ε]L = 1

ncmNs

∑
q∈L

εq, (51)

[ε]U = 1

nc(N − m)Ns

∑
q∈U

εq . (52)

We also denote the average of ε2
q over the two sets by [ε2]L

and [ε2]U , and the average of ε2
q over all states is written [ε2].

Equation (50) implies

[ε]U = − m

N − m
[ε]L. (53)

The bound originates from the pair of inequalities

[ε]2
L � [ε2]L, (54)

[ε]2
U � [ε2]U , (55)

which just express the fact that variance is positive. These
inequalities are saturated (become equalities) if and only if εq

is constant over each of the sets L and U . Multiplying Eq. (54)
by m/N , Eq. (55) by (N − m)/N , and adding the two, we
have

m

N
[ε]2

L + (N − m)

N
[ε]2

U � [ε2]. (56)

Using Eq. (53) and the fact that [ε]L < 0, we have

[ε]L � −
√

N − m

m

√
[ε2]. (57)

Now, EK = ncmNs[ε]L, so we have shown

EK � −ncmNs

√
N − m

m

√
[ε2]. (58)

The next step is to get a simple expression for [ε2]. We have

[ε2] = 1

ncNNs

∑
α

ε2
α = 1

ncNNs

tr
[
H2

K

]

= 2

ncNs

∑
(r,r ′)

tr(χ †
r r ′χr r ′). (59)

Therefore, we have the inequality

E′
MFT � N

∑
(r,r ′)

′ ∑
a,b

∣∣χab
r r ′
∣∣2

Jr r ′

− ncmNs

√
N − m

m

√√√√ 2

ncNs

∑
(r,r ′)

∑
a,b

∣∣χab
r r ′
∣∣2. (60)

The next step is to minimize this lower bound, which we
do by taking the derivative of the right-hand side of Eq. (60)
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with respect to |χab
r r ′ | and setting it to zero:

0 = 2N

∣∣χab
r r ′
∣∣

Jr r ′
− 2m

√
(N − m)/m

∣∣χab
r r ′
∣∣√

2
ncNs

∑
(r ′′,r ′′′)

∑
c,d

∣∣χcd
r ′′ r ′′′

∣∣2 . (61)

For a given bond (r,r ′), this equation implies that either
|χab

r r ′ | = 0 for all a,b, or

2

ncNs

∑
(r ′′,r ′′′)

∑
c,d

∣∣χcd
r ′′ r ′′′

∣∣2 = m(N − m)

N2
J 2

r r ′ . (62)

Now, the left-hand side of Eq. (62) is independent of the bond
(r,r ′), and so we must have

2

ncNs

∑
(r ′′,r ′′′)

∑
c,d

∣∣χcd
r ′′ r ′′′

∣∣2 = m(N − m)

N2
J 2

∗ (63)

for some constant J∗. Moreover, this implies that, for a given
bond, unless Jr r ′ = J∗, then we must have χab

r r ′ = 0 (for all
a,b). Therefore,

∑
(r,r ′)

′ ∑
a,b

∣∣χab
r r ′
∣∣2

Jr r ′
= 1

J∗

∑
(r,r ′)

∑
a,b

∣∣χab
r r ′
∣∣2 (64)

= ncNs

2

m(N − m)

N2
J∗. (65)

Putting these results into Eq. (60), we have

E′
MFT � −ncNs

2

m(N − m)

N
J∗. (66)

The global minimum is clearly achieved when J∗ = Jmax, the
largest of the Jr r ′ . Therefore,

EMFT � E′
MFT � −ncNs

2

m(N − m)

N
Jmax. (67)

Putting m = N/k, we have

EMFT � −ncNNs

(k − 1)

2k2
Jmax, (68)

which reduces to Rokhsar’s result when k = 2 and nc = 1.

B. Necessary and sufficient conditions to saturate the bound

Here, we show that the bound Eq. (68) is saturated if and
only if the following two conditions hold: (1) εq is constant
over each of the sets L and U . That is, all the filled states have
the same energy, and all empty states have the same energy.
(2) The color density ñab

r calculated using HK satisfies the
condition ∑

r

tr(μr ñr ) = 0. (69)

This color density is defined by

ñab
r = 〈

n̂ab
r

〉
K

, (70)

where the expectation value is taken using the ground state
of HK . Note that ñr in general does not satisfy the constraint
(23). These conditions for saturation are very restrictive, as we
discuss below.

There are two separate inequalities that must both be turned
into equalities for the bound to be saturated. The first is E′

MFT �
Ebound, and the second is EMFT � E′

MFT. Saturation of the first

and second inequalities leads to conditions (1) and (2) above,
respectively. It is trivial to show that the first inequality is
saturated if and only if εq is constant over each of the sets L
and U .

We now show that condition (2) is equivalent to saturation
of the second inequality. It will be useful to define a continuous
family of Hamiltonians parametrized by α ∈ [0,1]:

Hα = HK + αHV . (71)

This interpolates between HK at α = 0 and HK + HV , the
fermionic part of HMFT, at α = 1. The ground state of Hα

with energy Eα is denoted by |ψα〉. Because we work in the
canonical ensemble for the fermion number, we are free to
make a constant shift μab

r → μab
r + cδab so that

∑
r tr(μr ) = 0

(note that this shift does not change EMFT). With this choice
for μr , we have

〈ψ1|HV |ψ1〉 = 0. (72)

We also have EMFT − E′
MFT = E1 − E0. In particular, EMFT =

E′
MFT if and only if E0 = E1.
The variational principle implies 〈ψα|Hα′ |ψα〉 � Eα′ . The

left-hand side of this inequality can be written as

〈ψα|Hα′ |ψα〉 = Eα + (α′ − α)〈ψα|HV |ψα〉. (73)

We have thus shown

Eα + (α′ − α)〈ψα|HV |ψα〉 � Eα′ . (74)

If we put α = 1, this gives E1 � Eα . On the other hand, putting
α′ = 1 gives instead

Eα + (1 − α)〈ψα|HV |ψα〉 � E1. (75)

Combining these together,

Eα + (1 − α)〈ψα|HV |ψα〉 � E1 � Eα , (76)

which immediately implies

〈ψα|HV |ψα〉 � 0. (77)

A special case of Eq. (76) is

E0 + 〈ψ0|HV |ψ0〉 � E1 � E0. (78)

From this, it follows that if 〈ψ0|HV |ψ0〉 = 0, then E1 = E0.
Now, suppose the converse, i.e., suppose E0 = E1. Note that
first-order perturbation theory gives us

dE

dα
= 〈ψα|HV |ψα〉, (79)

and so

E1 − E0 =
∫ 1

0
dα〈ψα|HV |ψα〉. (80)

By assumption, this integral is equal to zero. Since the
integrand is non-negative, then we must have 〈ψα |HV |ψα〉 = 0
and, in particular, for α = 0.

Therefore, we have shown that E1 = E0 if and only if
〈ψ0|HV |ψ0〉 = 0, and, hence, EMFT = E′

MFT if and only if
〈ψ0|HV |ψ0〉 = 0. Since 〈ψ0|HV |ψ0〉 = ∑

r tr(μr ñr ), we have
established condition (2) as desired.

Both conditions derived above for saturation of the bound
are highly restrictive. Condition (1) dictates that there be only
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two energies in the spectrum; we should expect this to occur
only when χab

r r ′ is such that the lattice is broken into clusters, so
that the spectrum consists of perfectly flat bands. Condition (2)
is also very restrictive. An easy way to satisfy (2) is simply to
have a saddle point where μr = 0. Suppose instead that μr �=
0, and so generically we should expect that ñr is nonuniform
and does not satisfy Eq. (23). It is useful to imagine starting
from α = 0 and turning on HV by increasing α. The μr need
to be chosen to “even out” the color density, so that it satisfies
Eq. (23) once α = 1. Naively, a choice of μr accomplishing
this will cost energy at each lattice site; that is,

〈ψ0|[−tr(μr n̂r )]|ψ0〉 > 0. (81)

This would imply

∑
r

tr(μr ñr ) < 0, (82)

which is in conflict with condition (2). This discussion
indicates that satisfying condition (2) when μr �= 0 is
unlikely.

C. Saturation of the bound and k-simplex VCS states

The necessary and sufficient conditions derived above still
leave open the questions of what kind of saddle points saturate
the bound, and whether saturation is possible for a given lattice
and set of exchange couplings Jr r ′ . Saturation is not always
possible; for example, on any bipartite lattice with k > 2,
the stricter bound derived in Sec. V shows that saturation of
Eq. (68) is impossible. Here, we will show that, when they
exist, k-simplex VCS states saturate the bound and are thus
the analogs of the VBS states for k = 2. In striking contrast to
VBS states, many commonly encountered lattices do not admit
any k-simplex VCS states for k > 2. Moreover, for k > d + 1,
there is no d-dimensional lattice that admits a k-simplex state
without fine tuning of the exchange couplings. The implication
is that, for k > 2, a much wider range of ground states are
possible in the large-N limit, including spin-liquid states.
Unless stated otherwise, when discussing specific lattices, we
consider the case of nearest-neighbor exchange only.

We shall first discuss k-simplex VCS states for the simpler
case nc = 1, and then generalize to arbitrary nc. In the large-N
limit, by VCS state, we mean a saddle point where χr r ′ is
chosen to decompose the lattice into clusters. Each lattice
site belongs to exactly one cluster, and any two sites in the
same cluster are connected by χr r ′ �= 0 along some path of
bonds (they need not be directly connected). Each cluster must
contain some multiple of k lattice sites since, otherwise, the
cluster will not be a singlet. In a k-cluster state, every cluster
contains exactly k sites. A k-simplex state is a k-cluster state
where, within each cluster, each site is (directly) connected to
every other site by a single bond with Jr r ′ = Jmax (see Fig. 2).
Just as for VBS states, on a given lattice there can be many
different k-simplex states with the same N → ∞ energy. It is
expected that 1/N corrections will select a particular ordered
pattern out of this degenerate manifold, again precisely as for
VBS states.34

(b)(a)

FIG. 2. Illustration of three-cluster and three-simplex VCS states
on the triangular lattice (for nc = 1). χr r ′ is nonzero on the highlighted
bonds and zero elsewhere. Both states (a) and (b) are three-cluster
states. State (b) is a three-simplex state and is a N = ∞ ground state
of the k = 3 triangular lattice model. State (a) is not a three-simplex
state and therefore has higher energy than (b) following the discussion
in the text.

To generalize k-cluster states to nc > 1, we consider only
diagonal χab

r r ′ (and μab
r ). That is, we consider

χab
r r ′ = δabχa

r r ′ (no sum), (83)

μab
r = δabμa

r (no sum). (84)

For each a = 1, . . . ,nc, χa
r r ′ is chosen to give a k-cluster

decomposition of the lattice, resulting in nc different k-cluster
decompositions. A k-simplex state occurs where each k-cluster
decomposition is also a decomposition into k-simplices; an
example of a nc > 1 k-simplex states is given in Fig. 3. Such
states were considered for k = 2 in Ref. 34, and also as exact
ground states of special models for a variety of nc and N in
Ref. 51.

Focusing on a single color (say, a = 1) and a single cluster,
and choosing μab

r = 0 and χ1
r r ′ → −χ (for bonds within a

cluster), the fermionic part of the mean-field Hamiltonian in a
k-simplex state is

Hk-simplex
F = −χ

∑
r �=r ′

f
†
r1αfr ′1α . (85)

FIG. 3. (Color online) An example k-simplex state with nc = 2
and k = 3 on the kagome lattice. Simplices of one color are the
triangles marked with solid lines (red online), and those of the other
color are triangles marked with dashed lines (blue online). This state
was discussed (for N = 3) in Ref. 51.
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The lowest single-particle energy is εL = −(k − 1)χ ; the k − 1
other eigenvalues are degenerate and take the value εU = χ .
The ground state is obtained by filling the lowest level in all
clusters, and it is easy to see that in this state the saddle-point
condition 〈n̂ab

r 〉 = mδab is satisfied. This state satisfies both
the conditions for saturation of the lower bound Eq. (68), and
this is easily verified by direct computation of the energy.

More general k-cluster states do not saturate the bound.
To illustrate this, consider for simplicity nc = 1 and a lattice
where either Jr r ′ = Jmax or Jr r ′ = 0. Consider a k-cluster
state where all the clusters are identical and each cluster con-
tains Nb bonds with nonzero exchange. It can be shown that the
energy of each cluster is Ec = −NNbJmax/k2 (Appendix D),
so the total energy is then

EMFT = Ns

k
Ec = −−NJmaxNsNb

k3
. (86)

This attains the bound only if the number of bonds is
maximum, that is, Nb = k(k − 1)/2, but this is precisely the
condition that each cluster is a k-simplex.

As mentioned above, while most lattices admit a VBS
state, this is not the case for k-simplex states with k > 2.
For example, the square and honeycomb lattices admit VBS
states but no k-simplex states with k � 3. The triangular
(Fig. 2) and kagome lattices admit both VBS and three-
simplex states, but lack k-simplex states for k � 4. The three-
dimensional pyrochlore lattice of corner-sharing tetrahedra
admits four-simplex states, but no k-simplex states for k � 5.
Going beyond specific examples, for a d-dimensional lattice,
k-simplex states with k > d + 1 are impossible, unless the
exchange couplings are fine tuned. To see this, consider the k

points of a simplex in d-dimensional space. Any pair (r,r ′) of
these points must have Jr r ′ = Jmax; this can only be achieved
without fine tuning if space-group symmetry forces all the
exchange couplings to be equal. This can occur only if the
points of the simplex are mutually equidistant, and there can
be at most d + 1 mutually equidistant points in d-dimensional
space.

While on a given lattice there may be other states that
saturate the bound even when no k-simplex VCS states exist,
for large enough k, saturation is impossible. To illustrate this,
consider again a lattice where either Jr r ′ = Jmax or Jr r ′ = 0,
and let Nb be the total number of bonds in the lattice with
nonzero exchange. We can obtain a lower bound on the
energy by treating each bond as an isolated system, calculating
the resulting two-site ground-state energy and summing over
bonds. In Appendix C, it is shown that the ground-state energy
of an isolated bond is −ncNJmax/k2, so we have

EMFT � −ncNNbJmax

k2
. (87)

This bound is more strict than Eq. (68) when k > 2Nb/Ns + 1,
so saturation of Eq. (68) is impossible for such values of k.

V. LARGE-N LIMIT: BIPARTITE LATTICES

A. Bipartite lower bound

We now derive a stricter lower bound on the mean-field
energy that holds for bipartite lattices. As in Sec. IV A, we
consider the mean-field Hamiltonian at general nc, but now

on a bipartite lattice. Precisely, we divide the lattice into
two sublattices A and B of equal size so that Jr r ′ is only
nonzero when r and r ′ lie in different sublattices. We first
use the inequality EMFT � E′

MFT precisely as in Sec. IV A.
The bipartite structure allows us to obtain a stricter bound on
E′

MFT. We recall that

H′
MFT =

∑
(r,r ′)

′ N

Jr r ′
tr(χ̄ †

r r ′ χ̄r r ′) + HK. (88)

The crucial observation is that, for a bipartite lattice,HK obeys
sublattice symmetry, where HK → −HK under the operation

fraα →
{

fraα r ∈ A,

−fraα r ∈ B.
(89)

Again, we let L be the set of ncmNs occupied levels. Now,
however, we define the set U to be the image of L under the
sublattice operation. The set U clearly contains only empty
levels. We denote the set of the remaining nc(N − 2m)Ns

levels by M. Levels in M are empty and have energies
intermediate between those in L and U . We define averages of
εq and ε2

q over these sets as before.
As in Sec. IV A, we have EK = ncmNs[ε]L, and we need

to relate [ε]L to [ε2]. We have

[ε2] = m

N
[ε2]L + m

N
[ε2]U + (N − 2m)

N
[ε2]M (90)

= 2m

N
[ε2]L + (N − 2m)

N
[ε2]M (91)

� 2m

N
[ε2]L � 2m

N
[ε]2

L. (92)

Since [ε]L is negative, this implies

[ε]L � −
√

N

2m

√
[ε2]. (93)

From this point, we can precisely follow the steps of Sec. IV A
to minimize the lower bound on E′

MFT. In this case, we obtain
the stricter bound

EMFT � − 1

4k
ncNNsJmax. (94)

This bound is equivalent to Eq. (68) when k = 2, and is stricter
when k > 2.

B. Saturation of the bipartite bound

Here, we state the necessary and sufficient conditions to
saturate the bipartite bound, and give examples of k-cluster
VCS states that achieve saturation. The bound (94) is saturated
if and only if each of the following two conditions hold:
(1) εq is constant over each of the sets L and U , and εq = 0
in M. (2) The color density ñab

r calculated using HK satisfies
the condition ∑

r

tr(μr ñr ) = 0. (95)

The proof of this statement follows that given for the more
general bound in Sec. IV B. As before, condition (2) comes
from saturation of the inequality EMFT � E′

MFT; since nothing
in this inequality depends on the bipartite structure, the proof
of condition (2) is identical to that given before. As before, it
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0

(a) (b)

(c) 0

00

ππ

ππ

FIG. 4. Cluster states (nc = 1) with energies saturating the lower
bound (94) on the square lattice for (a) k = 2, (b) k = 3, and (c) k = 4.
χr r ′ has constant magnitude on the dark bonds and is zero on the
others. In the k = 3 state, the flux through each six-site plaquette is
π , while it is zero for each four-site plaquette in the k = 4 state. For
each value of k, in the N = ∞ limit, every tiling of the square lattice
by the type of clusters shown is a ground state. This large degeneracy
is expected to be lifted upon computing perturbative 1/N corrections
to the ground-state energy (Ref. 34).

is trivial to see that E′
MFT = Ebound if and only if condition (1)

holds.
As before, saturation of the bipartite bound is impossible

for large enough k. Again, we consider a lattice where either
Jr r ′ = Jmax or Jr r ′ = 0, and let Nb be the total number of
bonds in the lattice with nonzero exchange. For k > 4Nb/Ns ,
the bound (87) is stricter than Eq. (94), so saturation is
impossible for such values of k.

Since a flat energy spectrum of the mean-field Hamiltonian
is necessary to saturate the bipartite bound, we expect that it
will only be saturated by VCS states. VCS states saturating
the bound on the square lattice for nc = 1 are shown in Fig. 4
and were also reported in Ref. 35. For k = 2, the bound is
saturated by any dimer state, and for k = 4 it is saturated by
four-cluster states of the type shown. For k = 3, the bound is
actually saturated by a class of six-cluster states.

Whenever a given lattice admits a nc = 1 cluster state
saturating the bound, it is easy to see that the same lattice
(i.e., same set of exchange couplings Jr r ′) also admits nc > 1
cluster states saturating the bound. These nc > 1 states have
diagonal χab

r r ′ as in Eq. (83), and each χa
r r ′ is chosen to give a

cluster decomposition of the type that saturates the bound for
nc = 1. Examples of such states (for k = 4 and nc = 2) are
illustrated for the square lattice in Fig. 5.

VI. LARGE-N RESULTS ON SQUARE LATTICE AND
NUMERICAL GROUND-STATE SEARCH

In this section, we focus on the square lattice and, in
particular, on the case k � 5. The discussion of Sec. V B above
establishes that, for k = 2,3,4, the large-N ground states on the
square lattice are VCS states of the type shown in Figs. 4 and 5.

(b)
(a)

FIG. 5. (Color online) Illustration of two N = ∞ cluster ground
states on the square lattice for nc = 2 and k = 4, which saturate the
lower bound (94). Square clusters of one color are marked with solid
lines (red online), while those of the other color are marked with
dashed lines (blue online). Any configuration where clusters of the
two colors separately tile the lattice is a N = ∞ ground state; as in the
nc = 1 case, the degeneracy among these states is expected to be lifted
upon computing perturbative 1/N corrections to the ground-state
energy.

We know of no cluster states that can saturate the bound for
k � 5 on the square lattice, and we conjecture that saturation
is impossible for such values of k. In this situation, it is very
challenging to rigorously determine the large-N ground state,
a problem we do not currently know how to solve. Instead,
we employ a systematic numerical search for ground states,
which, while not foolproof, allows us to determine the ground
state with some confidence.

Here, we first describe our numerical self-consistent
minimization (SCM) procedure, which we developed and
employed in Ref. 35 for the case nc = 1. A very similar
procedure was later used by Foss-Feig and Rey to study
the Kondo lattice model, in collaboration with one of us
(M.H.),101 and subsequently with both of us.102 Due to the
local constraint, the SCM procedure is not simply a trivial
iteration of a self-consistent equation, and to our knowledge
it has not been used previously by others; therefore, we shall
describe the SCM procedure here in some detail. Following
this discussion, we shall describe the results of SCM on the
square lattice for nc = 1,2.

A. Self-consistent minimization procedure

We first describe the SCM algorithm in the simpler case
of nc = 1; modifications in the nc = 2 case are described
below. The basic idea is simply to iterate the self-consistency
condition (13). However, if this is all one does, then the fermion
density will be nonuniform and Eq. (14) will be violated.
Instead, the idea is to iterate Eq. (13) within a constrained
set of χr r ′ and μr , so that Eq. (14) is always satisfied. To
accomplish this, the algorithm proceeds as follows: (1) An
initial χr r ′ is chosen randomly. In our calculations, we chose
χr r ′ = |χr r ′ |eiφr r′ , where |χ | was chosen in the interval [0.03,
0.18] and φ in the interval [0,2π ], both with a uniform
distribution. (2) Given χr r ′ , the potential μr is chosen so that
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Eq. (14) is satisfied. We describe below how this is done. (3) A
new set of χ fields is calculated by

χ ′
r r ′ = −Jr r ′

N
〈f †

r ′αfrα〉. (96)

(4) We return to step 2, and iterate until the ground-state energy
converges. In practice, we run this procedure for 500 iterations,
by which time the convergence is observed to be excellent.

To improve the efficiency of the algorithm as well as its
convergence behavior, it is desirable to restrict χr r ′ and μr

to vary within a unit cell, which is then periodically repeated
to form a larger lattice, with periodic boundary conditions.
The translation symmetry generated by the unit-cell primitive
vectors allows us to exploit Bloch’s theorem, further increasing
the efficiency. Since different unit cells can accommodate
different candidate ground states, a variety of different cells
should be considered separately.

SCM is indeed a minimization procedure for the ground-
state energy EMFT, as the energy is nonincreasing for each
iteration. To see this, suppose we have some χr r ′ and μr

obtained after step 2. In general, this is not a saddle point,
but Eq. (14) is satisfied. We let HMFT be the mean-field
Hamiltonian defined in terms of χ and μ. We let χ ′

r r ′ and μ′
r

be the fields obtained at the next step of the SCM procedure,
and H ′

MFT is the mean-field Hamiltonian defined in terms of
the primed fields. We have

χ ′
r r ′ = −Jr r ′

N
〈f †

r ′αfrα〉, (97)

where the expectation value 〈· · ·〉 is taken in the ground state
of HMFT. The potential μ′

r is chosen so that 〈f †
rαfrα〉′ = m,

where the primed expectation value is taken in the ground
state of H ′

MFT. We have

EMFT = 〈HMFT〉 = N
∑
(r,r ′)

′ 1

Jr r ′
[|χr r ′ |2 − (χ∗

r r ′χ
′
r r ′ + c.c.)].

(98)

Next, we have the variational upper bound

E′
MFT = 〈H ′

MFT〉′ � 〈H ′
MFT〉 = −N

∑
(r,r ′)

′ |χ ′
r r ′ |2
Jr r ′

. (99)

Therefore, the change in energy satisfies

E′
MFT − EMFT � −N

∑
(r,r ′)

′ |χr r ′ − χ ′
r r ′ |2

Jr r ′
� 0, (100)

that is, the energy is nonincreasing for every step of the SCM
procedure. This means that when the procedure converges (in
practice, it almost always does), it converges to a saddle point
that is a local minimum of the energy. There is no guarantee,
however, of a global minimum, so, in order to have any
confidence that a particular state is the global minimum, it
is necessary to run the procedure many times with different
random initial states.

While the other steps of the algorithm are very simple,
choosing the potential μr in step 2 requires a more detailed
discussion. The basic idea is to use linear response theory to
find the change in potential needed to achieve a desired change
in the fermion density. Going into step 2, we have fields χr r ′

and μr , which can be used to construct HMFT. The density will
not in general be uniform, and we define

nr0 = 〈f †
rαfrα〉, (101)

where the expectation value is taken using the ground state of
HMFT. Suppose the potential is changed by μr → μr + δμr .
To first order in δμr , the change in the density is

δnr =
∑

r ′
Xr r ′δμr ′ , (102)

where Xr r ′ = Xr ′ r = X∗
r r ′ is (by definition) the density re-

sponse function evaluated in real space and at zero frequency,
which, using standard results of linear response theory, can be
calculated from the single-particle wave functions and energies
of HMFT. While straightforward, calculation of Xr r ′ is the most
computationally expensive step of the algorithm and must be
implemented with attention to efficiency. At this point, the idea
is to set δnr = m − nr0 (the deviation between the original and
desired densities), and invert Eq. (102) to find δμr .

In practice, Xr r ′ is not invertible because the density does
not change under a uniform shift of μr in the canonical
ensemble. Instead, we proceed by diagonalizing Xr r ′ :∑

r ′
Xr r ′ur ′α = xαurα (no sum on α). (103)

Here, xα are the eigenvalues of Xr r ′ , labeled by α, and urα are
the orthonormal eigenvectors. If we expand δnr and δμr in the
basis of eigenvectors, we can rewrite Eq. (102) as

δnα = xαδμα (no sum on α). (104)

We invert this by simply ignoring eigenvectors with xα = 0
and choosing

δμα =
{
δnα/xα, xα �= 0

0, xα = 0.
(105)

This is easily converted back to a result for δμr .
What we have obtained is a linear extrapolation for

δμr , and the basic idea at this point is to proceed by
replacing μr → μr + δμr and iterating the procedure until
the density is uniform. This is, in fact, just a multidimen-
sional Newton’s method for finding a zero of (nr − m) =
Fr [{μr}]. While such a method has good local convergence
properties (i.e., starting sufficiently close to the zero), the
global convergence properties are poor. However, this can
be improved by very simple modifications.103 We define
the merit function E = ∑

r (nr − m)2, and demand that each
change in μr decrease E . If μr → μr + δμr actually in-
creases E , then we try the smaller step μr → μr + λδμr ,
where 0 < λ < 1. This is guaranteed to decrease E for
sufficiently small λ; in practice, we use the sequence λ = 1,

0.5,0.4,0.3,0.2,0.1,0.09,0.08, . . . ,0.01,0.009, . . . , and give
up (simply moving on to step 3) after 1000 attempts. In
practice, it is only rarely necessary to give up; even when
it is necessary, step 2 is successful in later iterations, and
convergence still occurs. For each iteration of step 2, this
process of choosing a new δμr by linear extrapolation is
repeated 10 times, or until E < 10−20. This tolerance for E
is usually achieved after only a small number of iterations and
is virtually always achieved by the end of a run (500 iterations).
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Rarely, it happens that E is of order unity after a substantial
number of iterations, and the algorithm either converges
extremely slowly or fails to converge. To avoid this problem,
when E � 1 any time after 10 iterations, we abort the
calculation and start over with a new random initial condition.

We now describe how the SCM procedure is modified to
handle nc = 2. The initial set of χab

r r ′ is chosen making use of
the singular value decomposition

χ = U

(
d1 0

0 d2

)
V . (106)

Here, d1 and d2 are each chosen in the interval [0,0.2] with a
uniform distribution. U and V are both random U(2) matrices,
chosen from a uniform distribution on the U(2) manifold.

The algorithm itself proceeds via the same four steps
outlined above. Only in step 2 are the modifications at all
nontrivial: We have to choose μab

r to satisfy 〈n̂ab
r 〉 = mδab.

We proceed precisely as above using linear response theory,
except that now the necessary linear response equation has a
matrix structure and is

δnab
r =

∑
r ′

∑
c,d

X
ab;cd
r r ′ δμdc

r ′ . (107)

Since both δn and δμ are Hermitian, is is convenient to
expand them in a basis of Hermitian matrices labeled by
A,B = 0, . . . ,3; a convenient basis is the identity matrix
(A = 0) plus the three Pauli matrices (A = 1,2,3). This allows
one to recast Eq. (107) in the form

δnA
r =

∑
r ′

∑
B

XAB
r r ′ δμ

B
r . (108)

Here, it can be shown that XAB
r r ′ = XBA

r ′ r and is real, so the
response function can be diagonalized as described for nc = 1.
Finally, the merit function E also needs to be modified, and we
choose

E =
∑

r

(
n0

r − m
)2 +

∑
r

3∑
A=1

(
nA

r

)2
. (109)

B. Results of SCM

We now describe the results of SCM on the square lattice
for both nc = 1,2. The nc = 1 results were reported in Ref. 35.
Following the protocol described below, we studied k =
5,6,7,8 for nc = 1 and k = 5,6,7 for nc = 2. (The numerics
become more time consuming with increasing k and nc.) We
also checked that SCM indeed produces exact ground states
(guaranteed by saturation of lower bounds) for smaller values
of k.

For each value of k and nc noted above, we considered
all unit cells of rectangular geometry containing k2 or fewer
lattice sites, excluding cells of unit width for technical reasons.
A unit cell of dimensions �x × �y is periodically repeated to
fill the lattice using Bravais lattice vectors R = �x x + �y y.
(Note that other choices of Bravais lattice vectors are possible;
we made this restriction for the sake of simplicity and limited
computation time.) The lattice itself has periodic boundary
conditions and dimensions Lx × Ly . Letting L = min(Lx,Ly),
we always considered L � 40 for k = 5, L � 36 for k = 6,

L � 42 for k = 7, and L � 40 for k = 8. While in some cases
we also considered larger system sizes, a more systematic
study of finite-size effects would be desirable, but we have left
this for future work. For each unit-cell size, we ran the SCM
procedure 30 times, using a different random initial condition
each time.

For nc = 1 and 5 � k � 8, we found the ACSL to be the
ground state.35 For nc = 2 and k = 5, we found the ground
state to be a rather complicated inhomogeneous state that we
have not fully characterized. On the other hand, for k = 6,7, we
found that the nACSL and dCSL are degenerate ground states.

VII. DISCUSSION

We analyzed a variety of SU(N ) symmetric Heisenberg
models in two dimensions on the square lattice and gave
arguments that topologically ordered spin liquids are among
their ground states. In view of their potential realization
with alkaline-earth atoms placed on optical lattices, we
now summarize what we know about realistically achievable
SU(N ) Heisenberg models. Following that discussion, we
conclude by mentioning some directions for future study.

The Heisenberg models with nc = 1 can be obtained simply
as a large-U limit (Mott insulator phase) of a Hubbard model
representing alkaline-earth atoms hopping on a lattice with
m atoms (in their ground electronic state g) per site. Such
Heisenberg models are within the reach of experiment.28,31 The
main issue is temperature since the achieved temperature in
experiments is in the range t2/U < kBT < U , and not kBT <

t2/U (t is the Hubbard hopping) necessary for observing
effects of magnetic exchange. Yet, this is similar to the issues
encountered in studying the SU(2) Hubbard model with cold
alkali atoms, and currently a significant amount of effort is
being spent trying to devise techniques to lower the tempera-
ture of Mott insulators. Assuming this is done, the study of the
nc = 1 Heisenberg model will be possible in the future.

We summarize what we know about the nc = 1 Heisenberg
model in Fig. 6. On the horizontal axis of this figure, we
plot m, the number of atoms in the same electronic state g

per site. On the vertical axis we plot k, which is k = N/m.
The dashed-dotted line represents roughly the curve km = 10.
The significance of this curve lies in the fact that km = N , and
N = 10 is the largest experimentally achievable N . Therefore,
all the points on the plot that lie above the curve km = 10 can
not be reached experimentally, while those below the curve
can. The actual curve on Fig. 6 is corrected to take into account
that k and m are integers.

We emphasize that any N � 10 is within reach of an
experiment. Indeed, working with 87Sr, for example, one can
selectively populate its nuclear spin states so that only a subset
of those are populated with a total number of populated states
equal to N .21 At the same time, we expect that m = 1 and 2
columns of the figure are easiest to reach, as higher m will
likely experience losses due to three-body recombination.

At m = 1 and k = 2, the ground state is of course the Néel
state. There is also evidence for magnetic order at m = 1, k = 3
(Ref. 37) and at m = 1 and k = 4.40 For k = 2 and m � 3, it
is believed that the ground state is a valence-bond solid. This
is established by quantum Monte Carlo for m = 3,4,104 and is
proven in the limit m → ∞.43
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FIG. 6. Phase diagram of the SU(N ) Heisenberg model in two
dimensions on the square lattice with nc = 1 and with N = mk.
In terms of an underlying Hubbard model, m is the number of
fermions per site, while k is the inverse filling. Regions where there
is substantial evidence for a given ground state, or where the ground
state is known, are shaded. The Abelian chiral spin liquid (ACSL)
and valence cluster state (VCS) regions on the right are established
by our large-N analysis; the boundary between these regions in large
N is shown by a dashed line. For k = 2, m = 1, the Neel state is the
well-known ground state. There is also evidence for magnetic order
at k = 3, m = 1 (Ref. 37) and k = 4, m = 1 (Ref. 40). Valence-bond
solid (VBS) order (which is a type of VCS) was found for k = 2
and m = 3,4 (Ref. 104). The dashed-dotted line separates the range
of parameters beyond the reach of current experiments (above and to
the right of the line) and the range within the reach of the experiments
(below and to the left of the line). The experimentally relevant part
of the phase diagram with the greatest potential for novel ground
states, in particular, the Abelian chiral spin liquid, is indicated with a
question mark.

In addition to that, in this paper, we proved that at m → ∞,
k < 5, the ground states are valence cluster states, of which
valence-bond solid is a particular example. Finally, we have
shown that at k > 5 and at least for k � 8, and possibly for
k > 8 as well, and at m → ∞, the ground state is the Abelian
chiral spin liquid. The rest of the phase diagram remains to
be filled in. Of course, other phases not discussed here may
well be present, and there is some evidence this is the case, in
particular, at k = 2, m = 2.104

The experiments will be conducted at m = 1 or 2, and at k

as large as 10. The ground state of the Heisenberg model under
these conditions is not known; this is represented by a question
mark in Fig. 6. We believe it is unlikely that the Néel state
can survive to large k, even at m = 1. Indeed, as discussed
earlier, the amount of frustration increases with increasing
k.35 What happens in this region needs to be investigated
further. Unfortunately, numerical study is difficult, especially
since these models [except when k = 2 (Ref. 104)] suffer
from the quantum Monte Carlo minus-sign problem, even on
bipartite lattices, in both world-line and fermion determinantal
approaches. However, it may be possible to obtain useful in-
formation from analytical and density matrix renormalization
group studies of quasi-one-dimensional systems. Ultimately,
experiment will need to tell us what happens in this part
of the phase diagram. An intriguing possibility is that the
phase boundary that lies between k = 4 and 5 extends all the
way from large m to m = 1, thus, making the experimentally
accessible m = 1, k > 4 regime a chiral spin liquid.

We note that, while we only considered integer k, some
noninteger values of k are possible. For example, m = 2 and
N = 5 corresponds to k = 5/2, and a well-defined large-N
limit with k = 5/2 certainly exists. We did not consider such
values of k first for simplicity and second because noninteger k

requires m � 2, making experimental accessibility somewhat
less favorable. Nonetheless, it would be interesting to study
the large-N limit for noninteger values of k in future work.

A similar phase diagram can be discussed at nc = 2 where
the Abelian chiral spin liquid will be replaced by the non-
Abelian chiral spin liquid (or by the doubled chiral spin liquid).

Supposing that some of the topological liquids discussed
here do indeed occur for physically realizable SU(N ) spin
models, it will be an interesting question as to how to actually
observe fractional or non-Abelian statistics in these systems.
This is especially so given the intense interest in topological
quantum computation using non-Abelian particles. We expect
that holes, the excitations obtained by removing an atom from
the system, should split into spinons and holons. The holons
may be localized near a given site by an external potential and,
at the same time, they obey fractional or non-Abelian statistics
depending on which topological liquid we are considering.
Therefore, braiding may be achieved by manipulating the
holons via the external potential, and this is a route by which
fractional and non-Abelian statistics may be observed. While
some further details along these lines are given in Appendix F,
many questions remain open, and we feel this constitutes an
interesting direction for future work.

Other directions for future study include investigation
of the projected wave functions for the various topological
liquids, which we discussed only briefly in Sec. III. Given
the difficulty of unbiased numerical study in these systems,
such wave functions may be useful as variational states to
gain understanding of the phase diagram away from the
large-N limit. Finally, another potentially interesting problem
is a careful study of the dCSL edge states, which may be
topologically protected as mentioned in Sec. III C.
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APPENDIX A: ALKALINE-EARTH-ATOM HUBBARD
AND SPIN MODELS

Here, we briefly review the Hubbard model describing
fermionic alkaline-earth atoms in optical lattices. We focus
on two kinds of Mott insulating states in which the spin
models we study are the simplest description capturing the
essential physics. A more extensive and detailed discussion of
fermionic AEA in optical lattices, and the rich variety of strong
correlation physics that can be realized in these systems, can
be found in Ref. 21.
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A single alkaline-earth atom has a 1S0 electronic ground
state. (Recall that the subscript on the right is J , the electronic
angular momentum, so this state has J = 0.) The nuclear
spin can be as large as I = 9/2 in the case of 87Sr. Other
important examples are 171Yb and 173Yb, with I = 1/2 and
5/2, respectively. While Yb is not an alkaline earth, it has the
same configuration of outer electrons, and all the discussion
here applies equally to alkaline earths and to Yb. Also
important for our purposes is the 3P0 lowest electronic excited
state, which has a very long lifetime on the order of 100 s.
These two electronic states can be subjected to optical lattices
of different strength.105

Interactions between two atoms in any combination of these
electronic states, which arise from collisions in the s-wave
channel, are expected to respect a large SU(N ) spin-rotation
symmetry, where N = 2I + 1 is the number of nuclear spin
levels per atom.21,32 The symmetry arises because such atoms
have J = 0, and due to the resulting quenching of hyperfine
coupling, the nuclear spin is essentially a spectator in the
collision between two atoms and only participates via Fermi
statistics. The SU(N ) symmetry is not exact but is expected to
hold to an excellent approximation. A rough estimate is that,
for two ground-state atoms, SU(N )-breaking effects are 10−9

times the strength of the SU(N )-symmetric interaction.21 For
two excited-state atoms, the strength of SU(N ) breaking is
estimated to be 10−3.

We now suppose that the atoms are subjected to an optical
lattice potential deep enough that a description in terms of a
one-band Hubbard model is appropriate. We introduce creation
operators c

†
rgα and c

†
reα for the ground-state (g) and excited-

state (e) atoms, respectively. Here, r labels the lattice site, and
α = 1, . . . ,N labels the z component of nuclear spin. [We shall
find this notation more convenient than Iz = −I, . . . ,I , due to
the SU(N ) symmetry.] To describe the system, we consider the
most general Hubbard model with SU(N ) symmetry, nearest-
neighbor hopping, and on-site interactions. It is also important
to note that the numbers of ground-state and excited-state
fermions are separately conserved due to the long lifetime
(treated here as infinite) of the excited-state fermions and
energy conservation. The Hamiltonian is21

H = −tg
∑
〈r r ′〉

(c†rgαcr ′gα + H.c.) − te
∑
〈r r ′〉

(c†reαcr ′eα + H.c.)

+
∑

r

(
Ugg

2
n2

rg + Uee

2
n2

re + Uegnrgnre

)

− Jeg

∑
r

S
g

αβ(r)Se
βα(r). (A1)

The sums in the first two terms are over nearest-neighbor
bonds. We have introduced the following number and spin
operators:

nrg =
∑

α

c†rgαcrgα, (A2)

S
g

αβ(r) = c†rgαcrgβ , (A3)

with corresponding expressions for nre and Se
αβ(r). The

onsite interaction parameters Ugg , Uee, Ueg , and Jeg are
proportional to linear combinations of the four independent

s-wave scattering lengths characterizing collisions among the
atoms.21

The SU(N ) spin symmetry acts on the fermions as follows:

c†rgα → Uαβc
†
rgβ,

(A4)
c†reα → Uαβc

†
reβ .

Here, U is an arbitrary SU(N ) matrix. The fermions thus
transform in the fundamental representation of SU(N ).

We shall consider Ugg > 0, which is known to be the
case for 87Sr and 173Yb. In both cases, the corresponding
scattering length is about 100 a0, which corresponds to rather
large repulsive interactions.106,107 The sign of the interspecies
exchange interaction Jeg is not yet known and may be either
ferromagnetic (positive) or antiferromagnetic (negative); this
is likely to depend on the atomic species. If one ground-
state atom and one excited-state atom share the same site,
antiferromagnetic (ferromagnetic) Jeg favors antisymmetric
(symmetric) combinations of their nuclear spins.

We consider two types of Mott insulators. The simpler of
the two is realized using only ground-state atoms at an integer
filling of m atoms per site. While m = 1 best avoids issues of
three-body loss, we consider general m because it is needed
for the large-N limit. In this case, the Hubbard model contains
only the tg and Ugg terms, and when tg � Ugg , the standard
degenerate perturbation theory108 gives the spin model

Hspin = J
∑
〈r r ′〉

Sαβ(r)Sβα(r ′), (A5)

where J = 2t2
g /Ugg , and we have defined

Sαβ(r) = S
g

αβ(r) + Se
αβ(r). (A6)

In this case, since no excited-state atoms are present, Sαβ(r) =
S

g

αβ(r). The spin at each site transforms in the m × 1 irre-
ducible representation of SU(N ) (Fig. 1); this simply expresses
the fact that the nuclear spins of the identical fermions are
combined antisymmetrically. For m = 1, the spin transforms
in the fundamental representation of SU(N ), and when N = 2,
this is simply a S = 1/2 spin.

The second type of Mott insulator is related to S = 1 Mott
insulators of SU(2) spins. It is realized with m ground-state
atoms and m excited-state atoms on each site. We consider
Jeg > 0, in which case the single-site ground state is associated
with a m × 2 tableau. This can be seen by first viewing the
ground-state atoms as forming a spin transforming in the m × 1
representation, which is required simply by Fermi statistics,
and similarly for the excited-state atoms. These two spins are
then coupled by the Jeg exchange term, and formally we need to
solve a two-site problem, which is done in Appendix C. We do
not consider antiferromagnetic interspecies exchange because
this gives a single-site ground state with a 2m × 1 tableau,
which is of the same type obtained with only ground-state
atoms

In the simple case m = 1, the single-site ground states are
of the form

|ψr〉 = (c†rgαc
†
reβ + c

†
rgβc†reα)|0〉, (A7)

that is, the nuclear spins of the two fermions are combined
symmetrically. When N = 2 and m = 1, this is simply a S = 1
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spin. More generally, the single-site ground states can be
obtained from the highest-weight state∣∣ψhw

r

〉 = c
†
rg1c

†
re1 . . . c†rgmc†rem|0〉, (A8)

where all other single-site ground states can be obtained by
repeated action on |ψhw

r 〉 with appropriate components of
Sαβ(r). That is, they are linear combinations of states of the
form Sαβ(r)|ψhw

r 〉, Sαβ(r)Sγ δ(r)|ψhw
r 〉, and so on.

Again, m = 1 best avoids issues of three-body loss, but
we shall consider general m. Another potentially important
loss mechanism is inelastic losses in collisions between two
excited-state atoms. This can be minimized by making the
lattice for the excited-state atoms very deep, effectively setting
te = 0.

In Sec. II, the type of SU(N ) spin is specified by the
two local constraint equations (2) and (3). In Appendix B,
it is shown that these two constraints imply that the spin
transforms in the m × nc representation. To make contact with
that discussion, we now show that single-site ground states
of the present Hubbard model, transforming in the m × 2
representation, satisfy the constraint (3), that is,

T i
r |ψr〉 = 0, (A9)

where

T i
r = 1

2c†raασ i
abcrbα . (A10)

Here, a,b = e,g, and we formally consider the e,g labels as an
index transforming in an SU(2) “orbital” space. Moreover, σ i

are the 2 × 2 Pauli matrices (i = 1,2,3) and |ψr〉 is a single-site
ground state for the site r . [Since there are 2m fermions on
each site, the constraint (2) is obviously satisfied.]

The constraint (A9) is obviously satisfied for the m = 1
state given in Eq. (A7); the wave function is antisymmetric
under interchange e ↔ g and is thus an orbital singlet. The
same holds for the highest-weight state |ψhw

r 〉 since it is built
as a product of orbital singlets c

†
rgαc

†
reα (no sum on α). Because

[Sαβ(r),T i
r ] = 0, this immediately implies that Eq. (A9) holds

for all single-site ground states.
When te = 0 and tg � Ugg,Jeg , the spin Hamiltonian is

given by the same form, Eq. (A5), only now J = t2
g /[2(Ugg +

Jeg)]. The degenerate perturbation theory calculation needed
to establish this, unlike in the case of only ground-state atoms,
is not simply a trivial generalization of the familiar calculation
for the S = 1/2, SU(2) Hubbard model. While the end result
of this calculation appeared in Ref. 21, the details were not
presented, so we now present them here.

First, we consider a single lattice site and note that the
energy of |ψhw

r 〉 (neglecting hopping) is

E0 = 1
2Uggm

2 + 1
2Ueem

2 + Uegm
2 − Jegm. (A11)

By SU(N ) symmetry, this holds for any single-site ground
state. Moreover, we note that

c†rgαcreα

∣∣ψhw
r

〉 = c†reαcrgα

∣∣ψhw
r

〉 = 0, (A12)

which also holds for any single-site ground state by SU(N )
symmetry.

Now, we consider second-order degenerate perturbation
theory for a two-site problem with adjacent lattice sites r1

and r2. (In second-order perturbation theory, there is no need

to consider more than two sites.) We construct the effective
Hamiltonian by building up its action on an arbitrary state
|ψ1

r1
〉|ψ2

r2
〉 in the low-energy manifold (that is, |ψ1

r1
〉 and |ψ2

r2
〉

are arbitrary single-site ground states). The energy of the initial
state is 2E0. The intermediate state is obtained by hopping a
single ground-state fermion from r1 to r2 or vice versa. We
consider hopping from r1 to r2, so the intermediate state is

|ψint〉 =
∑

α

∣∣φ1
r1α

〉∣∣φ2
r2α

〉
, (A13)

where ∣∣φ1
r1α

〉 = cr1gα

∣∣ψ1
r1

〉
, (A14)∣∣φ2

r2α

〉 = c
†
r2gα

∣∣ψ2
r2

〉
. (A15)

Acting on the intermediate state with the onsite part of the
Hamiltonian and using the identity Eq. (A12) to evaluate the
action of the Jeg exchange term, the energy of the intermediate
state is found to be

Eint = 2E0 + Ugg + Jeg . (A16)

Since the intermediate state is an eigenstate with energy
independent of the initial state, the effective Hamiltonian is

Heff = −t2
g

Ugg + Jeg

[
Pc†r1gαcr2gα(1 − P)c†r2gβ

cr1gβ
P

+ (r1 ↔ r2)
]
, (A17)

where P is the usual projector onto the ground-state manifold,
and the second term in the square brackets accounts for the
process where a fermion first hops from r2 to r1. Because
a single hopping process always leaves the ground-state
manifold (since it changes the fermion number on each site),
we can drop the (1 − P) factor and write

Heff = −t2
g

Ugg + Jeg

[
Pc†r1gαcr2gαc

†
r2gβ

cr1gβ
P + (r1 ↔ r2)

]

= 2t2
g

Ugg + Jeg

[
PS

g

αβ(r1)Sg

βα(r2)P
]
, (A18)

where we dropped an additive constant in going to the second
line. Now,

S
g

αβ(r) = 1
2Sαβ(r) + 1

2

[
S

g

αβ(r) − Se
αβ(r)

]
, (A19)

where the second term transforms as a triplet in the orbital
space. But, the projector P forces every lattice site to be an
orbital singlet and, therefore,

PS
g

αβ (r1)Sg

βα(r2)P = 1
4Sαβ(r1)Sβα(r2), (A20)

so that

Heff = t2
g

2(Ugg + Jeg)
Sαβ(r1)Sβα(r2), (A21)

the result we claimed above.

APPENDIX B: DETERMINING THE IRREDUCIBLE
REPRESENTATION OF SU(N) SPIN FROM LOCAL

CONSTRAINTS

Here, we show that the local constraints (2) and (3)
imply that each spin transforms in the m × nc irreducible
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representation of SU(N ). Another way to state this fact is
that the Hilbert space of a single lattice site, subject to the
local constraints, transforms irreducibly under SU(N ) in the
m × nc representation.

To see this, it is helpful to think of spin and color
rotations as a subgroup SU(N ) × SU(nc) ⊂ SU(ncN ), where
the fermions transform in the fundamental of SU(ncN ). By
fermion antisymmetry, the first constraint [Eq. (2)] implies that
each site transforms in the ncm × 1 representation of SU(ncN ).

To understand the role of the second constraint [Eq. (3)],
we need to understand how this representation decomposes
into irreducible representations of SU(N ) × SU(nc). The
decomposition has the general form

(ncm × 1)SU(ncN) =
∑

i

r i
SU(N) ⊗ ri

SU(nc). (B1)

This equation expresses the fact that the (ncm × 1) representa-
tion of SU(ncN ) is a direct sum of irreducible representations
of SU(N ) × SU(nc), labeled by i. We will first show that, for
each term in this decomposition, ri

SU(N) uniquely determines
ri

SU(nc), and vice versa.
Focusing on a single lattice site and dropping the site label

for fermion operators, we consider the following (overcom-
plete) basis states for the (ncm × 1)SU(ncN) representation:

∣∣a1,α1; . . . ; ancm,αncm

〉 ≡ f †
a1α1

. . . f †
ancmαncm

|0〉. (B2)

If P (i) is a permutation of the integers i = 1, . . . ,ncm, then
fermion antisymmetry implies

∣∣aP (1),αP (1); . . . ; aP (ncm),αP (ncm)
〉

= sgnP
∣∣a1,α1; . . . ; ancm,αncm

〉
, (B3)

where sgnP is the sign of the permutation. Suppose we want
to project out a particular representation of SU(nc). We do
this by forming a SU(nc) Young tableau with ncm boxes, and
associating each box with a color index ai . We then follow
the usual procedure of first antisymmetrizing the ai indices
occupying the same column, and second symmetrizing those
occupying the same row. Because of the overall antisymmetry
expressed in Eq. (B3), when in the first step we antisymmetrize
the ai indices in a given column, we also simultaneously
symmetrize the corresponding set of αi indices. Similarly, the
second step antisymmetrizes those αi indices corresponding
to a given row. This means that, in the process of projecting
out a given desired SU(nc) representation, we have also
automatically projected out a corresponding given SU(N )
representation. The tableau of the SU(N ) representation is
given by interchanging the role of rows and columns of the
SU(nc) tableau (see Fig. 7 for an example that clarifies the
meaning of this statement).

The constraint (3) dictates that we keep only the terms in
the decomposition where ri

SU(nc) is the singlet representation
0SU(nc). Since we have to form the corresponding tableau using
ncm boxes, the only possible SU(nc) tableau is nc × m, and
the above discussion implies that the corresponding SU(N )
tableau is m × nc. It can be seen by directly constructing a
highest-weight state that the representation (m × nc)SU(N) ⊗

SU(N)

1 a4

a2

a3 α1

α3

α2

α4

SU(n )c

a

FIG. 7. Illustration of Young tableaux occurring in the decom-
position of the ncm × 1 representation of SU(ncN ) into irreducible
representations of the SU(N ) × SU(nc) subgroup for the case nc =
m = 2. If, as described in the text, we project out the SU(nc)
irreducible representation corresponding to the tableau on the left,
then the corresponding SU(N ) tableau is as shown on the right. Note
that the rows (columns) of the SU(nc) tableau become the columns
(rows) of the SU(N ) tableau.

0SU(nc) only occurs once in the decomposition. Therefore, the
constraint gives

(ncm × 1)SU(ncN) → (m × nc)SU(N) ⊗ 0SU(nc), (B4)

the desired result.

APPENDIX C: EXACT GROUND-STATE ENERGY
OF TWO-SITE PROBLEM

Here, we consider a problem of two spins at r1 and r2,
coupled by the Hamiltonian (5). We write Jr1 r2 = J /N , so
that

H = J
N

Sαβ (r1)Sβα(r2). (C1)

We shall calculate the exact (i.e., not large-N ) ground-state
energy for arbitrary N , m = N/k and nc.

It is convenient to define the Hermitian spin operators

T̂ A
r = f †

raαT A
αβfraβ , (C2)

where A = 1, . . . ,N2 − 1 labels the SU(N ) generators T A.
These are chosen to satisfy the orthonormality condition

tr(TATB) = 1
2δAB, (C3)

and can be shown to satisfy the identity

T A
αβT B

γ δ = 1

2

(
δαδδβγ − 1

N
δαβδγ δ

)
. (C4)

Equation (C4) can be used to show

H = 2J
N

T̂ A
r1

T̂ A
r2

+ J n2
cm

2

N2

= J
N

[(
T̂ A

r1
+ T̂ A

r2

)2 − (
T̂ A

r1

)2 − (
T̂ A

r2

)2]+ J n2
cm

2

N2
.

(C5)

Now, (T̂ A)2 = T̂ AT̂ A is the quadratic Casimir of SU(N ).
In a given irreducible representation r , this operator is
proportional to the identity, and its eigenvalue C2(r) can be
computed from the structure of the Young tableau using a
formula given in chapter 19 of Ref. 109, which we now
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reproduce. Suppose the Young tableau has nrow rows, each
with length bi (i = 1, . . . ,nrow) and ncol columns, each with
length ai (i = 1, . . . ,ncol), and a total of � boxes. Then, the
eigenvalue of the Casimir is given by

C2(r) = 1

2

[
�(N − �/N) +

nrow∑
i=1

b2
i −

ncol∑
i=1

a2
i

]
. (C6)

Since each spin transforms in the m × nc representation,
we can use Eq. (C6) to evaluate (T̂ A

r1
)2 = (T̂ A

r2
)2. Moreover, by

examining the Young tableaux appearing in the tensor product
(m × nc) ⊗ (m × nc), and using Eq. (C6) to evaluate (T̂ A

r1
+

T̂ A
r2

)2 for each tableau, we find that the two-spin ground state is
the 2m × nc tableau, and that the corresponding ground-state
energy is

E0 = −J ncm
2

N
= −ncNJ

k2
. (C7)

APPENDIX D: ENERGY OF k-CLUSTER STATES

Here, we compute the large-N ground-state energy of a
single isolated k-cluster, a result that is used in the discussion
of Sec. IV C. We consider a spin model defined on an arbitrary
connected graph with k sites labeled by s and with links labeled
by �. The exchange energy is taken to be equal on all links and
is J = J /N . The mean-field Hamiltonian is

HMFT = N

J
∑

�

tr(χ †
�χ�) + m

∑
s

tr(μs) + HF, (D1)

where HF = HK + HV and the latter two operators are
constructed as in Eqs. (19) and (20).

We consider the following ansatz:

χab
� = −δabχ, (D2)

μab
s = −δabzsχ . (D3)

Here, zs is the coordination number of the site s. We shall
see that χ > 0 upon minimizing the energy with respect to χ .
With this choice, fixing the color and spin quantum numbers,
the one-particle Hamiltonian that can be read off from HF is
proportional to the Laplacian matrix of the graph (with positive
coefficient). Therefore, the single-particle ground state (for
fixed color and spin) has zero energy, is unique, and its wave
function is a constant. The unique many-particle ground state
of HF is obtained by filling this state with kmnc = ncN

fermions, one in each of the ncN possible combinations of
color and spin states. The mean-field energy is therefore given
entirely by the constant terms in HMFT, and is

EMFT = ncNNb

J χ2 − mncχ
∑

s

zs (D4)

= ncNNb

J χ2 − 2mncNbχ , (D5)

where Nb is the number of links in the graph. Minimizing with
respect to χ , we find

EMFT = −ncNNbJ
k2

. (D6)

We know this must be the ground-state energy of the isolated
k-cluster because it saturates the bound (87) provided by the
ground-state energy of the two-site problem.

We note that this result also holds at any finite N .
Schematically, this can be seen by noting that the ground state
is the unique singlet that can be formed from the k spins,
which can be thought of as a N × nc Young tableau, which is
obtained by vertically stacking the m × nc tableaux for each
of the k sites. Any pair of spins can then be seen to transform
in the 2m × nc representation, which, by the discussion of
Appendix C, implies that the two-site Hamiltonian on the
link connecting those sites is in its ground state. So, the
ground-state energy is just the sum of the two-site ground-state
energies for each link in the graph, which again gives Eq. (D6).

APPENDIX E: CHIRAL SPIN LIQUID IN LARGE-k LIMIT

Our demonstration that constant magnetic field with a
flux of 2π/k per plaquette is the lowest energy solution to
the saddle-point equations (on the square lattice, for nc = 1
and 5 � k � 8) is purely numerical. A natural question that
arises in this context is whether this can be supplemented by
additional analytical analysis.

The solution to the problem of a particle hopping on a
square lattice in a constant magnetic field of flux 2π/k can not
be found analytically. Yet, it is well known that the spectrum
consists of k bands (Landau levels).110 Since the fermions
we work with are at a filling fraction 1/k (filling all the bands
would correspond to N particles per site, while we have instead
m = N/k particles per site), they fill precisely one lowest
Landau level. Yet, the energy of a filled Landau level is not
known analytically, except at a very large k where the problem
becomes effectively continuous.

Therefore, let us calculate the energetics of a saddle-point
solution with a flux of 2π/k per plaquette (corresponding
to ACSL) in the limit of very large k and compare it with
other possible states at this k. Our analysis will be for the
case nc = 1, but also applies immediately to nc = 2 since any
nc = 1 saddle point can be extended to a nc = 2 saddle point
of the diagonal form

χab
r r ′ = δabχa

r r ′ (no sum), (E1)

μab
r = δabμa

r (no sum), (E2)

where each pair (χa
r r ′ ,μa

r ) is a nc = 1 saddle-point solution.
The energy is simply a sum of energies of the nc = 1 saddle
points. We can obtain the nACSL and dCSL saddle points
in this fashion from the ACSL saddle point by choosing
χ1 and χ2 to have the same or opposite magnetic fields,
respectively. The other nc = 1 states we consider can similarly
be straightforwardly extended to nc = 2 states in this fashion.

We start by choosing the hoppings χr r ′ according to
Eq. (26). First of all, the first term in the mean-field energy is
easy to calculate:

N

J
∑
〈r r ′〉

|χr r ′ |2 = 2NsNχ2

J . (E3)

Here, as before, Ns is the total number of sites on the lattice
and 2Ns is the total number of bonds.
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Now, let us find the energy of a fully filled Landau level. A
particle hopping on a lattice with a hopping strength χ without
the magnetic field has the spectrum

ε(kx,ky) = −2χ cos(kx) − 2χ cos(ky)

≈ −4χ + χ
(
k2
x + k2

y

)− χ

12

(
k4
x + k4

y

)
, (E4)

where a small kx , ky expansion was performed (lattice spacing
is taken to be unity). Looking at the quadratic term, we read
off the effective mass of the particle m∗ = 1/(2χ ). This gives
the cyclotron frequency

ω = B

m∗ = 4πχ

k
(E5)

since the magnetic field is B = 2π/k. The energy of the lowest
Landau level is then

EL = −4χ + 1

2
ω = −4χ + 2πχ

k
. (E6)

For what follows, we would like to also calculate the 1/k2

correction to this result. The corrections come from the quartic
term in the dispersion, which takes into account the deviation
of the lattice from the continuum limit. The correction to the
Hamiltonian describing the motion of a particle in a magnetic
field in the continuum due to this term in the dispersion can be
found by minimal subtraction (for example, in Landau gauge),
and gives

V = − χ

12

[(
−i

∂

∂x
+ 2πy

k

)4

+ ∂4

∂y4

]
. (E7)

Considering this a perturbation, the unperturbed wave function
is given by111

ψ(kx) =
(

2

k

) 1
4

eikxx exp

[
−π

k

(
y + kkx

2π

)2
]

. (E8)

By calculating the matrix element 〈ψ(kx)|V |ψ(kx)〉, we find

EL = −4χ + 2πχ

k
− π2χ

2k2
. (E9)

This is the energy of the lowest Landau level in the approxi-
mation up to terms 1/k2. Notice that the Landau level remains
flat, that is, kx independent. It is easy to see that it will remain
flat up to arbitrary order in 1/k. This means that the broadening
of the Landau level is exponentially small in 1/k and can be
ignored for the purposes of this calculation.

The total number of particles filling the Landau level is
NNs/k, so the mean-field energy becomes

EMFT = 2NsNχ2

J − NNsEL

k
. (E10)

Minimizing this with respect to χ , we find

EMFT = −JNNs

k2

(
2 − 2π

k
+ π2

k2
+ · · ·

)
. (E11)

Now, let us consider alternative states. One alternative state
is a Fermi-surface state, where all hoppings are real and equal
to χ . The energy of such a state is straightforward to calculate.
We take particles moving with the dispersion given by Eq. (E4),

filling all the states at an appropriate density up to Fermi energy
to find the total energy per particle to be

EF = −4χ + 2πχ

k
− π2χ

3k2
. (E12)

This energy is slightly higher than the energy of the Landau
level given in Eq. (E6). Therefore, the energy after minimiza-
tion with respect to χ is also slightly higher:

EMFT = −JNNs

k2

(
2 − 2π

k
+ 5π2

6k2
+ · · ·

)
. (E13)

Clearly, Eq. (E11) is greater than Eq. (E13), so the state with
the uniform magnetic field wins.

A second alternative state one might consider is a VCS
state. Suppose the lattice is covered by clusters of exactly k

sites each, each containing Nb bonds. Within each cluster χr r ′

are constant and equal to χ , which is real, and χr r ′ for bonds
connecting the clusters are zero. In Appendix D, it is found
that the energy of a single cluster is given by Eq. (D6). Since
the cluster energies simply add, and the number of clusters is
Ns/k, the total energy is

EMFT = −JNNsNb

k3
. (E14)

Now, we can define Nbe by

NsNb

k
= 2Ns − Nbe, (E15)

so that Nbe is the total number of bonds not contained inside
some cluster. We have

EMFT = −J 2NNs

k2
+ J NNbe

k2
. (E16)

Nbe scales with the total perimeter of all clusters. Since
the perimeter of a single large cluster goes like

√
k, Nbe is

proportional to
√

k times the total number of clusters Ns/k, or

Nbe = c
Ns√

k
, (E17)

where c is some constant. This gives

EMFT = −JNNs

k2

(
2 − c√

k

)
. (E18)

Comparing this with the uniform magnetic mean-field energy
Eq. (E11) as well as the uniform hopping given by Eq. (E13),
we see that the magnetic field mean-field energy is again the
lowest at large k.

The arguments presented here do not prove that the
uniform magnetic field is the lowest energy solution. That
is demonstrated instead by the numerical solution of the
mean-field equations. However, they do give a feel and perhaps
some intuition as to why this solution wins over some of the
possible alternatives. They also support the idea that chiral spin
liquids are good ground states not just for a few intermediate
values of k, but also for larger k. Therefore, we conjecture
that the ACSL is the large-N ground state for nc = 1 and
all k � 5, and that the nACSL and dCSL are the degenerate
large-N ground states for nc = 2 and all k � 6.
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APPENDIX F: LOCALIZATION AND BRAIDING OF
FRACTIONAL AND NON-ABELIAN PARTICLES

One of the most striking properties of the topological liquid
states discussed in this paper is the presence of particles with
fractional and non-Abelian statistics. It is therefore interesting
to discuss how, in principle, such particles may be localized
and braided, especially in view of the intense interest in
topological quantum computation using non-Abelian particles.
Our intent here is not to develop a detailed and realistically
achievable proposal to carry out such a braiding experiment
in a cold-atom system, but simply to discuss in principle how
such braiding may be achieved and point out some of the
issues that arise. Development of more detailed proposals is an
interesting subject for future work. It would be also interesting
if our discussion can be sharpened by appropriate calculations.
For ease of presentation, we focus on the case nc = m = 1;
generalization to other cases is straightforward.

We shall discuss how one may localize a particle called a
holon that is spinless but carries the conserved atom number.
The reason we consider holons rather than spinons is that
holons may be localized simply by modifying the optically
generated single-particle potential for the atoms. To do this, we
need to go beyond the Heisenberg spin model, and for greatest
simplicity, we consider a t-J model where strong correlation
restricts the number of atoms per site to be less than or equal
to one. The Hamiltonian is

HtJ = −tg
∑
〈r r ′〉

P(c†r ′αcrα + H.c.)P

+ J
∑
〈r r ′〉

c
†
r ′αcr ′βc

†
rβcrα , (F1)

where c
†
rα creates a ground-state atom in spin state α on site

r , and P is a projector onto the subspace with one or fewer
atoms on each site. Jr r ′ has been replaced by J on every bond,
and the sum in the first term is over nearest-neighbor bonds of
the square lattice. crα is said to insert a hole (with spin α) at
site r . When there are no holes present, this model reduces to
the Heisenberg spin model with nc = m = 1. Below, we rely
on the approach of Lee and Nagaosa to discuss this model.112

To make contact with the description of the topological
liquid states, we decompose the hole insertion operator as

crα = frαb†r , (F2)

where f
†
rα creates a spinon and b

†
r is a bosonic creation operator

creating a holon. Spinon and holon densities obey the local
constraint

f †
rαfrα + b†rbr = 1. (F3)

Assuming the system (without holes) has an ACSL ground
state, the spinons are low-energy quasiparticles, which couple
to the Chern-Simons gauge field and thus acquire fractional
statistics. The holon also carries gauge charge and, thus, also
acquires fractional statistics. It should be noted that, in the
equations above, the holon and spinon are formal objects
used to microscopically represent the t-J model, and these
formal objects are not the same as the low-energy quasiparticle
degrees of freedom. Holons and spinons emerge as low-energy
degrees of freedom when we study the t-J model starting

from an appropriate mean-field theory,112 and then including
fluctuations. Since the discussion here is only qualitative, and
since the needed mean-field theory is very closely related to
that introduced in Sec. II, we shall not introduce it here. It
suffices to note that, at the mean-field level, both spinons
and holons are free particles, which are minimally coupled
to the fluctuating gauge field upon going beyond mean-field
theory.

We now consider introducing the external potential

δHtJ = −
∑

r

U (r)c†rαcrα , (F4)

and adding a single hole into the system. The sign in Eq. (F4) is
chosen so that a negative U (r) is an attractive potential for the
added hole. Up to an additive constant, we may use Eq. (F3)
to reexpress the potential as

δHtJ =
∑

r

U (r)b†rbr . (F5)

We could have equally chosen the potential to couple to the
spinons and not the holons; the above choice is convenient, but
is purely a convention. For example, at the mean-field level,
a change in the saddle-point value of the Lagrange multiplier
field enforcing the local constraint will apportion the effect
of U (r) between holons and spinons. Therefore, the system
dynamically determines the effect of the physical external
potential U (r) on holons and spinons.

When the hole is added, Eq. (F2) tells us that we both
add a holon and remove one spinon. (The removed spinon
should really be called a spinon hole, but for ease of discussion,
we will simply call it a spinon.) We suppose that U (r) is
negative, appreciable only in a small spatial region, and just
strong enough to bind a particle. Because U (r) couples to the
conserved density, we expect it to bind a particle carrying atom
number −1, but it is not obvious whether this particle will be a
hole or a holon. To understand this, the added holon and spinon
will interact via some short-ranged potential. This potential
may be attractive or repulsive. If the holon-spinon potential is
attractive enough, the holon will be bound to the spinon and
they will be localized together by the external potential U (r).
In this case, we have localized a hole, which is not a fractional
particle. On the other hand, if the holon-spinon potential is
repulsive enough, a holon will be localized. In the latter case,
we can then manipulate the fractional holon by adiabatically
changing the external potential U (r). Multiple holons could
be created by choosing U (r) to be a sum of several localized
potentials.

Since the goal is to create and manipulate a fractional
particle, what should be done if a hole is localized by the
external potential? One solution is to apply a time-varying
Zeeman magnetic field, which will couple to the localized
spinon and can be used to excite it to a delocalized state,
leaving behind a localized holon. If we do this to create a
state with several localized holons, the delocalized spinon
excitations will induce some errors when the holons are
braided. However, these spinon excitations can be made to
relax by whatever cooling mechanism was used to prepare the
state of several localized holes in the first place. (Finding a
cooling mechanism capable of achieving this for cold-atom
Mott insulators is a significant unsolved problem. Solving
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it is a prerequisite for any experiment probing fractional or
non-Abelian statistics in such systems, which would have to
be carried out at temperatures well below the bulk gap.) While
some spinons may relax back into the localized states and

reform holon-spinon bound states, because these states are
localized, the rates for other relaxation processes (for instance,
relaxation into low-energy edge excitations) are expected to
dominate.
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