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Reduction of intrinsic critical current density under a magnetic field along the hard axis of a free
layer in a magnetic tunnel junction
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We investigated the effect of a magnetic field along a hard in-plane axis Hhard on a current-induced magnetization
switching (CIMS) in magnetic tunnel junctions (MTJs). Since Hhard causes the effective field to tilt away from the
easy axis, we evaluated the Hhard dependence of two contributing factors in CIMS [the intrinsic critical current
density (Jc0) and the thermal stability factor (E/kBT )] as functions of the tilting angle (θH ). Both measurements
and numerical simulations showed that the presence of Hhard can reduce Jc0 by more than the amount estimated by
Slonczewski’s polarization function g(θ ) by an order of magnitude and that E/kBT is independent of θH . These
findings suggest that the effect of Hhard mainly appears in the dynamic properties due to the nonconservative
force of the spin-transfer torque based on the Slonczewski’s model. A simple stability analysis demonstrated
that the tilt of the magnetization direction away from the easy axis caused by the presence of Hhard induces an
imbalance between the spin-transfer and damping torques and that applying a current achieves the further tilted
stable state. Achievement of this stable state can be interpreted as the suppression of the effect of the effective
demagnetization field (H ∗

d ). Therefore the major reduction in Jc0 is due to the suppression of H ∗
d caused by the

presence of Hhard.

DOI: 10.1103/PhysRevB.84.174434 PACS number(s): 75.78.−n, 75.60.Jk

I. INTRODUCTION

The spin-transfer torque (STT) phenomena in magnetic
nanostructures predicted by Slonczewski1 and Berger2 pro-
duce several types of magnetic dynamics, including current-
induced magnetization switching (CIMS). In nanosized mag-
netic tunnel junctions (MTJs),3,4 CIMS between two static
magnetic states has been demonstrated for various types
of free layers. For spintronic device applications, STT in
MTJs provide a promising mechanism for manipulating
magnetic moments.5,6 Compared with other structures, MTJs
with a CoFeB/MgO/CoFeB structure7,8 are attractive because
they simultaneously exhibit high tunnel magnetoresistance
(TMR) ratios9 and CIMS.10,11 For MTJs to be applied to
the memory elements of nonvolatile logic circuits12,13 and
nonvolatile memory such as STT random access memory
(STT-RAM),14–17 the critical current density Jc must be
reduced.

Reduction in Jc can be achieved by focusing on two factors,
thermal stability factor E/kBT and intrinsic critical current
density Jc0, because Jc can be expressed as a combination
of these factors.18–21 Here, E is the energy barrier between
two static magnetic states, kB is the Boltzmann constant,
and T is the temperature. Note that E/kBT reflects a wide
range of the magnetostatic energy landscape and that Jc0

reflects the dynamics of magnetization in a small energy range
around the stable state, balanced between STT and damping/
dissipation.

Inokuchi et al.22 found that Jc0 in MTJs decreases when
a magnetic field is applied along the hard in-plane axis of the

free layer Hhard in MTJs and that E/kBT is independent of
Hhard. They indicated that the decrease in Jc0 was caused by an
increase in Slonczewski’s polarization function g(θ ) (in-plane
torque), which indicates the spin efficiency. Wang et al.23

found that the perpendicular torque strongly depends on the
angle of the free layer in their STT analysis. The relationship
between the switching process and these torques, however, has
not been fully clarified.

In the absence of an external magnetic field, Jc0 in MTJs
with in-plane anisotropy and large demagnetization energy is
expressed as24

Jc0 ≈ αγ eMsH
∗
d t/μBg(θ ), (1)

where α is the magnetic damping constant, γ is the gyromag-
netic ratio, e is the elementary charge, Ms is the saturation
magnetization, H ∗

d is the effective demagnetization field, t is
the thickness of the free layer, and μB is the Bohr magneton.
Equation (1) implies that the reduction in Jc0 is due to an
increase in g(θ ) and/or decrease in H ∗

d .
To determine which one is more effective for reducing in

Jc0 in the presence of Hhard, we first measured Jc0 and E/kBT

as functions of the mutual angle θH between the pinned layer
and the free layer in MTJs. This angle is interpreted as the
angle at which the effective field Heff tilts away from the
easy axis due to the presence of Hhard. Next, we performed
numerical simulation and simple stability analysis of CIMS
of the free layer using a macrospin model to investigate the
dynamic properties associated with the balance between STT
based on the Slonczewski’s model and the damping.
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FIG. 1. (a) Dependence of R on Heasy at
Hhard = 0 from which we obtained RP of 3.2 k�,
RAP of 5.4 k�, and the TMR ratio of 69%. (b)
Asteroid curves of MTJ. Open (solid) circles
represent fields for switching from AP to P
(P to AP) state. Extra magnetic field at origin
of asteroid curves is small because center of
asteroid curves corresponds approximately to
origin. (c) Dependencies of RP and RAP on
Hhard at the applied current of 10 μA were used
to determine θfree and θpin. Open (solid) circles
represent RP (RAP). (d) θfree and θpin as functions
of Hhard.

We obtained the following results: (i) from the experimental
results at θH = 9◦, Jc0 decreased by more than 20%, exceeding
the contribution of the polarization function g(θ ), which was
estimated to be 0.4%, and that E/kBT was independent of
θH . (ii) Numerical simulations reproduced these experimental
results. The stability analysis showed that the initial stable
state with the tilted magnetization due to the presence of
Hhard created an imbalance in the STT and damping torque, in
contrast to the state without tilting under the easy-axis applied
field (Heasy). This Hhard-induced imbalance produced further
tilting of the magnetization in the stable state depending on the
external current density J . Achievement of this stable state can
be interpreted as the suppression of H ∗

d . Therefore the major
reduction in Jc0 can be attributed to the suppression of H ∗

d due
to the presence of Hhard, indicating that Jc0 is sensitive to Hhard

rather than Heasy.
This paper is organized as follows. In Sec. II, we describe

the sample preparation. Section III presents and discusses
our experimental results. In Sec. IV, we discuss the Landau-
Lifshitz-Gilbert equation with the spin-transfer torque term
(LLGS) based on the macrospin model. Section IV A presents
the numerical results. Section IV B discusses the dynamic
properties associated with the balance between STT and the
damping around the tilted Heff as revealed by the stability
analysis. In Sec. IV C, we discuss the effect of the change in
the dynamic properties on Jc0. We conclude in Sec. V with a
summary of the key points and a brief remark.

II. SAMPLE PREPARATION

We prepared MTJs with a single free layer of Co40Fe40B20

(2.0 nm) fabricated on a coplanar wave guide to enable
application of a fast pulse current. The starting multilayers
were deposited on sapphire substrates using radio-frequency
magnetron sputtering with a base pressure of 10−7 Pa. The
order of the film layers was, starting from the substrate,
Ta(5)/Ru(10)/Ta(5)/NiFe(5)/MnIr(8)/CoFe(4)/Ru(0.8)/Co40

Fe40B20(5)/MgO(0.8)/Co40Fe40B20(2)/Ta(5)/Ru(5) (in nm).
They were then microstructured into MTJs with a dimension
of 100 × 200 nm using electron beam lithography and Ar-ion
milling. The completed MTJs were annealed at 300 ◦C for one
hour in a 10−4-Pa vacuum under a magnetic field of 400 mT.

III. EXPERIMENTAL RESULTS

First, we measured the dependence of resistance R on Heasy

at Hhard = 0 and the asteroid curves of an MTJ. Figure 1(a)
shows the dependence of resistance R on Heasy at Hhard =
0. The MTJs had two resistance states corresponding to
their magnetization configurations. One was a parallel (P)
configuration, which showed low resistance (RP ), and the
other was an antiparallel (AP) configuration, which showed
high resistance (RAP). The switching between RP and RAP is
clearly evident in Fig. 1(a).

Figure 1(b) shows the asteroid curves of the MTJ. The open
(solid) circles represent the fields for switching from the AP to
P (P to AP) state. The center of the asteroid curves corresponds
approximately to the origin. These results indicate that extra
magnetic fields at the origin, such as a stray field from the
pinned layer, are small. These measurements showed that RP

was 3.2 k�, RAP was 5.4 k�, and the TMR ratio was 69%.
Then, to determine the dependencies of θfree and θpin on

Hhard, we measured the RP and RAP of the MTJ as functions
of Hhard for an applied current of 10 μA. They are shown in
Fig. 1(c). Here, θfree (θpin) is the angle between the direction
of the magnetization of the free (pinned) layer of the MTJ
and that of the in-plane easy axis. In this figure, the open
(solid) circles represent the dependence of RP (RAP) on Hhard.
The RP increased as |Hhard| increased up to around 20 mT
because θH increased from 0 to π/2 with |Hhard|. The RAP

decreased with |Hhard| because θH decreased from π to π/2.
At around |Hhard| = 20 mT, the two resistance curves had
the same value because θH reached π/2. The resistance values
around |Hhard| = 20 mT were different from the average of RP
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FIG. 2. Map of P as a function of applied current density J

with τp = 100 ns for various Hhard from which Jc0 and E/kBT were
determined.

and RAP at Hhard = 0. This is because θpin gradually increased
with Hhard. From the resistance curves at |Hhard| > 20 mT,
which show the linear dependence on Hhard, we estimated the
dependence of θpin on Hhard. Assuming that the two resistance
curves are proportional to cos(θpin − θfree), we estimated the
dependence of θfree on Hhard. The dependencies of θfree and θpin

on Hhard are shown in Fig. 1(d).
Next, we measured the switching probability (P ) of CIMS

as a function of the current density at various Hhard to obtain
the dependencies of Jc0 and E/kBT on θH . We applied a
magnetic field up to |H | = 2.5 mT. Note that the mutual angle
θH approximately corresponds to θfree in this region because
the change in θpin is much smaller than that in θfree, as shown in
Fig. 1(d). Figure 2 shows a map of P as a function of applied
current density J with τp = 100 ns for various Hhard, where
τp is the pulse duration time of the applied current. At each
Hhard, P was expressed using the following equation, which is
theoretically predicted in the thermal activation regime:18–21

P = 1 − exp

{
− τp

τ0
exp

[
− E

kBT

(
1 − J

Jc0

)]}
, (2)

where τ0 is the inverse of the attempt frequency and is assumed
to be 1 ns. We can determine Jc0 and E/kBT at each Hhard

from the fitting based on this equation. The determined Jc0 and
E/kBT are plotted as functions of θH in Figs. 3 and 4 using
the relationship between Hhard and θH , which, as mentioned
above, approximately corresponds to θfree in this magnetic field
region. The Jc0 dropped from 9 to 7 × 106 A/cm2 when |θH |
increased from 0 to 9 degrees. The E/kBT had no specific
dependence on |θH |.

We investigated whether the decrease in Jc0 arises only
from the increase in g(θ ) by using25

g(θ ) = η

2
(1 + η2 cos θ ), (3)

where η is the spin-polarization factor, to estimate g(θ ).
We found that estimated g(θ ) increased by 0.4% when θH

increased from 0◦ to 9◦, which is sufficiently small to explain
the decrease in Jc0. Slonczewski and Sun modified Eq. (3)
to include the inelastic tunneling effect.26 They found that
the polarization function does not depend on θ . Hence, the
reduction in Jc0 cannot be explained by the increase in
the polarization function. Our measurements revealed the
following properties of Jc0 and E/kBT . The Jc0 under the
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FIG. 3. Jc0 obtained from fitting of probability curves as a
function of θH .

Hhard condition is reduced by more than the contribution of the
polarization function, and E/kBT does not vary with Hhard.
Therefore the reduction in Jc0 is possibly caused by other
effects, for example, the change in the dynamic properties due
to the current-induced STT. We investigated this possibility
through the simulation and the simple stability analysis.

IV. SIMULATIONS AND DISCUSSION

In this section, we discuss the reduction in Jc0 due to
the presence of Hhard in terms of two theoretical treatments
based on the macrospin model.24 We performed the systematic
numerical simulation of CIMS and stability analysis to deter-
mine the equilibrium magnetization configurations evaluated
from the balancing condition between current-induced STT
and damping under Hhard condition. Although this approach
is similar to that used by Sun24 for an “on-axis” geometry, in
which both the applied magnetic field and the magnetization
direction of pinned layer are along the easy axis, we used a
different arrangement. Only the magnetization of the pinned
layer was along the easy axis. The applied magnetic field was
in the hard in-plane direction.

We began our analysis by using the LLGS equations.1

Using the macrospin model24 shown in Fig. 5(a), we treated
magnetization M as a model of a uniformly magnetized free
layer (F) in MTJs with volume V0 and saturation magnetization
Ms . The MTJs were assumed to have a uniaxial anisotropy field
Hk . We analyzed the magnetization dynamics of unit vector
m = M/Ms = (θ,ϕ) with two degrees of freedom, polar θ

0
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FIG. 4. E/kBT obtained from fitting of probability curves as a
function of θH .
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FIG. 5. (Color online) (a) Schematic diagram of MTJ device
consisting of pinned layer (P), insulating barrier (I), and free layer
(F). (b) Polar coordinates of magnetization vector m and applied
field Hhard.

and azimuth ϕ angles, as shown in Fig. 5(b). The Hk (easy
axis) was along the +z direction, and the fixed magnetization
direction Mp in the pinned layer (P) was along the −z direction
(Hk‖ − Mp‖z). The magnetic field Hhard was applied along the
+x direction (Hhard‖x), and the demagnetization field Hd was
along the +y direction (Hd‖y).

For convenience in later discussion, we briefly describe the
LLGS equation in the macrospin model. The spin-polarized
current is restricted to the +y direction. In the absence of
thermal fluctuations, the LLGS equation is written in the
following forms with the Gilbert damping constant α:(

θ̇

ϕ̇

)
=

(−α sin θ − sin θ

1 −α

) (
1

sin θ

(
∂ε
∂θ

)
1

sin 2θ

(
∂ε
∂ϕ

) − j

)
, (4)

ε = 1

2
(sin2 θ + hd sin2 ϕ sin2 θ − 2hhard sin θ cos ϕ). (5)

In Eq. (4), j [=(Ie/IT )g(θ )] corresponds to the current-induced
STT, where Ie is the applied current and IT (= 2E0γ0e/μB) is
the current scale. The ε is the potential energy normalized by
the energy scale E0 = MsHkV0/2. The first term of the right
side of Eq. (5) is the anisotropy term, the second term is the
demagnetization energy term with demagnetization coefficient
hd = Ms/μ0Hk , and the last term is the applied field energy
with hhard = Hhard/Hk .

A. Numerical simulations

To investigate the reduction in Jc0 observed when a hard in-
plane axis is present, we first performed Langevin simulation
of Eq. (4) at finite temperature T with an additional random
fluctuation field hfl(t) using a technique similar to that used
previously,27 in which the “antiparallel-to-parallel (AP-to-P)”
CIMS of m was treated by referring to the direction of the spin-
polarized current. The initial configurations were m ∼ −z to
provoke AP-to-P CIMS. The parameter settings were set by
E0 = 2.5×104 J/m3, T = 300 K, hd = 21.7, and α = 0.007.
The time step was set to 0.5–1.0 ps. The hhard varied from 0 to
1/3, which covered the field range in the experiments described
in the previous section.

We simulated Ns independent samples with fixed current
density J . For each sample, a simulation was performed
from t = −10 ns to t = 0 without STT to reach the initial
condition of thermal equilibrium at t = 0. Systematically
varying J , we numerically calculated the time evolution of
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FIG. 6. (Color online) (a) Jc as a function of tp of “AP-to-P”
CIMS as a function of J for various hhard. (b) Extracted Jc0 as a
function of θH .

m. All the results were averaged over Ns = 512 different
samples.

Figure 6(a) shows the switching current density Jc as a
function of the current pulse width τp for various values of
hhard. For comparison with the experimental results, Jc was
defined as the value of J with probability P = 1/2 by using
the criterion P = (1 + 〈m · mp〉Ns

)/2, where 〈· · ·〉Ns
indicates

the average over Ns samples and mp is a unit vector of Mp.
Substituting this criterion for Jc into Eq. (2), we found that
CIMS in the thermal activation regime was accompanied by the
logarithmic dependence of τp: Jc ∝ ln(τp) and J 
 Jc0.18–21

For τp > 10 ns, Jc clearly displayed a logarithmic dependence
on τp, indicating the thermal activation regime. The slopes of
the curves for τp > 10 ns are essentially independent of hhard.
This suggests that E/kBT is insensitive to hhard. This agrees
with the result presented in Fig. 4.

Using the inverse of attempt frequency τ0 (assumed to be
1 ns), we extracted Jc0 from a linear extrapolation in the
thermal activation regime (τp > 10 ns) in accordance with
Eq. (2) for J = Jc. Figure 6(b) shows Jc0 as a function of θH ,
which is the angle at which effective field Heff is tilted away
from the easy axis Hk and corresponds to the applied field
through the relationship between θH and hhard:

sin θH = hhard = Hhard

Hk

. (6)

The reduction rate of Jc0 at θH ∼ 10◦ (hhard = 0.17) was more
than 20%. This is consistent with the result presented in Fig. 3
for 0◦ < θ < 10◦. These results again suggest that the effect of
the presence of hhard mainly appears in the dynamic properties
due to a nonconservative force that cannot be estimated using
the potential associated with E/kBT .

B. Balance of STT and damping around tilted direction of Heff

To investigate the dynamic properties of the magnetization
of the free layer, we started from Eq. (4) in the absence of
thermal fluctuations, as in the LLGS analysis. To simplify
the analysis, we regarded the damping torque and STT as
perturbations so that the enabled magnetization motion would
conserve the magnetic energy, as in the unperturbed state. To
eliminate the degree of freedom of ϕ, we took the averaged
time derivative of θ over one period of motion for ϕ, which
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also conserved the magnetic energy. The averaged equation of
motion is expressed as

〈θ̇〉 = −α

〈
∂ε

∂θ

〉
+ j sin θ, (7)〈

∂ε

∂θ

〉
= [(1 + hd〈sin2 ϕ〉) sin θ − hhard〈cos ϕ〉] cos θ. (8)

The first and second terms on the right side of Eq. (7)
represent the damping torque and STT, respectively. The
balance between the damping torque and STT imposes the
〈θ̇〉 = 0 condition.

We made the following assumption on the range of the
degree of freedom ϕ under the hhard condition:

−ϕ0 � ϕ � ϕ0, 0 < ϕ0 
 1. (9)

Using the assumption (9), we can simplify Eq. (8) by using
〈sin2 ϕ〉 = 0 and 〈cos ϕ〉 = 1. Our assumption is supported by
numerical simulation, as discussed below (see Fig. 9).

Figure 7 schematically summarizes the θ dependence of
the damping torque (−α〈∂ε/∂θ〉) and STT (j sin θ ) and the
resulting equilibrium positions of magnetization (including
stable and saddle points), in the following order: (a) j = 0 and
hhard = 0, (b) j = 0 and hhard �= 0, (c) j �= 0, and hhard = 0
and (d) j �= 0 and hhard �= 0. As shown in Figs. 7(a) and 7(b),
the equilibrium magnetization was determined only by the
magnetostatic energy and is equivalent to the result from the
saddle point conditions of ∂ε/∂θ = 0 and ∂ε/∂ϕ = 0.28,29 For

hhard = 0 [see Fig. 7(a)], two stable states (solid circles) are
located at the north (A) and the south (B) poles (sin θ = 0),
and a saddle point (open circle) at C. In the presence of hhard

[see Fig. 7(b)], stable states A and B move toward the applied
field direction (Hhard‖x), while saddle point C remains at θ =
π/2. Stable states A and B are determined by the condition
sin θ = hhard, which in our simplification is 〈sin2 ϕ〉 = 0 and
〈cos ϕ〉 = 1. The direction of the damping torque on the θ

axis is symmetric around the equilibrium positions (A, B, and
C) and oriented toward the stable state, both for Figs. 7(a)
and 7(b).

Next, we took into account the contribution of STT driven
by J . Figures 7(c) and 7(d) show the graphical solutions of
Eq. (7) without and with hhard, respectively. When hhard = 0,
in contrast to Fig. 7(b), stable state A’ (B’) remains at θ = 0
(θ = π ), and saddle point C’ moves away from the direction
of θ = π . In other words, the saddle point C’ also moves
toward the direction of the nonreversed magnetization of θ =
0. This means that the displacement of C’ accompanies the
destabilization of nonreversed state A’. Since, for hhard = 0,
states A’ and B’ are identical to A and B, the direction of the
damping torque on the θ axis is symmetric around the stable
positions (A and B) and oriented toward the stable states. Note
that the direction of the damping torque at the saddle point
C’ is oriented toward stable state A unidirectionally. In the
presence of hhard, as shown in Fig. 7(d), the stable states A’
and B’ move toward the direction of θ = π due to STT. When
J increases, the destabilization of the nonreversed state A’ is
enhanced because stable state A’ and saddle point C’ become
closer. After A’ and C’ merge into a single state, A’ and C’
disappear. This merged state means that nonreversed (initial)
state A’ can no longer remain stable. When J is so large that
A’ and C’ disappear, the unique solution that B’ remains as
the stable state corresponds to the reversed magnetization.
The direction of the damping torque at A’ and B’ is oriented
toward A and B, respectively, that at C’ is oriented toward A.

To quantitatively discuss the above schematic interpre-
tation, we evaluated numerically magnetization equilibrium
positions θ as functions of current density J , as shown in
Fig. 8. Here, we treat the limiting case of ϕ0 → 0 from Eqs. (7)
and (8). These equilibrium positions of magnetization were
obtained from two intersecting surfaces: one surface of 〈θ̇〉
as a function of J (∝ j ) and θ with a surface constraint of
〈θ̇〉 = 0. The solid and dash-dotted lines represent the case for
θH = 10◦, and the dashed line represents the case for θH = 0◦
(hhard = 0). For θH = 10◦, the solid line denotes the saddle
point (C’) and the dash-dotted line denotes the stable and
nonreversed state (A’) as a function of J , corresponding to
equilibrium states C’ and A’ in Fig. 7(d). Since the region
〈θ̇〉 � 0 maps onto the region surrounded by the solid and
dash-dotted lines, the magnetization cannot reverse in this
region. In addition, if 〈θ̇〉 � 0, the state around A’ converges to
the stable nonreversed state A’, and the reverse and nonreverse
regions are separated by the white and gray regions.

C. Jc0 in the presence of Hhard

Here, we discuss the reduction of Jc0 caused by the presence
of hhard. Since Jc0 is the maximum value of Jc, Jc0 in the case
of θH = 10◦ is determined by Jc, which corresponds to the
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FIG. 8. Equilibrium positions θ of magnetization as functions
of J in the limiting case of ϕ0 → 0 from Eqs. (7) and (8). Solid
and dash-dotted lines show stable states and saddle points for hard
in-plane axis applied field at θH = 10◦ in limit of ϕ0 = 0◦. Dashed
line represents saddle point at hhard = 0.

merging point A’ = C’. In the limiting case of θH → 0◦, the
solid line for θH = 10◦ in Fig. 8 approaches the dashed line,
and the dash-dotted line approaches the horizontal axis. As
a result, the stable state for hhard = 0 can be regarded as a
state of continuous deformation for hhard �= 0. Note that, for
θH �= 0, dash-dotted line A’ has a positive gradient because
the J dependence of 〈θ̇〉 has the form of sin θ from Eq. (7).
This positive gradient should greatly reduce Jc0. In the limit
ϕ → 0, Jc0 is approximately described using hhard:

Jc0(hhard)

Jc0(hhard=0)
> 1 − h

2/3
hard. (10)

Now we discuss the validity of the assumption underlying
Eq. (9) on the basis of the simulation results. Figure 9 shows the
time-averaged distribution of degree of freedom ϕ immediately
below Jc for θH = 2.5◦ (dash-dotted line), 10◦ (dotted), and
20◦ (solid). For all θH , distinct peaks appeared at ϕ = 0◦. The
range of ϕ was at most ϕ < ϕ0 ∼ 15◦. This result supports the
assumption underlying Eq. (9). Stable state A’ remained at the
pole for hhard = 0 even when J increased, so the trajectory
of the small-θ precession always wrapped around the pole,
indicating ϕ0 = π . On the other hand, for hhard �= 0, the stable
state A’ moved away from the pole, and the trajectory rarely
wrapped around the north pole, as shown on the left in Fig. 9.
This movement of stable state A’ imposes a restriction on the
range of ϕ (ϕ0 
 1◦), as shown on the right in Fig. 9. The
restricted ϕ affects the effective field, especially the effect
of demagnetization field h∗

d [=hd〈sin2 ϕ〉 in Eq. (8)]. For
hhard = 0, h∗

d = hd/2 because the relationship 〈sin 2ϕ〉 = 1/2,
while for hhard �= 0, h∗

d 
 hd because 〈sin 2ϕ〉 
 1. As shown
in Fig. 9, the width of the peak becomes narrow and the
distribution density increases with an increase in θH . This
behavior reflects the coherent dynamics of the magnetization30

observed experimentally.
The experimental and numerical results on the Jc0-θH

relationship are plotted in Fig. 10. The solid curve shows the
result of stability analysis using Eq. (10) in the limit ϕ0 → 0.

FIG. 9. Time-averaged distribution of degree of freedom ϕ for
θH = 2.5◦, 10◦, and 20◦ immediately below Jc. Schematic trajectory
with tilting of Heff accompanied by limited ϕ0 is shown on the left,
and its projection onto the mxmy-plane is shown on the right.

It gives the lower bound of Jc0. Both the simulation and the
stability analysis results agree with experimental results.

Finally, we interpreted the reduction in Jc0 intuitively,
considering the J dependence of stable state A’ related to
the effect of demagnetization field H ∗

d . In Sun’s “on-axis”
geometry, in which both magnetic field Heasy (not Hhard) and
the pinned direction were along the easy axis,24 stable state A’
stayed at the north pole independent of J , as in the zero-field
case, and H ∗

d was given by Hd/2 independent of Heasy. Sun thus
predicted that Jc0 ∝ Hk + H ∗

d − Heasy. When H ∗
d is several

orders of magnitude larger than Heasy, Jc0 is dominated by
H ∗

d , leading to the approximation Jc0 ∝ H ∗
d , as depicted in

Eq. (1), even in the presence of Heasy. Alternatively, in the
presence of Hhard in place of Heasy, H ∗

d significantly depends
on Hhard and is largely suppressed (H ∗

d 
 Hd ) because stable
state A’ moves from the north pole to the south pole, exceeding
θH as J increases, as mentioned in the discussion of Fig. 9.
This large suppression of H ∗

d is thought to be a factor for the
reduction in Jc0. Therefore via the Hhard-induced suppression
of H ∗

d , Jc0 becomes sensitive to Hhard rather than Heasy. In the
limit of H ∗

d → 0, Jc0 is given by Eq. (10) instead of Eq. (1).

V. CONCLUSION

We investigated the effect of the magnetic field along the
hard in-plane axis Hhard on current-induced magnetization
switching (CIMS) in magnetic tunnel junctions (MTJs).
Focusing on the fact that Hhard causes tilting of the effective
magnetic field Heff from the uniaxial anisotropy field Hk , we

J c
0(

θ)
/J

c0
(θ

=
0)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20

:simulation
:experiment

tilted angle θH (degree)

FIG. 10. (Color online) Jc0 as a function of θH .
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estimated the Hhard dependence of two contributing factors
in CIMS, Jc0 and E/kBT , as functions of tilting angle θH .
Both measurements and numerical simulations showed that
Hhard can reduce Jc0 by an order of magnitude more than the
estimated using Slonczewski’s polarization function and that
E/kBT is insensitive to θH . These results suggest that Jc0 is
not reduced by the variation of the magnetostatic condition,
but by the dynamic properties due to the nonconservative force
of STT. Simple stability analysis revealed that the initial stable
tilted state of the magnetization from the easy axis due to the
presence of Hhard created an imbalance between the STT and
damping torque, in contrast to the stable state without tilting
under the Heasy condition, in which the STT and damping
are balanced. Applying a current causes a further tilted stable
state. Achievement of this stable state A’ can be interpreted as
the suppression of H ∗

d due to a restriction on the range of ϕ,

indicating that Jc0 is sensitive to Hhard rather than to Heasy. Our
observations of a major reduction in Jc0 indicate that change in
the tilting angle due to the presence of Hhard increases with J .
These results present challenges to the design of STT devices
controlled by Hhard.
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