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Properties of resonating-valence-bond spin liquids and critical dimer models
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We use Monte Carlo simulations to study properties of Anderson’s resonating-valence-bond (RVB) spin-liquid
state on the square lattice (i.e., the equal superposition of all pairing of spins into nearest-neighbor singlet pairs)
and compare with the classical dimer model (CDM). The latter system also corresponds to the ground state of the
Rokhsar-Kivelson quantum dimer model at its critical point. We find that, although spin-spin correlations decay
exponentially in the RVB, four-spin valence-bond-solid correlations are critical, qualitatively like the well-known
dimer-dimer correlations of the CDM, but decaying more slowly (as 1/rα with α ≈ 1.20, compared with α = 2
for the CDM). We also compute the distribution of monomer (defect) pair separations, which decay by a larger
exponent in the RVB than in the CDM. We further study both models in their different winding-number sectors
and evaluate the relative weights of different sectors. Like the CDM, all the observed RVB behaviors can be
understood in the framework of a mapping to a “height” model characterized by a gradient-squared stiffness
constant K . Four independent measurements consistently show a value KRVB ≈ 1.6KCDM, with the same kinds
of numerical evaluations of KCDM giving results in agreement with the rigorously known value KCDM = π/16.
The background of a nonzero winding-number gradient W/L introduces spatial anisotropies and an increase in
the effective K , both of which can be understood as a consequence of anharmonic terms in the height-model
free energy, which are of relevance to the recently proposed scenario of “Cantor deconfinement” in extended
quantum dimer models. In addition to the standard case of short bonds only, we also studied ensembles in which
fourth-neighbor (bipartite) bonds are allowed at a density controlled by a tunable fugacity, resulting (as expected)
in a smooth reduction of K .
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I. INTRODUCTION

The two-dimensional (2D) resonating-valence-bond (RVB)
spin-liquid state introduced by Anderson has been studied
extensively during the past two decades, with the hope that
it (when doped) might provide an opportunity to understand
high-temperature superconductivity in cuprates.1 Such RVB
states, which do not feature any long-range magnetic order or
broken lattice symmetries (but are believed to exhibit nonlocal,
topological order2,3) are also of broader interest in the context
of frustrated magnetism, where they were first considered.4 In
studies of specific Hamiltonians, RVB states can be considered
as variational ground states. The extreme RVB state built
out of only the shortest possible (nearest-neighbor) valence
bonds (singlets), with equal weights for all bond configurations
(which in the case considered here will be on the square
lattice), does not have any adjustable parameters (as long as the
signs of the wave function are not considered, in the standard
RVB all coefficients are equal and positive). One can also
parametrically introduce longer bonds in amplitude-product
states.5 In two dimensions, these states are spin liquids if the
amplitudes decay sufficiently rapidly (exponentially or as a
high power) with the bond length. We report here extensive
studies of the RVB state, with only short (length 1) bonds,
as well as in the presence of a fraction of bonds (the second
bipartite ones of length

√
5).

The search for Hamiltonians with RVB ground states has
been an ongoing challenge during the past two decades.
One way to approach the problem is through quantum dimer
models (QDM), in which the internal singlet structure of the

valence bonds is neglected. The valence bonds are replaced
by hard-core dimers, and different dimer configurations are
considered as orthogonal states.6 The effective Hamiltonians
in this space, which describe the quantum fluctuations of the
dimers, can have crystalline dimer order [corresponding to a
valence-bond-solid (VBS) in the spin system] or be disordered
(corresponding to a spin liquid). QDMs have many interesting
and intriguing properties, e.g., the special Rokhsar-Kivelson
(RK) points at which the wave function of a dimer model
corresponds exactly to the statistical mechanics of classical
dimers.6–9 On the square lattice, the classical dimer model
(CDM) has critical dimer-dimer correlations, decaying with
distance r as 1/r2 (a rigorous result10), which then is also
the case at the RK point separating two different VBS states
on the square lattice. On the triangular lattice, this isolated
spin-liquid point with critical dimer correlations is replaced by
an extended liquid phase with exponentially decaying dimer
correlations.11 The same physics can be achieved on the square
lattice by introducing dimers between next-nearest-neighbor
sites.12 We will here also provide some further results for
the CDM in order to elucidate in more detail the relationship
between the RVB and the CDM.

Formally, the QDMs can be related exactly to generalized
SU(N ) symmetric spin models.13 In the limit of N → ∞, the
valence-bond states become exactly orthogonal dimer states.
Whether or not the physics of the quantum dimer models can
be extended down to the physically most interesting case of
SU(2) spins is in general not clear (unless the N = 2 features
are built in from the start, as can be done in generalized
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QDMs14). Moessner and Sondhi have devised a procedure to
mimic a system of large-N spins by decorating an original
lattice of S = 1/2 SU(2) spins with additional spins, and
this way a Hamiltonian with spin-liquid ground state can be
constructed.15 Very recently, Cano and Fendley constructed a
Hamiltonian, the ground state of which is exactly the short-
bond RVB state on the square lattice (without decoration).16

While this Hamiltonian is a complicated one with multispin
interactions that are unlikely present in real systems, the
achievement is important as it shows that local SU(2) spin
models with RVB states do in principle exist also on simple
lattices.

A. Correlations in RVB and dimer states

Perhaps surprisingly, very few physical properties of RVB
spin liquids have actually been computed. While Monte Carlo
simulations of amplitude-product states on the 2D square
lattice were carried out some time ago, only the simple spin-
spin correlations were calculated.5 They decay exponentially
in the case of the short-bond state. On the other hand, the fact
that the dimer-dimer correlations of the CDM (or, equivalently,
the QDM at the RK point) decay with a power law clearly
suggests that there should be similar critical correlations also
in the RVB state (if the QDM is qualitatively faithful to it).
The dimer-dimer correlations of the RVB state are not physical
correlations, however, as the dimer basis is nonorthogonal and
overcomplete.

In this paper, we use an improved Monte Carlo sam-
pling scheme for valence bonds17 to compute the physical
correlation function most closely related to the dimer-dimer
correlations of the CDM, namely, the four-spin correlation
function

Dxx(rij ) = 〈Bx(ri)Bx(rj )〉, (1.1)

where Bx(ri) is a scalar operator defined on a bond,

Bx(ri) = S(ri) · S(ri + x̂), (1.2)

and Dyy and Dxy can be defined analogously. Here, the
lattice coordinate of spin i is denoted ri and x̂ is the lattice
vector in the x direction. The operator Bx(ri) provides a
measure of the singlet probability on the bond between site
i and its “right” neighbor, which is larger on a valence bond
(in which case the operator is diagonal) than between two
valence bonds (where the operator is off diagonal and leads
to a rearrangement of the two valence bonds). It is therefore
appropriate to consider B(ri) as the “quantum dimer” operator
to be used in place of the dimer density nx(ri) ∈ {0,1} in the
CDM. Because of the nonorthogonality of the valence-bond
basis, Dxx(r) is not, however, identical to the classical dimer-
dimer correlation function. The two systems and their dimer
correlation functions become identical in SU(N )-symmetric
generalizations of the RVB when N → ∞.13

We will here show that Dxx(r) for the standard S = 1/2
SU(2) spins decays much slower than the classical correlator,
as 1/rα with α ≈ 1.20. These correlations, which are peaked
at momenta q = (π,0) and q = (0,π ), correspond to critical
fluctuations of a columnar valence-bond solid. The exponent
α < 2 in the RVB spin liquid corresponds to power-law
divergent Bragg peaks, while in the CDM these peaks are

only logarithmically divergent. As a consequence of the
nonorthogonality of the valence-bond basis, the RVB is,
thus, significantly closer to an ordered VBS state than is the
CDM (or QDM). This result was first reported by us in a
conference abstract18 and in an unpublished earlier version of
this paper,19 and was also found in independent parallel work
by Albuquerque and Alet.20 Here, we provide further details
on the dimer correlations and their significance.

We also study systems doped with two monomers and
compute the distribution function of the monomer separation.
A well-known result for the CDM is that the monomers are
deconfined, with the distribution function M(r) decaying with
the separation r as A(L)/rβ , where β = 1/2 and the prefactor
A(L) decays with the system size L in such a way that the
distribution is normalized for all L. For the RVB state, we
find a more rapid power-law decay, with β ≈ 0.83, which still
corresponds to deconfined monomers.

It is known that the dimer correlations of the CDM decay as
1/r2 also in the presence of longer bipartite bonds (while non-
bipartite bonds leads to a noncritical phase, with exponentially
decaying correlations). As we will explain further below and
in Appendix B, the exponent α in this case does not correspond
to these leading correlations, however, but a subleading
contribution decaying as 1/rα with α > 2. This exponent
and the monomer exponent β are nonuniversal, depending on
details of the model (the fugacities corresponding to the longer
bonds).12 We also study here the RVB including longer bonds
(the second bipartite bond, which connects fourth-nearest
neighbors as considered previously in the CDM (Ref. 12)] and
find that also in this case α and β change with the concentration
of longer bonds. In contrast to the CDM, the leading dimer
correlations are always (at least for the range of parameters
studied here) controlled by α, however, since α < 2 for the
RVB.

B. Height representation and topological sectors

A key notion for relating the various results on the CDM and
(we believe) the RVB model also is that of “height model” or,
equivalently, a U(1) classical field theory. This means that all
the long-wavelength behaviors of the system are captured by
a coarse-grained scalar field h̄(r). The dimer density operators
and monomer defects can all be expressed in terms of h̄(r),
and the weighting of its configurations is proportional to
exp(−Ftot), where

Ftot =
∫

d2r
1

2
K|∇h̄(r)|2. (1.3)

The height mapping for square-lattice dimers was introduced
over 20 years ago.21–23 The use of such a mapping to explain
correlation functions originated earlier (effectively for dimers
on a honeycomb lattice) with Blöte, Hilhorst, and Nienhuis.24

The key parameter in Eq. (1.3) is the dimensionless stiffness
constant K . It can be shown that the exponents α and β

measured in our simulations, as well as the coefficients of a
“pinch-point” singularity in the dimer-density structure factor,
and also the ratios of the probabilities of different topological
(winding number) sectors, are all functions purely of K . The
details of the height-model construction underlying this result
are given in Appendix B. It will be shown in Sec. V that all
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W = (0,0) W = (0,1) W = (0,3)

FIG. 1. (Color online) Dimer configurations in different winding-
number sectors W = (Wx,Wy). Here, Wy is given by the number of
bonds crossing the line drawn in the y direction. Since those bonds are
at even y, shifting the bond configuration by one step in the y direction
leads to Wy → −Wy . The last case is the unique configuration in
its winding-number sector and constitutes the staggered state of the
QDM (Ref. 6).

our measurements based on Monte Carlo simulations of the
CDM and RVB consistently give the same value of K for a
given model, demonstrating the validity of the height model.
That is expected for the CDM, for which the height approach
is well known; here, we show that it is pertinent to the RVB as
well.

A related aspect of RVB states and the CDM is that their
bond configurations on periodic lattices can be classified
according to a topological winding number.6 We here define
the winding number W = (Wx,Wy) as used in Ref. 25.
Drawing a path in the y direction, Wy is the number of x

dimers crossed at even y minus the number of such dimer
crossings at odd y (see Fig. 1). An equivalent definition6

uses one of the W = 0 single-domain states, such as the one
in Fig. 2(a), as a reference state. As shown in Fig. 2(c), a
direction can be assigned to loops of the transition graph
so that each carries a “lattice flux”; if we call the net fluxes
(�x,�y), then (Wx,Wy) = (�y,�x) [or, depending on exactly
which reference state is used and how the y coordinates are
assigned, we could have (Wx,Wy) = (�y, − �x); the signs
are normally not important]. This definition can be directly
extended to systems with long dimers by associating that flux
(which can have both x and y components for cases where there
are bonds not along the x or y axis) with a line connecting their
endpoints. A third definition of the same winding number is
(proportional to) the net height difference added up along a
path crossing the system in the x or y direction, using the

(a) (b) (c)

FIG. 2. (Color online) (a) Reference state used here for defining
the winding number. The direction of the dimers is from sublattice
B (open circle) to sublattice A (solid circle). (b) An arbitrary
valence-bond state, with dimers drawn in the opposite direction, from
sublattice A to sublattice B. (c) The transition graph formed by the
reference states in (a) and the arbitrary state in (b). The winding
numbers correspond to the net fluxes (in units of the system length
L) defined by traversing the loops formed along the arrows; here,
�x = 1 and �y = 0, or � = (1,0), which corresponds to winding
number W = (0,1) in the definition of Fig. 1.

rules detailed in Appendix B. The possible winding values for
an L × L lattice are Wx,Wy ∈ {−L/2, − L/2 + 1, . . . ,L/2}.
The equal-weighted (CDM) ensemble is dominated by the
winding-number sector W = (Wx,Wy) = (0,0) [as follows
from ∇h̄ = 0 being the minimum of Eq. (1.3)].

Recently, extended QDMs have been considered, with
interaction terms that can drive the system into ground states
with nonzero ∇h in a sequence of commensurate locking
transitions.25,26 Quantum phase transitions involving these
states are unusual, exhibiting aspects of deconfinement on a
fractal curve of critical points (forming a Cantor set, which
prompted the term “Cantor deconfinement” for this class of
unconventional transitions). This motivates us to also study
the CDM and RVB states in different winding number sectors,
which (it turns out) also happens to be an effective probe of
the states’ topological natures. In the case of the RVB, states
defined within sectors of different winding numbers are not
orthogonal, but become orthogonal in the limit of the infinite
lattice (which we will here demonstrate explicitly based on
simulations).

C. Outline of the paper

The outline of the rest of the paper is as follows: In Sec. II,
we review the essential features of the valence-bond basis
that we use for the RVB state calculations, in particular how
to extract spin correlations. The four-spin correlations are
rederived in detail in Appendix A in an alternative way to
a previous treatment of more general multispin interactions.27

In Sec. III, we discuss Monte Carlo two-bond reconfiguration5

and loop-cluster algorithms for sampling the CDM and RVB
states. We also discuss the winding numbers and issues related
to sampling them either grand canonically (where there are
some ergodicity issues in the case of the RVB) or canonically.
In Sec. IV, we present results for the standard case of only
length-1 dimers and valence bonds, as well as extended models
with bonds of length

√
5. In Sec. V, the results are interpreted in

terms of a height model. Detailed derivations of height-model
predictions are left to Appendix B. In Sec. VI, we further
characterize the nature of the critical VBS fluctuations in terms
of the joint probability distribution of the order parameters for
horizontal and vertical bond ordering. We conclude in Sec. VII
with a brief summary and discussion.

II. VALENCE-BOND BASIS

We work in the standard bipartite valence-bond basis, where
a state of N (an even number of) spins on a bipartite lattice,

|Vα〉 = 1

2N/4

N/2∏
i=1

(|↑i↓α(i)〉 − |↓i↑α(i)〉), (2.1)

is a product of singlets, where the first spin i of each singlet
is on sublattice A and the second spin α(i) is on sublattice
B. With the B sites also labeled as 1, . . . ,N/2, the set
α(1), . . . ,α(N/2) is a permutation of these numbers and the
label α = 1, . . . (N/2)! in |Vα〉 simply refers to all these
permutations. The signs of the expansion coefficients of this
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<V | <V |V > |V >β β α α

FIG. 3. (Color online) Two valence-bond states (left and right) in
two dimensions and their transition graph formed by superimposing
the two bond configurations (center). One of the spin configurations
compatible with the transition graph is also shown, with open and
solid circles for ↑ and ↓ spins. Each loop has two such allowed
staggered spin configurations, and the overlap of two valence-bond
states is thus 〈Vβ |Vα〉 = 2nαβ−N/2, here with the number of loops
nαβ = 4 and the number of spins N = 16.

state in the standard ↑ ,↓ spin basis correspond to Marshall’s
sign rule for the ground state |�0〉 of a bipartite system,28 i.e.,

sign
[
�0

(
Sz

1, . . . ,S
z
N

)] = (−1)nA↓ , (2.2)

where nA↓ is the number of ↓ spins on sublattice A.
An amplitude-product state is a superposition of valence-

bond states,

|�〉 =
∑

α

ψα|Vα〉, (2.3)

where the expansion coefficients are products of amplitudes
h(rα,i) corresponding to the “shape” of the bonds (the bond
lengths in the x and y directions in the case of a 2D system);

ψα =
N/2∏
i=1

h(rα,i). (2.4)

Our main focus here will be on the extreme RVB state
made up of only bonds of length 1 (one lattice constant),
in which case the expansion coefficients ψα are the same for
all configurations. We will also later study states including
the bipartite bonds of length

√
5 lattice constants, examples of

which are seen in Fig. 3. The discussion here and in Sec. III will
be framed around generic bipartite amplitude-product states,
with no restriction on the bond lengths.

A. Transition graphs

An important concept in the valence-bond basis is the
transition graph formed when the bond configurations of the
two states are superimposed.5,29 This is illustrated in Fig. 3.
The overlap 〈Vβ |Vα〉 between two valence-bond basis states
can be simply expressed in terms of the number nαβ of loops
in the transition graph.

The easiest way to calculate the overlap is to go back to the
standard basis of ↑ and ↓ spins, so that

〈Vβ |Vα〉 = 1

2N/2

∑
Sz

α

∑
Sz

β

(−1)nα,A↓+nβ,A↓

× 〈
Sz

β1, . . . ,S
z
βN |Sz

α1, . . . ,S
z
αN

〉
, (2.5)

where Sz
α and Sz

β denote spin configurations compatible with
the bond configurations Vα and Vβ , i.e., those that have spins
↑↓ or ↓↑ on each bond. Terms with any occurrence of Sz

αi �=
Sz

βi of course vanish, and the double sum, thus, simply counts

the number of spin configurations common to the two bond
configurations. Since the spins on each bond are antiparallel,
the spins along a loop of alternating Vα and Vβ bonds (i.e.,
the loops in the transition graph) must alternate in a staggered
↑↓↑↓ . . . pattern. There are two such configurations for each
loop. The total number of contributing spin configurations is
therefore 2nαβ , giving the overlap

〈Vβ |Vα〉 = 2(nαβ−N/2), (2.6)

which replaces the orthonormality condition 〈β|α〉 = δαβ for
an orthonormal basis. For bond tilings Vα = Vβ , we have
nαβ = N/2 and the overlap equals unity.

In calculations with superpositions |ψ〉 of valence-bond
states, such as amplitude-product states, it is often not practical
to normalize the states. It is convenient to write operator
expectation values in the form

〈�|O|�〉 =
∑

αβ ψβψα〈Vβ |O|Vα〉∑
αβ ψβψα〈Vβ |Vα〉

=
∑

αβ ψβψα〈Vβ |Vα〉 〈Vβ |O|Vα〉
〈Vβ |Vα〉∑

αβ ψβψα〈Vβ |Vα〉 . (2.7)

Defining the weight Wαβ for the combined bond configuration
Vα,Vβ and the normalized matrix element Oαβ according to

Wαβ = ψβψα〈Vβ |Vα〉, (2.8)

Oαβ = 〈Vβ |O|Vα〉
〈Vβ |Vα〉 , (2.9)

the expectation value takes the form appropriate for use with
the Monte Carlo sampling methods that we will discuss below
in Sec. III;

〈�|O|�〉 =
∑

αβ WαβOαβ∑
αβ Wαβ

. (2.10)

The weight Wαβ , which is used in sampling the states in Monte
Carlo simulations, is positive definite when we consider wave
functions satisfying Marshall’s sign rule, i.e., the amplitudes
h(rα,i) � 0 in Eq. (2.4).

Like the overlap of the valence-bond states, the matrix ele-
ments of operators of interest can typically also be expressed
in terms of the loops of the transition graph of the bond
configuration Vα,Vβ . We discuss spin and dimer correlations
next.

B. Correlation functions

The standard spin-spin correlation function is most easily
obtained by reintroducing the spins in the transition graph, as
illustrated in Fig. 3. We can then use the fact that

〈Vβ |Si · Sj |Vα〉 = 3〈Vβ |Sz
i S

z
j |Vα〉, (2.11)

where the latter is diagonal and easy to compute in the z-spin
basis. When summing over the allowed spin states, i.e., the
two “orientations” of each loop (for a total of 2nαβ spin states),
it is clear that Sz

i S
z
j averages to zero if i and j are in different

loops, whereas for i,j in the same loop, we get ± 1
4 〈Vβ |Vα〉,

with the sign depending on whether the spins are in the same
(plus sign) or different (minus sign) sublattices. Introducing
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the notion (i,j )L for two spins in the same loop and (i)L(j )L for
spins in different loops, we can write the matrix element ratio
in Eq. (2.10) corresponding to the spin correlation function as

〈Vβ |Si · Sj |Vα〉
〈Vβ |Vα〉 =

{
0, (i)L(j )L
3
4φij , (i,j )L,

(2.12)

where φij is the staggered phase factor

φij =
{−1 for i,j on different sublattices,

+1 for i,j on the same sublattice.
(2.13)

While the loop expression Eq. (2.12) for the simple spin-spin
correlation function is well known,5,29 the general form of a
four-spin correlation (of which the dimer-dimer correlator of
interest here is a special case) was only derived recently.27 In
Appendix A, we discuss this derivation in a slightly different
way, which is less convenient when generalizing to higher-
order correlators (which was also done in Ref. 27), but more
transparent in the case of the four-spin correlator. The resulting
general formula for any nonzero four-spin matrix element is

〈Vβ |(Sk · Sl)(Si · Sj )|Vα〉
〈Vβ |Vα〉

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( 9

16 − 3
4δ

ij

kl )φijφkl, (i,j,k,l)L,

9
16φijφkl, (i,j )L(k,l)L,
3

16φijφkl, (i,k)L(j,l)L,
3

16φijφkl, (i,l)L(j,k)L.

(2.14)

Here, we have generalized the notation of Eq. (2.12) for how
the sites are distributed among loops in a straightforward way,
with indices within the same parentheses belonging to the same
loop. In the case of the single-loop contribution (i,j,k,l)L, the
term δ

ij

kl ∈ {0,1} depends on the order of the four indices within
the single loop, as specified in Eq. (A9) of Appendix A.

III. MONTE CARLO ALGORITHMS

A simple but powerful Monte Carlo sampling algorithm
for amplitude-product states based on reconfiguration of bond
pairs was presented some time ago by Liang et al.,5 who used
this method to study the spin-spin correlations in amplitude-
product states with several different forms of the amplitudes
(exponentially or power law decaying with the length of the
bond). A more efficient algorithm using loop updates was
developed recently that operates in a combined basis of both
valence bonds and spins.17 The two-bond update, as well, can
be made more efficient by working in this combined basis.
Here, we briefly review these two algorithms, and also discuss
the topological winding numbers that can be used to classify
the bond configurations.

A. Combined bond-spin basis

Monte Carlo sampling of valence bonds involves making
some change in the bra and ket bond configurations Vα

and Vβ , and accepting or rejecting the update based on the
change in the sampling weight Eq. (2.8), according to some
scheme satisfying detailed balance. Working with the standard
nonorthogonal valence-bond basis and using the Metropolis

algorithm, we need to compute the weight ratio appearing in
the acceptance probability

Paccept = min

[
Wα′β ′

Wαβ

,1

]
, (3.1)

where the primes indicate the new states after some changes
have been made in either bond configuration Vα or Vβ (or both,
but typically one would change only one state at a time).

The weight ratio using Eq. (2.8) is

Wα′β ′

Wαβ

= ψα′ψβ ′

ψαψβ

2(nα′β′−nαβ ). (3.2)

For an amplitude-product state, the ratio of the wave-function
coefficients is trivial, but computing the change nα′β ′ − nαβ

in the number of loops in the transition graph can be time
consuming, as it involves tracing loops that can be long.

The loops are typically long, O(N ), if there is antiferromag-
netic long-range order.17 That is not the case for the short-bond
RVB states studied in this paper, but nevertheless it is more
efficient to avoid the loop-counting step. That can simply be
done by expressing each singlet in the standard basis of ↑ and ↓
spins, and sampling these spin configurations in addition to the
bond configurations [and since the spin basis is orthonormal,
the sampled (nonzero weight) spin configurations must be
the same in the bra and the ket]. That is, the configurations
being sampled consist of a direct product of two valence-bond
patterns Vα and Vβ , as well as one spin configuration Zαβ

compatible with both α and β (i.e., one ↑ and one ↓ spin on
each bond). Each loop in the transition graph must consist of
an alternating string ↑↓↑ . . . ↓ and, for every loop, there are
two choices for this string. Thus, the ratio of the number of spin
configurations is equal to the factor 2(nα′β′−nαβ ) in Eq. (3.2). The
Monte Carlo sampling of the spin configurations compatible
with the bond configurations therefore automatically takes
care of the factor 2nαβ in Eq. (3.2), with no need to generate
a transition graph or count loops. For more details of the
arguments leading to this conclusion, see Ref. 17.

B. Monte Carlo sampling

Here, we outline the two different bond sampling algo-
rithms that we used, each of which comes in a simple version
for the CDM, as well as a generalization for the combined
spin-bond basis for the RVB amplitude-product states. In the
case of the RVB, the spin configurations also have to be
updated. We also introduce a simple extension to sample states
with monomers (empty sites).

The two updating algorithms are summarized using simple
examples with short bonds in Figs. 4(a) and 4(b), with 4(c)
showing the extension needed for also sampling monomer
configurations. For either algorithm, updates are alternated
between the ket and bra configurations, and there is an
additional step for updating the spin configuration, where all
the spins belonging to randomly chosen individual loops in the
transition graph are flipped.

1. Two-bond update

For the two-bond update, as in Ref. 5, we choose two sites
on the same sublattice (normally a next-nearest-neighbor site
pair) and exchange their dimers in the unique way maintaining

174427-5



TANG, SANDVIK, AND HENLEY PHYSICAL REVIEW B 84, 174427 (2011)

(a)

(b)

(c)

FIG. 4. (Color online) Monte Carlo updates for the RVB state
in the combined spin-bond basis. Open and solid circles represent
↑ and ↓ spins. In the basic moves (a) and (b), only one of the two
valence-bond configurations is affected at a time. (a) A simple two-
bond update: Choosing two sites on the same sublattice, the two
bonds connected to them can be reconfigured in a unique way. If the
spins are compatible with the ↑ ,↓ singlet restriction, this update can
be accepted. (b) Loop-cluster update: Choosing an arbitrary starting
site (in this example, in the left-upper corner), two defects (a site
with no dimer or two dimers connected to it, both indicated with
an ×) are generated by moving the end of the dimer on the initial
site to another site that satisfies the bond-length constraint (here,
in the extreme short-bond RVB, the length is always one) and the
spin-singlet compatibility (antiparallel spins on the bond). The dimer
that was previously connected to this site is then moved away from
the double-bond defect to another site. This process continues until
a bond returns back to “annihilate” the original empty-site defect,
which here happens already after two-bond moves [the last step in
(b)]. In both (a) and (b), we only show the bonds of the configuration
involved in this update. (c) Monomer update: Monomers are shown
as larger circles and must appear in the same locations in the states
|Vα〉 and |Vβ〉, the bonds of both of which are shown here (as solid
and dashed lines). In addition to the two-bond or loop update of the
bonds, monomers can move to a site on the same sublattice by also
moving a bond that is common to the two valence-bond states.

the A-B sublattice connectivity, as shown in Fig. 4(a). The
update can be accepted only if the spin configuration is
compatible with the new bond structure, i.e., only antiparallel
spins are connected by the bonds. In the case of the extreme
short-bond RVB, an allowed new configuration is always
accepted, as the wave function ratio in Eq. (3.2) trivially equals
one, whereas in general, when longer bonds are present, a ratio
involving the amplitudes of two bonds has to be computed to
determine the Metropolis acceptance rate Eq. (3.1).

The algorithm for the CDM is simpler, as there is no spin
state in that case. In the case of short bonds, an update of two
bonds [flipping a pair of parallel bonds as in Fig. 4(a)] is then
always accepted, whereas in the presence of longer bonds, the
acceptance probability involves the ratio of bond fugacities.
We here consider only two bond lengths (nearest-neighbor
and fourth-nearest-neighbor bonds, as shown in Fig. 3),
with fugacities Z1(i) = 1 and Z2(i), respectively, for bonds
connected to site i (taken to be the sublattice A site, for
definiteness). The partition function is then given by

ZCDM =
∑
C

Z
n2(C)
2 , (3.3)

where n2(C) is the number of long bonds in configuration C.
The acceptance probability for an update of bonds on sites i

and j is

Pacc = min

[
Znew(i)Znew(j )

Zold(i)Zold(j )
,1

]
, (3.4)

where “old” and “new” correspond to the length-index 1 or 2
before and after the bond reconfiguration.

For both the RVB and CDM, this algorithm keeps the
system in a sector of fixed winding number, which we can
take advantage of if we want to study properties in the
individual sectors. Suitable starting configurations for different
winding-number sectors are shown in Fig. 1.

2. Loop update

If we want the system to wander among the different
topological sectors, we instead use the loop-cluster update,
which is a simple extension of a loop update for the
CDM.12,30 It is also in general more efficient (exhibits shorter
autocorrelation times) than the two-bond update for large size
system. To start the loop update, we pick a site at random; in
the example in Fig. 4(b), the top left site. We move the dimer
connected to it, thus creating two defects in the system. We
keep the starting site as a vacancy and move the original dimer
of the now doubly occupied site to a new site, with certain
probabilities satisfying detailed balance, and constrained by
the spin configuration so that spins are opposite on every dimer.
In the case of short bonds only, the probabilities are equal for
the three new neighbor sites. For the general case where longer
bonds are included, we refer to Ref. 12 for efficient choices
of the probabilities. This update moves the doubly occupied
defect to a new site, which in Fig. 4(b) is the lower-right site.
We keep moving this defect using the above procedures until
it happens that the two defects annihilate each other, which
means that bonds have been moved on a closed loop of sites.
A sweep of bond updates is defined as the construction of a
fixed number of loops (determined during the equilibration
part of the simulation), which on average result in ≈ N moved
bonds in both the ket and the bra states.

3. Spin update

After updating the bond configurations with one of the
above algorithms, we update the spin configuration by flipping
the spins of randomly selected loops of the transition graph
(such as those in the middle graph of Fig. 3), with probability
1/2 for each loop. All the loops have to be traversed, by moving
between spins according to the bonds (which are stored in the
computer as bidirectional links), alternating between bonds in
the bra and ket states. Each site visited is flagged and no new
loops are started from already visited sites. The computational
cost of a full sweep of such updates (visiting each site once) is
O(N ).

4. Monte Carlo sweep

A sequence of bond updates in which O(N ) bonds are
affected followed by a complete spin update constitutes one
Monte Carlo sweep, which has a total computational cost
O(N ). Note that the sampling algorithm without the spins
potentially costs up to N2 steps per sweep, since each two-bond
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update requires loop traversals to check whether two loops are
joined or a single loop is split,5 and the loop length can then
be up to O(N ) (in a Néel state). The same issue pertains to
loop updates in the pure valence-bond basis as well.

5. Sampling with monomers

We will also be interested in the distribution of two
monomers in the RVB states. In the case of the CDM,
the distribution function of the monomer separation can be
measured just by keeping track of the two defects,12,30 but
in the RVB, we have to explicitly introduce two monomers
by removing both spins on a randomly chosen valence bond,
which is common to both the ket and bra bond configurations.
Note that valence-bond states with monomers are orthogonal
unless the monomers are at the same locations in both states.
We use the loop algorithm to sample the bond configuration
space, and periodically we also move the monomers. Such
a move can be done in combination with the move of a
valence bond that is common to the two states, as shown in
Fig. 4(c). This can always be accepted if there is no change
in the bond length (one could also consider updates where a
monomer moves and a bond length changes, which we do not
do here). We update the position of two monomers in turn
after each sweep of bond updates, when possible, and measure
the distribution probabilities M(r) as a function of distance r
between the two monomers.

Note that, if we assign spins to the monomer, the situation is
different due to the overcompleteness of the basis. In a system
with, e.g., two unpaired ↑ spins, these two spins do not have
to be located at the same sites in the ket and bra states; for
a nonzero overlap, it is only required that they are pairwise
connected by valence bonds in the transition graph (which
now contains two broken loops with open ends terminated by
the unpaired spins). Such states with unpaired spins should be
related to spinons,2 but we will not pursue studies of them here.
Valence-bond states including unpaired spins have recently
been studied in different systems.31,32

C. Winding numbers

A two-bond update can not bring the system from one
topological winding-number sector to another, while the loop
update can. In the case of the RVB, there are winding numbers
both for the bra and the ket states, and because of the
nonorthogonality of the basis, these winding numbers can be
different. We denote the full winding number of a configuration
in this case as W = (Wα

x ,Wα
y ; Wβ

x ,W
β
y ). In a grand-canonical

ensemble of all winding numbers, the sectors have different
weight, which can be computed using Monte Carlo sampling
with the loop updates simply by keeping track of the number
of configurations generated in each sector. Results for such
weights are presented below in Sec. IV A.

The loop algorithm for the CDM remains ergodic in the
grand-canonical winding-number space even for very large
systems, i.e., the loops can easily become very long and
span the system. These long loops are related to deconfined
monomers.33 The RVB simulations, in the case of short-bond
states, in practice become stuck in some fixed winding-number
sector for large L. However, the shortness of the RVB loops

does not imply monomer confinement, as these loops are
not directly related to states with monomers.33 The loops
for short-bond two-dimensional RVB states are typically very
short (rarely exceeding 12 bonds in the case of the length-1
bonds only). This results in rather large error bars for computed
quantities for L � 50, seen in grand-canonical results to be
discussed further below. In practice, for large systems, we
will therefore study canonical ensembles in different fixed
winding-number sectors. Starting with a configuration initially
prepared with a desired winding number (such as those
illustrated in Fig. 1), two-bond updates explicitly conserve
the winding number, while loop updates in practice do as well,
for large systems within reasonable simulation times.

IV. RESULTS

The ground state of the QDM at the RK point is the
equal amplitude superposition of classical dimer states.
The CDM can therefore give some insights into properties
of the RVB system as well, as long as the nonorthogonality
of the valence-bond basis (i.e., the internal singlet structure
of the valence bonds of the RVB) does not play an important
role.6 The quantitative validity of this approach is tested here
by comparing the properties of the CDM and the short-bond
RVB state. We present the winding-number distributions of
both models in Sec. IV A, then briefly discuss the standard spin
correlation function of the RVB in Sec. IV B. In Sec. IV C,
we study the four-spin VBS correlation function Eq. (1.1)
of the RVB (which we also refer to as a dimer-dimer
correlation function) and compare with analogous results for
the well-known dimer-dimer correlations of the CDM. In this
section, we consider the winding-number sector W = (0,0)
and later, in Sec. IV D, discuss also correlations in systems with
nonzero winding number. In Sec. IV E, we study the monomer
distribution functions and in Sec. IV F, systems including the
longer bonds.

A. Sector probabilities

We simulated the grand-canonical ensemble of winding
numbers, as explained in Sec. III C, and accumulated the
probabilities of several different sectors as shown in Fig. 5,
for both the RVB and CDM, and for various system sizes
L. The W = 0 [(0,0) for the CDM and (0,0; 0,0) for the
RVB] sector is dominant in both cases, with the probabilities
in the higher-W sectors decreasing rapidly. The probabilities
of these low-W sectors clearly converge to L-independent
nonzero constants, rapidly with L for the CDM, and also
for the diagonal (Wα = Wβ) sectors of the RVB (although
the RVB data are much noisier for the large systems).
By contrast, the probabilities of the off-diagonal sectors
of the RVB, here exemplified by W = (0,1; 0,0), decay
exponentially to zero, which reflects the expectation that the
states in different winding-number sectors should become
orthogonal in the thermodynamic limit.3 In the following,
when considering winding-number sectors of the RVB, we
will focus on the diagonal sectors and for simplicity denote the
total winding number by W = (Wx,Wy) in the same way as for
the CDM.
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FIG. 5. (Color online) Winding-number probabilities obtained in
simulations with the loop algorithms for the RVB and CDM (with
only the shortest bonds, as in Fig. 4). Results for several low-W
sectors of the CDM (lower panel) and RVB (upper panel) are shown
versus the lattice size on a lin-log scale. In the RVB, the probability of
the off-diagonal sector W = (0,1; 0,0) vanishes exponentially with
L, reflecting the orthogonality (when L → ∞) of states in different
winding-number sectors.

B. Spin correlations in the RVB state

The spin-spin correlation function of the RVB has been
studied before and is known to decay exponentially for a 2D
system with short bonds (while a system with sufficiently
slow decay of the probability of long bonds has long-range
antiferromagnetic order).5,34 Here, we only comment briefly
on the role of the winding number. For unequal x and y winding
numbers, Wx �= Wy , the CDM and RVB systems clearly do not
have the 90◦ rotational symmetry of the square lattice. We will
investigate the directional dependence of the four-spin dimer-
dimer correlations below. Here, in Fig. 6, we show results
for the spin-spin correlations in two different winding-number
sectors. The correlations are always exponentially decaying
with distance, with a faster decay in the same direction as the
one in which a nonzero winding number is imposed.

C. Dimer correlations

In the CDM, the dimer-dimer correlation function Dxx(r)
is defined in the standard way using the bond occupation
number nx(i) = 0,1 on the link of the lattice between site
i and its neighbor at distance (1,0); Dxx(rij ) = 〈nx(i)nx(j )〉.
The four-spin correlation function Eq. (1.1) of the RVB instead
involves the loop estimator Eq. (2.14). This reduces to the
CDM form for SU(N ) spins when N → ∞ and the basis
becomes orthogonal [in the representation of SU(N ) in which
the factor 1/2 in the off-diagonal matrix element in Eq. (A3)
and (A4) is replaced by 1/N ;13 see Ref. 35 for computations
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FIG. 6. (Color online) Spin correlations versus lattice distance
r in the short-bond RVB in the sector of winding numbers W =
(0,0) (top panel) and W = (0,3L/7) (bottom panel) computed using
L × L lattices with L = 48. Results are shown for the separation
(x,y) taken along the two axes (r,0), (0,r), as well as on the diagonal
(r/

√
2,r/

√
2).

with such basis states]. For N = 2, considered here, significant
differences between the RVB and CDM can be expected.

Since we are using periodic boundary conditions, the
maximal separation to be used in the correlation function
is (L/2,L/2) on a L × L lattice. We first investigate the
dominant part of the correlation function, which in the CDM is
a mixture of a staggered component at q = (π,π ) in reciprocal
space and columnar correlations at q = (π,0) and at (0,π ).10

The asymptotic decay of these correlations can be accessed
through the difference between the real-space correlations at
two distances, e.g.,

D∗
xx(x,y) = Dxx(x,y) − Dxx(x − 1,y). (4.1)

This quantity at the longest distance r = (L/2,L/2) is graphed
versus L in Fig. 7 for both the RVB and the CDM in several
fixed winding-number sectors.

For the CDM, the decay with L is consistent with the
known ∼1/r2 decay of the dominant correlations. Apart from
an overall prefactor that depends on the winding number,
there are only minor differences between the different winding
sectors for small systems. The dependence of the results on
the winding number is stronger for the RVB, but, as expected,
also here the exponent α in the power-law form 1/rα becomes
independent of W for large L (as long as the relative winding
number W/L → 0 when L → ∞). Unlike the CDM, in this
case, the prefactor of the power-law form also converges as
L → ∞, i.e., the correction to the prefactor decays as some
power higher than α.

In Fig. 7, we also show results in the grand-canonical
winding-number ensemble, which, as discussed in Sec. III C,
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FIG. 7. (Color online) Dimer-dimer correlation function differ-
ence Eq. (4.1) at the maximal distance versus the lattice size.
The upper panel shows results for the quantum RVB in different
topological sectors as well as in the grand-canonical ensemble
(including all winding-number sectors, in which case the fluctuations
between sectors becomes very slow for large systems, as reflected in
the large error bar for L = 48). All correlations converge to the same
power-law decay as system size increases. The power, based on the
W = (0,0) data for large L, is α = 1.191(6). The lower panel shows
results for the CDM, which are consistent with ∼1/r2 (shown with
the solid line) for all winding-number sectors.

suffers from problems with nonergodic sampling for L � 50
(reflected in the large error bar for L = 48). For extracting
the asymptotic form of the correlations, the W = (0,0) sector
is the best choice and gives D(r) ∝ 1/rα with α = 1.191(6)
for large systems. While the behavior is, thus, qualitatively
similar to the CDM, the exponent differs considerably. The
reduced value of the exponent can be interpreted as the RVB
state being closer to an ordered VBS than might have been
anticipated based on the known CDM dimer correlations.

There are two sources of differences between the corre-
lations in the CDM and the RVB: the form of the estimator
Eq. (2.14) as well as the weighting of the bra and ket valence
bond states with the loop factor 2nαβ for the RVB instead of
the equal superposition of the individual bond configurations
in the CDM. We have also measured the dimer correlations
of the RVB in the same way as in the CDM by just using the
bond occupation numbers in the bra and the ket states (but
with the correctly weighted sampling of the RVB). We find
the same exponent α ≈ 1.20 as above, which shows that the
source of the different power law is only the different weighting
of the states. This could also have been anticipated based on
the fact that the spin-spin correlation function of the RVB is
exponentially decaying, which translates into short loops in
the transition graph.29 The loop estimator Eq. (2.14) of the
four-spin dimer correlation function is therefore still local and
can not change a power law.

RVB CDM

W
 =

 (
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W

 =
 (
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W
 =

 (
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0 max

FIG. 8. (Color online) Fourier transform S(q) of the dimer-
dimer correlation function Dxx(r) for systems of size L = 32. The
squares represent the full reciprocal space qx,qy ∈ [0,2π ]. Results
in winding-number sectors W = (0,0), W = (0,1), and W = (0,8)
are shown for the RVB (left) and CDM (right). The location of the
broad (“incommensurate”) peak in both cases is Q = (π,2πWy/L).
The sharp peak at (π,π ) is due to a nonzero average staggered dimer
order induced by a nonzero winding number. This peak has been
removed in the graphs W = (0,8) in order to make the other features
of the correlations better visible. The height of the peaks as a function
of the system size is analyzed in Fig. 9.

The Fourier transform of the full dimer-dimer correlation
function Dxx(r) is the structure factor S(q). This quantity
gives a more detailed picture of the long-distance behavior
of the dominant correlations. Representative results for the
S(q) for L = 32 systems in three different winding-number
sectors (0,Wy) are shown in Fig. 8. In this section, we focus
on the W = (0,0) sector and leave discussions of nonzero
winding numbers to Sec. IV D. The “bowtie” feature seen for
W = (0,0) in the CDM is well known and understood based on
the mapping of the system to a height model (see Appendix B).
The system has two kinds of power-law correlations: an
effectively dipolar kind, which is responsible for the “pinch-
point” singularity at q = (π,π ) (see Appendix B3), and a
“critical” kind with variable exponents, which leads to a broad
peak at Q = (π,0) diverging logarithmically with the system
size, as shown in the lower panel of Fig. 9. In the RVB, the peak
is much sharper and diverges faster as a power law (as shown
in the upper panel of Fig. 9) on account of the real-space form
1/rα with α ≈ 1.2 < 2 of the dimer correlation function.

When the Fourier transform S(q) is computed post-
simulation based on all computed real-space correlations,
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FIG. 9. (Color online) Peak values of the dimer structure factor,
where Q = (π,2πWy/L), versus the system size in sectors with
different winding Wy . The modified definition S ′(Q) for the RVB
is given in Eq. (4.2). Note the different y-axis scales used for the two
models (logarithmic for the RVB and linear for the CDM). In the CDM
(lower panel), the behavior is consistent with a log divergence (as
shown with fitted lines) for small winding numbers, but for larger W ,
it appears that the behavior is instead governed by a power law (which
then may be the case for all Wx/L > 0 for sufficiently large systems).
The curve through the W = (0,3L/7) data shows S(Q) ∝ L0.48. In
the RVB (upper panel), the exponent of the power-law divergence
decreases slightly with increasing winding number. The legends with
(S) correspond to the peak values of the full structure factor S(Q).

the measurements in the simulations are expensive, requiring
O(N2) operations to take full advantage of spatial averaging.
In the CDM, we can instead easily just compute S(Q) at the
single wave vector Q directly in the simulations at a much
lower cost of O(N ) to access larger system sizes. In the RVB,
this speed-up is not possible, however, because we are there
really measuring a four-spin correlation function that can not
be simply expressed as a product of two-spin correlators, as
discussed in Appendix A, and there is no obvious way of
avoiding the O(N2) scaling of this measurement.

In order to have a similar quantity, which scales with
the system size in the same way as S(Q) but for which the
measurements require only O(N ) operations, we define a
modified structure factor S ′(Q) for the RVB as

S ′(Q) = 〈B̃∗
x (Q)B̃x(Q)〉, (4.2)

where B̃x(Q) is the Fourier transform of the spin-spin
correlator matrix element 〈Vβ |(Si · Sj )|Vα〉 for an individual
configuration in the RVB simulation (i.e., obtained from a
transition graph, which gives values ∈ {−3/4,0} for each
nearest-neighbor bond on the lattice). This definition of the
peak value differs from the full Fourier transform S(Q) of
the four-spin dimer correlator D(r) essentially because it

does not contain any information on the order of the site
indices in the matrix element 〈Vβ |(Sk · Sl)(Si · Sj )|Vα〉, which
plays a role in the transition-graph two-loop estimator of
the dimer correlation function (as discussed in Appendix A).
In particular, the modified quantity misses certain negative
contributions arising in some cases where all four indices
belong to the same loop [see Eq. (2.14)]. Therefore, we expect
S ′(Q) > S(Q), which is also confirmed by results for both
quantities in small systems, as shown in the upper panel of
Fig. 9. The form of the power-law divergence is the same,
however.

Overall, there is significant directional dependence in the
dimer correlations, but for W = (0,0), the RVB results in
Fig. 9 confirm that the peak at (π,0) (corresponding to
columnar-modulated correlations) is sufficiently isotropic for
the size dependence of the Fourier peak to be directly related
to the exponent of the power-law decay 1/rα found above for
the real-space correlation (and, it should be pointed out, the
exponent α also comes out consistently to the same value when
extracted in different directions in real space).

With S ′(Q) diverging with the system size L as LαQ , we
expect αQ ≈ 2 − α and the data confirm this. For instance,
the W = (0,0) data in the upper panel of Fig. 9 were fitted
to a function f (L) = bQLαQ + b2L

α2 , where α2 < αQ (and
typically also α2 < 0) and this correction term is added in order
to include data for the full range of system sizes. Using this
form we obtained αQ = 0.800(2), which is in good agreement
with α = 1.191(6), but with a smaller error bar. Our best
estimate for the exponent is, thus, α = 1.200(2). Here, the error
bar is purely statistical and there may still be some systematical
errors present as well (likely of the same order), arising from
neglected higher-order corrections.

D. Correlations with nonzero winding number

In a background of nonzero winding number, all dimer-
dimer correlations should become modulated by the factor
cos(δQ · r), as derived using the height-model formalism in
Appendix B and shown explicitly as Eq. (B16), where δQ =
2π (Wx,Wy)/L. Such a modulation is visible in the real-space
dimer correlation function, as shown in Fig. 10 for D∗

xx(r)
along the diagonal lattice direction r = (x,x) for systems of
different size with winding number W = (0,2). This implies
that, when r is followed along the [1, ± 1] direction through
an entire period, 2(Wx ± Wy) nodes of Dxx(r) are crossed;
indeed, Fig. 10 for W = (0,2) shows two changes of sign
between x = 0 and L/2, in both the CDM and the RVB cases.

The correlation function Dxx(x,y) in the full 2D space is
shown for the RVB in Fig. 11, where an overall background
constant representing D(r → ∞) has been subtracted from
D(r) and the remainder has been multiplied by rα to make
the modulations visible. An overall nondecaying staggered
contribution present when W �= 0 has also been subtracted
(see further discussion of this below and in Fig. 8). The
color coding shows positive and negative correlations, and
the width of bars represent the magnitude of the correlations.
In the winding-number W = (0,0) sector, the positive and
negative values alternate in rows, showing that the overall
dominant correlations are of columnar type. In the W = (0,1)
sector, a phase shift occurring around at y = L/2 is clear.
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FIG. 10. (Color online) Dimer correlation differences versus x

[where the separation r = (x,x)] along the diagonal lattice direction
for systems of different sizes. The winding number is W = (0,2)
and, therefore, two phase shifts are seen (corresponding to a total of
four domains). Note that the overall magnitude of these correlations
is much larger in the RVB (upper panel) than in the CDM (lower
panel).

The region over which the shift takes place is itself of
size O(L), as expected since the amplitude is modulated
proportional to a sine wave (which can be considered as
a highly fluctuating critical delocalized domain wall). The
results for the W = (1,1) sector confirm the existence of two
such delocalized nodes along the diagonal direction. A similar
pattern of phase shifts in the correlation function is seen in
the CDM case as well, but is much weaker because of the
significantly faster decaying correlations (as is also clear in
Fig. 10).

To our knowledge, these correlations in sectors of fixed
nonzero winding number have not been studied in detail
previously (but were pointed out also in the parallel work
by Albuquerque and Alet20). In Appendix B, we extend the
height-model approach to this case as well (in Appendix B7).
Here, we only briefly discuss some of the main features, with
the aim of comparing the RVB and CDM systems.

Turning back to the Fourier space plot (Fig. 8), it includes
representative results for the structure factor in three different
winding-number sectors (0,Wy). Once the winding number is
nonzero, it is clear that there is, for both models, a δ-function
peak in S(q) at (π,π ), reflecting a nonzero static staggered
order parameter. Since this peak grows in proportion to the
winding number, we have subtracted it off in some cases in
Fig. 8 to make the other features better visible.

There are two notable features of these results for both
the RVB and CDM: (i) the pinch point remains at (π,π ) and
(ii) the singularity at (π,0) present for Wy = 0 is offset to
Q = (π,2πWy/L), which, when L → ∞, can be considered
as an incommensurate peak at Q ≡ (π,w), w ∈ [0,π ]. This

RVB W = (0,0)

RVB W = (0,1)

RVB W = (1,1)

L/2

L/2

L/2

L/2

L/20

L/2

0

0

FIG. 11. (Color online) Correlation patterns obtained from the
dimer correlator Dxx(x,y) by subtracting a constant and dividing
the result by the leading power-law form r−α (with α = 1.2 for the
RVB and α = 2 for the CDM). The (π,π ) contribution was also
removed for the W �= 0 sectors (by going to Fourier space as in
Fig. 8). Black and red (gray) bars represent positive and negative
values (i.e., stronger and weaker dimer correlations), respectively.
In the W = (0,0) sector, a dominant columnar pattern is visible,
while in the W = (0,1) sector, the correlations shift from weak-strong
weak-strong to strong-weak strong-weak over a window of distances
∝ L, corresponding to two nodal lines as stated in text. The origin is
at lower left corner, and one quadrant (L/2 × L/2) is shown of the
possible separations. In the W = (1,1) sector, correlations shift twice
in a row, corresponding to the presence of two pairs of nodal lines.
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is exactly as expected from Eq. (B17) obtained within the
height-model representation in Appendix B. Figure 9 shows
the system-size dependence of the singular peak for different
large winding numbers Wy ∝ L. These features have been
qualitatively expected in the case of the CDM based on several
previous works26,36,37 (as outlined in Appendix B), but they
are still interesting to study quantitatively and to elucidate
the similarities and differences between the CDM and RVB.
It is already clear from Fig. 8 that the divergence of the
incommensurate peaks is much stronger for the RVB than
the CDM, which is anticipated based on our result for the
slow real-space decay of the dimer-dimer correlations in the
RVB.

For nonzero winding number, the correlations become
significantly anisotropic, but we have not attempted to study
their full functional form in real space or Fourier space.
The exponent governing the asymptotic power-law decay
is, however, expected to be direction independent, as dis-
cussed in Appendix B. The results in Fig. 9 indicate that
S(Q) has the form LαQ , with a weak dependence of the
exponent αQ on the location of the peak (i.e., the winding
number), also as expected based on the height-model results in
Appendix B8.

The incommensurate peak of the CDM was discussed by
Fradkin et al.,26 who pointed out a set of critical points
in extended QDMs with more complicated diagonal and
off-diagonal terms than the standard RK nearest-neighbor
bond-pair interactions. The critical points extend from the
conventional RK point at zero winding number, forming a
complex fractal curve with devil’s staircase features (forming
a Cantor set). This critical curve separates a staggered dimer
phase from one with a complex bond pattern with a large unit
cell, which depends on the winding number. Similar transitions
with a series of different VBS phases were studied in Ref. 25.
Our CDM results in Fig. 9 for large winding numbers
suggest that the incommensurate peak may become power-
law divergent (i.e., stronger than the logarithmic divergence
obtaining at zero winding number). This is seen most clearly in
the W = (0,3L/7) graph, where it is clear that the divergence
with L is faster than logarithmic. A power-law fit LαQ with
αQ = 0.48(3) describes the data well. This is expected in the
height scenario, since a nonzero background W/L changes the
effective stiffness to K ′ as given by Eq. (B25). The exponent
α of real-space correlations accordingly changes from 2 and
consequently the integral of 1/rα (the structure factor) should
diverge faster than logarithmically.

E. Monomer distribution

Monomers are expected to be deconfined in RVB states,1

which provide an intuitive picture of spin-charge separation.
Here, we will study two monomers in the RVB. It should be
noted, however, that these monomers are bosonic, and hence
the results can not be directly related to a hole-doped RVB
spin liquid. In that case, the monomers should be fermions
and, as discussed, e.g., in Ref. 2, the sign rule we use
here for the valence bonds would have to be replaced by
more complex signs. It is nevertheless interesting to compare
the monomer-doped RVB and CDM systems considered as
different statistical mechanical systems.
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FIG. 12. (Color online) Monomer distribution function in the
RVB state on an L = 512 lattice. The straight line is a fit to the
power-law form 1/rβ with β = 0.830(9).

The monomer-monomer distribution function of the CDM
is defined using the monomer density m(ri) = 0,1:

M(rij ) = 〈m(ri)m(rj )〉
〈m(ri)m(ri + x̂)〉 , rij = ri − rj , (4.3)

where the normalization with the correlation at distance r = 1
is a convention that makes it easy to compare results for
different system sizes (i.e., results for fixed r converge to a
nonzero number with increasing size, even if the monomers
are deconfined). It is known10 that this function for the
short-bond CDM decays as M(r) ∝ 1/rβ with β = 1/2. This
slow decay reflects monomer deconfinement, i.e., the function
〈m(ri)m(rj )〉 without the normalization in Eq. (4.3) decays to
zero for fixed rij when K → ∞. We use exactly the same
definition of M(r) for the RVB, applying the procedures
discussed in Sec. III to sample monomer configurations (while,
in the CDM, the loop algorithm for the bond sampling
without monomers gives the monomer distribution function
as a by-product12,30). Note that the winding number is not well
defined in the presence of monomers since they are associated
with “broken loops” in the transition graph in Fig. 2.

The exponent β = 1/2 for the CDM has been confirmed
previously in Monte Carlo simulations on large lattices.12

Figure 12 shows our results for the RVB, using a system of
size L = 512 (for which the results for moderate separation of
the monomer are sufficiently converged to extract the decay
exponent). We find that the exponent β ≈ 0.83 is significantly
larger than in the CDM. The monomers are, thus, more strongly
correlated to each other than in the CDM, but still deconfined.
Note that, in a long-range-ordered VBS, one would expect the
monomers to be confined.

F. Including longer bonds

As the next step after investigating the extreme short-bond
RVB, it is natural to think about the role of the longer bond
in spin liquids and the classical dimer model. In the case of
the CDM, introducing bonds between next-nearest neighbors
on the square lattice leads to exponentially decaying dimer
correlations and monomer confinement,12 as on a triangular
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FIG. 13. (Color online) Dimer-dimer correlation function differ-
ence Dxx(r) for RVB systems in the W = (0,0) sector with different
fugacities Z2 of long (fourth-neighbor) bonds (with the short-bond
fugacity Z1 = 1). The decay exponents grows with the long-bond
fugacity. The values are given in Table I.

lattice with only nearest-neighbor bonds.11 However, with only
bipartite bonds, the behavior is qualitatively similar to the
short-bond model (as long as the fugacity for longer bonds
decays sufficiently rapidly with the length of the bonds).12

The dimer correlations decay as 1/rα with α = 2 not changing
as longer bonds are introduced, but the monomer exponent α

decreases from 1/2.
In the RVB, Marshall’s sign rule can not be applied if

nonbipartite (frustrated) bonds are introduced. Due to the
nonorthogonality of the basis, there is, regardless of how signs
beyond some simple Marshall rule are introduced, a sign prob-
lem in the Monte Carlo bonds sampling (due to nonpositive
definiteness of the state overlaps). We here study the effects of
bipartite valence bonds connecting fourth-nearest neighbors,
i.e., of “shape” (x,y) = (2,1) and all symmetry-related shapes,
as was done previously for the CDM.12 We use small fugacities
Z2 = e−2, Z2 = e−3, and Z2 = e−4 for the longer dimers and
Z1 = 1 for the short bond connecting nearest neighbors. In
the RVB, since we work with the amplitude-product states
[Eq. (2.4)], we just use the “fugacities” as another notation for
the RVB amplitudes: h(r = 1) = Z1 = 1, h(r = √

5) = Z2.
Spin correlations have been previously studied in the

presence of long bonds, including exponential and power-
law decays of the length-dependent fugacities.5,34 Here, we
again focus on the dimer-dimer correlations and monomer
distribution function.

The exponent of the dimer-dimer correlations changes
with the fugacity of long bonds, as shown in Fig. 13 and
Table I. The change can be seen even more obviously in
higher winding-number sectors (not shown in the figure). Note
also that the spin correlations increase when longer bonds
are introduced.5,34 Figure 14 shows the monomer distribution
M(r) as defined in Eq. (4.3). Similar to the CDM,12 the
confinement exponent changes with the fugacity of long bonds.
The higher the fugacity of long bonds, the lower is the
monomer deconfinement exponent.

TABLE I. Dimer-dimer and monomer exponents obtained for the
CDM and RVB systems at different fugacities Z2 for the next-shortest
bonds (of length

√
5).

Model Z2 α β

CDM 0 1.98(1) 0.4996(5)
CDM e−4 2.17(2) 0.447(2)
CDM e−3 2.44(8) 0.392(1)
CDM e−2 2.7(2) 0.302(1)
RVB 0 1.191(6) 0.830(9)
RVB e−4 1.255(5) 0.775(5)
RVB e−3 1.377(10) 0.707(5)
RVB e−2 1.676(12) 0.563(6)

V. HEIGHT-MODEL INTERPRETATION

All of the numerical results found in these simulations
can be compared with results obtained in the framework of
the “height model” introduced in Sec. I B and elaborated
in Appendix B. According to that description, each of the
following can be written as a function of a single parameter,
the height stiffness K:

(1) The sector probabilities P (Wx,Wy) presented in Fig. 5.
(2) The exponent α of critical dimer correlations, inferred

from the L dependence of the structure factor at Q = (π,0) [the
peak value at winding number W = (0,0) as shown in Fig. 9],
and also from the L dependence of these same correlations at
r = (L/2,L/2) in real space, as plotted in Fig. 7.

(3) The decay exponent β of the monomer distribution
function M(r) as presented in Fig. 12.

(4) The coefficient of the “pinch-point” singularity in the
structure factor S(q) (as shown in Fig. 8).

We can use these relations to reduce the different results
to independent estimates of the stiffness, which we call KP ,
Kα , Kβ , and KS , from these respective measurements. The
agreement (to be demonstrated below) of these is powerful
evidence that a heightlike field theory underlies the RVB state.
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FIG. 14. (Color online) Monomer distribution function M(r) for
RVB states with a small fraction of fourth-neighbor bonds on a lattice
of size L = 256. The straight lines are fits giving deconfinement
exponents, which decrease with increasing long-bond fugacity. The
exponents are listed in Table I.
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TABLE II. Stiffness parameter KP in the infinite CDM and RVB
systems inferred from the winding-number sector probabilities (from
data in Fig. 5) according to Eq. (5.1).

CDM RVB

(Wx,Wy) P (Wx,Wy) KP P (Wx,Wy) KP

(0,0) 0.49625(4) 0.764(5)
(1,0) 0.10321(3) 0.19628(3) 0.057(2) 0.325(5)
(1,1) 0.02146(1) 0.19629(3) 0.0043(5) 0.324(7)
(2,0) 0.000925(2) 0.19642(8)

This is well known to be true for the CDM state, but the
extension to the RVB is nontrivial due to the configuration
space here consisting of two bond configurations weighted by
their transition-graph loops, as discussed in Sec. II. Indeed, we
have not derived the height-model representation explicitly for
the RVB. We will make some comments on the feasibility of
actually deriving the effective model below.

A. Four ways to extract stiffness

We now run through the ways in which we get four
independent measurements of the height stiffness K . CDM
results are presented in parallel to the RVB results, first to
check the systematic errors in our fitting procedures against
exactly known results, and second to emphasize the similar
behaviors.

1. Sector probabilities

Table II gathers together the numerical sector probabilities
from the data sets in Fig. 5. As seen in the figure, the smaller
sizes show noticeable finite-L corrections, which are expected
to be O(1/L2) due to the quartic correction Eq. (B19) to the
free-energy density. The larger sizes show larger statistical
errors particularly for the RVB case, as explained in Sec. III C.
In order to partially account for finite-L corrections of leading
order and higher, which we need to extract the probabilities
at L → ∞ with relatively smaller statistical fluctuations by
using a large set of lattice sizes, we use suitable polynomial
fitting functions (sometimes without linear term) to extrapolate
values in the thermodynamic limit.

According to Eq. (B15), we expect P (Wx,Wy) ∝
exp[−8K(W 2

x + W 2
y )], and thus, we define

KP ≡ − ln[P (Wx,Wy)/P (0,0)]

8
(
W 2

x + W 2
y

) . (5.1)

This expression clearly gives consistent results for every pair
(Wx,Wy) for either model as shown in Table II. The KP values
in this table are calculated directly from the corresponding
sector probabilities presented next to them. The KP values
included in Table III are taken from the W = (0,1) sector,
as that has the smallest error bars (and also should be the
best in terms of originating from a weak “tilt” field). As
indicated by Fig. 15, the KP value does not depend much
on system size L for L larger than ≈50. Therefore, in order to
obtain smaller statistical errors, we presented KP in Table III
with the same method described above for extrapolating
winding-number sector probabilities in the thermodynamic

TABLE III. Stiffness estimates obtained from the four kinds of
measurements discussed in the text; Z2 is the fugacity for dimers of
length

√
5.

Model Z2 KP Kα Kβ KS

CDM 0 0.19628(4) 0.198(1) 0.1962(2) 0.1959(7)
CDM e−4 0.17547(4) 0.182(2) 0.1755(8) 0.1794(3)
CDM e−3 0.15065(6) 0.161(5) 0.1539(4) 0.1582(4)
CDM e−2 0.11638(3) 0.14(1) 0.1186(4) 0.1234(1)
RVB 0 0.323(5) 0.330(2) 0.326(4) 0.3242(4)
RVB e−4 0.3067(8) 0.313(1) 0.304(2) 0.3081(2)
RVB e−3 0.2774(5) 0.285(2) 0.278(2) 0.277(1)
RVB e−2 0.2258(1) 0.234(2) 0.221(2) 0.22619(2)

limit. As an example, polynomial fitting functions are shown
in Fig. 15.

2. Critical dimer correlations

We have [Eq. (B8) in Appendix B4] that α = π/8K; hence,
we define

Kα ≡ π

8α
. (5.2)

The values of α summarized in Table I could, in principle, all be
obtained by fitting the size dependence of the peak value S(Q)
of the dimer structure factor, i.e., according to the peak-height
analysis illustrated in Fig. 9 in the case of the RVBs. However,
this approach requires a very significant computational effort
for large lattices. We therefore use an easier but still reasonably
accurate way to extract α by fitting the real-space long-distance
dimer correlator D∗

xx(L/2,L/2) as in Fig. 13 by a power law
[as expected according to Eq. (B7)]. For nonzero Z2 cases in
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FIG. 15. (Color online) KP value calculated in the W = (0,1)
sector according to Eq. (5.1) for systems with fugacity Z2 = e−2 for
long bonds and different lattice sizes. RVB and CDM results are
shown in the upper and lower panels, respectively, as a function of
the inverse system size 1/L. The curves are second-order polynomial
fits, not including the linear term.
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the CDM, this approach does not work well, however, because
α increases with the fugacity, becoming larger than 2, and
therefore the critical term is overshadowed by the stronger
dipolar term (which always decays as 1/r2; see Sec. B4) and
is hard to detect. In contrast, in the RVB, α < 2 always and the
critical term is dominant. A better way to find α in the CDM is
to extract values by a fit of |D∗

xx(x,x)| (along the diagonal axis)
for a range of distances x on a large lattice since the dipolar
term vanishes on this axis. The corresponding Kα values are
listed in Table III.

3. Monomer pair distribution correlations

We have [Eq. (B11) in Appendix B5] that β = 8K/π ;
hence, we define

Kβ ≡ πβ

8
. (5.3)

This quantity extracted from the exponents listed in Table I,
where the values originate from fits to the r dependence of
the monomer distribution function (Fig. 14 in the case of the
RVBs), is listed in Table III.

4. Coefficient of the pinch point in S(q)

At Q = (π,π ), there is a pinch-point singularity of the
dimer structure factor for x-oriented dimers S(q), meaning
that there is no divergence, but the limiting value at Q depends
on the direction of the ray along which it is approached. The
coefficient of this k2

y/(k2
x + k2

y) singularity is 1/K according
to Eq. (B5), so we can do a simple fit and call the result
KS . Of course, the actual dependence on q = Q + k must
have additions of higher order in k since S(q) is periodic in
the Brillouin zone. Therefore, only a small domain around
Q should be used in the fit, but it may be advantageous
to use more than the wave vectors immediately adjacent to
Q, as one can then extrapolate to Q and eliminate most of
the unwanted additions. Of the four methods, this one is
closest to direct measurement of the height Fourier spectrum
〈|h̃(k)|2〉, which was the best method to extract stiffness
constants from simulations of height models37,38 or random-
tiling quasicrystals.39,40

In the RVB case, some additional steps are necessary
because we do not construct a height function and do not really
even have a dimer configuration (recall that the contributions
to the wave function from different dimer configurations are
nonorthogonal and the simulations sample pairs of dimer
configurations). We only have the correlations Dxx of an
operator that has some projection onto a dimerlike variable
as well as other contributions. This has two consequences
for S(q). The first is that the “other contributions” contribute
a constant background on top of the pinch-point singularity,
which does not vanish even along the line ky = 0. This can,
in principle, be remedied by fitting and subtracting off the
constant addition, but unless the lattice is very large, such a
procedure will not be perfect. In our fits carried out here, we
simply use the value of the point that is next to the pinch point
along line ky = 0 as our constant addition.

The second consequence of the lack of a formal height
model is that the measured S(q) is a multiple of the
assumed dimer structure factor by an unknown coefficient

c2
S . Fortunately, we can calibrate c2

S using the sectors with
nonzero winding numbers, since the δ-function peak at Q
in those cases (after subtracting the constant background) is
proportional to c2

S times (W 2
x + W 2

y ) times known constants,
allowing us to infer c2

S ≈ 0.56. From this value, we can
extract a normalized S(q) and, finally, find the pinch-point
coefficient we call 1/KS . This estimate of KS was computed
for several system sizes and then extrapolated to L = ∞ by
fitting functions f (L) = a0 + a1/L

2 + a2/L
3 for the RVB and

f (L) = a0 + a1/L
2 for the CDM (i.e., with both forms not

including the linear term). The results are given in Table III.

B. Summary of the stiffness estimates

Table III collects all four estimates of K with their statistical
errors (one standard deviation). The fugacity Z2 for long
dimers specifies a family of RVB models and one of CDM
models, with different exponents. Note that K according to
our convention is π/8 times K as used previously in Ref. 12.

The respective estimates for the stiffness constant for a
given case typically agree to within a few error bars. In some
cases, the deviations are larger than expected purely based
on statistics. This is not unexpected since the correlation
functions we have analyzed are also affected by corrections
to the leading forms we have used. Note that KS for the
CDM with long dimers are systematically too large (the only
really significant disagreement); and KS for the RVB with
long dimers appears to be slightly too large as well. Here,
the background contributions, which may not be perfectly
subtracted off in our procedure, may be to blame.

The results for the CDM can be compared with the exact
value KCDM ≡ π/16 ≈ 0.196 35, with which all K estimates
in Table III agree to within 2 error bars or less. As another test,
we calculated KP for the CDM with long bonds only (i.e.,
fugacities Z2 = 1 and Z1 = 0). The resulting value implies an
exponent for the monomer correlations of β = 0.110 92(6),
which agrees (within 1.5 error bars) with one previously
obtained using a different analysis of the monomer distribution
function (and where it was conjectured that β = 1/9).12

The good agreement between four different stiffness esti-
mates provides strong evidence of an underlying height-model
description of the RVBs. The plausibility of the height-model
approach for the RVB is partially motivated by the fact that
the RVB and CDM coincide for SU(N ) spins when N → ∞.13

One can then think of corrections to the continuum version of
the height model for the CDM in terms of an 1/N expansion
(which we have not carried out). The results discussed here
show that the 1/N corrections all the way down to N = 2 only
correspond to a renormalization of the stiffness constant.

VI. ORDER-PARAMETER DISTRIBUTION

A columnar long-range-ordered VBS on the square lattice
breaks the translational and rotational lattice symmetries. As
we have seen in the previous sections, the RVB is a critical
VBS with a rather slowly decaying dimer-dimer correlation
function. This correlation function [Eq. (1.1)] measures the
magnitude of the VBS order parameter. In this section, we look
at another aspect of these critical VBS correlations, probing
the individual order parameters for columns forming with x
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and y orientation of the modulated bonds, defined as

Dx =
L∑

x=1

(−1)x
L∑

y=1

[S(x,y) · S(x + 1,y)]conf,

(6.1)

Dy =
L∑

y=1

(−1)y
L∑

x=1

[S(x,y) · S(x,y + 1)]conf,

where [· · ·]conf indicates that these correlators are evaluated
for an individual configuration (i.e., in the RVB, they are
matrix elements between the sampled bra and ket states).
The expectation values of these order parameters vanish.
In the CDM, the dimer-dimer correlation functions that
we investigated before correspond to their squares, i.e., the
dominant structure factor in reciprocal space (as seen in Fig. 8)
is S(π,0) = 〈D2

x〉/N , and the behavior of this quantity as a
function of the system size is shown in Fig. 9. In the RVB, as
we have discussed in Sec. IV C and Fig. 9, the squared order
parameter based on the sampled values from Eqs. (6.1) is not
exactly the same as the actual four-spin correlation function,
but we have shown that the scaling properties are the same.

We here study the probability distribution P (Dx,Dy)
generated in the Monte Carlo sampling. Each generated
configuration of the valence bonds corresponds to pair of
values (Dx,Dy) evaluated according to the loop estimator Eq.
(2.12). We use these to accumulate the histogram P (Dx,Dy).
Such histograms were generated by Sutherland in his loop-gas
study,29 and he noted a circular symmetry of the distribution
(instead of a fourfold symmetry that would have been naively
expected due to the lattice symmetry). At that time, the results
were affected by very large statistical uncertainties, however.

Dimer order-parameter histograms have recently become
interesting in the context of deconfined quantum critical
(DQC) points41,42 in models exhibiting quantum phase
transitions between the antiferromagnetic Néel state and
a VBS state.43,44 A long-range-ordered columnar VBS
corresponds to a distribution P (Dx,Dy) peaked at one of the
four points (±|D|, ± |D|), with the magnitude |D| growing
linearly with the system size N = L2. In a finite system, in
which the Z4 symmetry is not broken, one expects equal
weight in all these four peaks, as well as some weight between
the peaks (which is related to the tunneling probability
between the four ordered VBS states). As a DQC point is
approached from the VBS side, one expects an emergent
U(1) symmetry in the system.41 This is manifested in
P (Dx,Dy) as a circular-symmetric distribution,42,43 i.e., for
a finite system size L, the discrete fourfold (Z4) symmetry
naively expected for the VBS evolves into a continuous U(1)
symmetric distribution. For fixed couplings, the Z4 symmetry
develops as L exceeds a length scale characterizing the spinon
confinement (which diverges at the DQC point).

While the RVB is a critical state, it does not correspond to a
DQC point because the spin correlations decay exponentially.
At a DQC point, both the spin and dimer correlations are
critical.41 It is, nevertheless, interesting to study the symmetry
of the critical VBS order parameter in the RVB and to compare
it with the corresponding distribution in the CDM [where
in S(x,y) · S(x + 1,y) is replaced by the dimer occupation
number on the bond]. Results for L = 64 systems in the
winding-number sector W = (0,0) are shown in Fig. 16.

FIG. 16. (Color online) VBS order-parameter distribution func-
tion P (Dx,Dy) in the space of point pairs (Dx,Dy) generated in the
Monte Carlo simulations of the RVB state (left) and CDM (right) for
systems of size L = 64. We are only concerned here with the shapes
of these distributions (a ring with depleted weight in the center for
the RVB and a broad central peak for the CDM) and have therefore
not labeled the graphs with the range of (Dx,Dy) or the actual values
of the probability density.

Completely circular-symmetric distributions are seen in both
cases, with no signs of Z4 anisotropy. The natural expectation
for a critical state is that the weight is centered around
(Dx,Dy) = (0,0), and this is in fact true for the CDM.
Surprisingly, it is not true for the RVB critical state: the
distribution is instead ring shaped, with the dominant weight
a finite radius away from the center. This is the behavior seen
in candidate models for DQC points in the VBS state close
to the phase transition into the Néel state. The ring-shaped
distribution in the RVB case is no contradiction to it being
a critical state, because the ring’s radius still grows slower
with L than L2. The expectation value 〈D2〉/N is twice
the structure factor S(π,0) and, hence, grows as L2−α , with
α ≈ 1.20 determined in Sec. IV C.

In the case of a fixed nonzero winding number, the VBS
order parameter is modulated by a plane wave in the same way
as its correlation function is, as discussed in Sec. IV C. Hence,
its spatial average tends to cancel, with the result that the
distribution function now has a central peak, as seen in Fig. 17
(right panel) for W = (0,1). For large winding numbers, the
distribution is marginally oval shaped, reflecting the anisotropy
induced by large winding numbers (see Appendix B). In
Fig. 17, the anisotropy is too small to observe clearly.
Interestingly, when all winding numbers are included in
grand-canonical simulations, the ring-shaped distribution seen

FIG. 17. (Color online) VBS order-parameter distribution func-
tion P (Dx,Dy) for L = 48 systems in the grand-canonical winding-
number ensemble (left) and with winding number W = (0,1) (right).
Here, the range of Dx,Dy values is the same in both cases, i.e., the
distribution for W = (0,1) is much narrower.
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for W = (0,0) in Fig. 16 no longer obtains. Although this
sector completely dominates the grand-canonical ensemble
(as seen in Fig. 5), the narrow central peaks contributed by the
nonzero winding-number sectors completely fill in the central
portion inside the ring, resulting in a broad central peak, as
shown in Fig. 17 (left panel).

VII. SUMMARY AND DISCUSSION

We have compared long-wavelength properties of short-
bond RVB spin-liquid states with those of classical dimers,
specifically those associated with correlations and topological
constraints of dimers. Taking properly into account the
nonorthogonality of valence-bond basis states, arising from
the internal bond-singlet spin structure, which is not present
in classical dimers, we have carried out numerically exact
Monte Carlo simulations of the four-point correlation function
measuring the tendency to formation of a VBS state. In contrast
to the exponentially decaying two-point spin correlations,5

these VBS correlations decay as a power law. Such a power
might have been anticipated based on the fact that the
classical dimer-dimer correlations decay as 1/r2 (although
the overcompleteness of the RVB could, in principle, have
led also to more dramatic deviations from the CDM), but the
exact value of the exponent necessitates an exact treatment of
the overcomplete basis, as we have done here. The result is
that the correlations decay slower than what might have been
anticipated, as 1/rα with α ≈ 1.20.

The weighting of valence-bond states is (qualitatively)
different in that sampling the RVB state involves the transition
graph of two states, whereas in the CDM, only a single
state is sampled (as different dimer configurations are by
definition orthogonal). In particular, the loops are small in
the short-bond RVB, as they necessarily must be in order to
give exponentially decaying spin correlations (whereas in an
antiferromagnetically ordered state, the typical loop size scales
as the system size17,34). The operators that we measure are also
different in the two systems: the “dimer-dimer” correlations
in the RVB actually refer to two-spin operators [Eq. (1.2)]
in place of just bond occupation numbers in the CDM. We
have confirmed that the changed α exponent (and presumably
other changed expectations) in the RVB state originate solely
from the different state weighting, not from the form of the
correlation-function estimator Eq. (2.14).

The RVB structure factor has a “pinch point” at (π,π )
in reciprocal space, in any winding-number sector, like the
well-known pinch point in the CDM and other height models;
it further shows singularities related to the critical correlations
near to (π,0) (but shifted by nonzero winding number),
which are logarithmic for CDM at zero winding number
and otherwise are variable power laws. Finally, we found
that introduced pairs of monomers, i.e., topological defects,
are marginally (power-law) deconfined with a power-law
distribution of their separations.

Remarkably, all of the above observations fit into the
framework of the “height model” with a stiffness constant
K as worked out in Appendix B. Independent measurements
of the stiffness constant can be derived from (i) logarithms of
the probabilities of sectors with different winding numbers,
(ii) the critical dimer correlation exponent, (iii) the monomer

pair separation exponent, and (iv) the pinch point of the
structure factor S(q). All yielded KRVB ≈ 1.6KCDM. Other
behaviors, which do not yield measurements of K , are also
suggestive of this. Thus, our results vindicate at last the
qualitative correctness of the zero-overlap assumption adopted
in the RK QDM, although quantitatively the RVB state has
a larger degree of VBS order (as expressed by the ratio
of stiffness 1.6). It is as if the RVB state were the ground
state of the generalized RK state corresponding to some (still
unknown) generalized classical dimer model.

We extended the model by introducing a small fraction
of longer bonds (the next bipartite bond, which connects
fourth-nearest neighbors). We studied the evolution of the
power laws characterizing the dominant VBS correlations and
monomer correlations as a function of the fugacity of long
bonds. As in the CDM case,12 in the dimer-dimer correlations,
a (π,π ) modulated “dipolar” term continues to have the 1/r2

behavior; on the other hand, a (π,0) modulated “critical” term
has an increasing exponent, while the monomer-monomer
distribution function has a decreasing exponent, both of which
can be explained in terms of a decreasing stiffness for the
“height” fluctuations. The monomers remain deconfined for
all fugacities we studied.

We further studied the modifications to correlations due
to finite topological winding number for both the RVB and
classical dimers. The critical VBS correlations acquire a
sinusoidal modulation, correlations become anisotropic, and
the effective stiffness is increased, as expected from height-
model calculations;

We have also studied the joint probability distribution
P (Dx,Dy) of the VBS order parameters for columnar order
with x and y oriented bonds. We found this distribution to
be U(1) symmetric, which, in analogy with the proposed
deconfined quantum-critical point,41 should correspond to the
lattice-imposed Z4 symmetry of the VBS on the square lattice
to be dangerously irrelevant [when regarded as a perturbation
to a U(1) symmetric field theory] in these critical systems
(both in the RVB and the CDM). In a model that has one of
these states as the ground state for some values of tunable
parameters, e.g., the extended dimer models with “Cantor
deconfinement” studied in Refs. 25 and 26, one would then
expect the U(1) symmetry to be emergent upon approach to
the critical point.

Although we have here studied the RVB state without
reference to any specific Hamiltonian, some general conclu-
sions can still be drawn based on our results. If a (local)
Hamiltonian’s ground state has algebraic correlations, then
it must correspondingly have gapless excitations. Thus, our
results show that any Hamiltonian16 with the RVB ground
state is gapless in the singlet sector, even though it has a
spin gap. Furthermore, the close qualitative correspondence
of the RVB static correlations to the RK model6 suggests the
long-wavelength excitations are similar too; these are known7

to be coherent bosons with q2 dispersion. Some actual spin
systems may be spin gapped but singlet gapless. This has long
been claimed for the spin-1/2 kagome antiferromagnet,45,46

although the spin gap is small enough that an extrapolated
value of zero can not be ruled out.47 From this viewpoint, it
is interesting to verify that the original short-range RVB state
has such a property.
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In experiments, the 2D organic S = 1/2 spin-liquid can-
didate EtMe3Sb[Pd(dmit)2]2 shows gapless spin and singlet
sectors in zero magnetic field,48 but, in a magnetic field, spin
excitations become gapped while singlet excitations remain
gapless and have high mobility, as indicated by specific heat
and thermal conductivity.

On the theory side, one might ask whether our result should
have been expected. Soon after the original proposal of the
RVB wave function, field theorists argued that it corresponded
to a U(1) gauge theory,13,21,23 and for a “height model” to
be in its rough phase, as we found, is equivalent to being
asymptotically a U(1) gauge theory. But, the numerical value
of the stiffness constant K has not been measured previously
(before our original estimate in Ref. 18); to our knowledge, it
was not even suggested whether K should be larger or smaller
than KCDM of the quantum dimer model. If for no other reason,
one must check the value of K since, were it much larger,
one would find long-range order in the dimer correlations (a
spin-Peierls phase).

It would clearly be interesting to try to derive the height
model (or the continuum version of it) starting from a 1/N

expansion of the classical dimer model, which corresponds
to the RVB for SU(N ) spins in the limit N → ∞. Further,
the recent construction16 of a model Hamiltonian, which has
exactly the RVB state studied here as its ground state, also
offers hope that one could actually, with extensions of that
Hamiltonian, study a quantum phase transition in which the
static properties of the critical point should be exactly those
that we have investigated here in the RVB.
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APPENDIX A: FOUR-SPIN CORRELATORS IN THE
VALENCE-BOND BASIS

In this Appendix, we work out the loop expression for
four-spin correlators, analogous to the well-known two-spin
expression Eq. (2.12).

It is useful to consider the singlet projectors

Cij = −(
Si · Sj − 1

4

)
. (A1)

When acting on a valence bond, this operator is diagonal with
eigenvalue 1. Denoting a singlet on sites a and b as (a,b), we
have

Cab(a,b) = (a,b), (A2)

whereas acting on a pair of different valence bonds leads to a
simple reconfiguration of those bonds, e.g.,

Cbc(a,b)(c,d) = 1
2 (c,b)(a,d), (A3)

Cbd (a,b)(c,d) = 1
2 (a,c)(b,d), (A4)

(a)

(b)

a b c d

Cbc 1
2

a b c d

a b c d

Cbd 1
2

a b c d

FIG. 18. (Color online) Action of a singlet projection operator in
two different cases: (a) when the sites b, c are on different sublattices
and (b) when b, d belong to the same sublattice. The arrows indicate
the order of the spins in a singlet: (a,b) = (| ↑a↓b〉 − | ↓a↑b〉)/

√
2,

and, in the case of spins on different sublattices, conforms with the
definition Eq. (2.1) of bipartite valence-bond states.

which can be shown easily by going back to the basis of ↑
and ↓ spins. Note the order of the indices within the singlets
in Eq. (A3), which reflects consistently the chosen convention
in the valence-bond-state definition Eq. (2.1) when the sites
a,c are on sublattice A and b,d on sublattice B. We will also
have to consider operations on two spins belonging to the same
sublattice, as in Eq. (A4). We have not specified a convention
for the order of the spins in singlets formed between two spins
on the same sublattice, therefore, it is important to keep track
of the signs, which depends on the order in which the singlets
are written.

Figure 18 illustrates the two different types of singlet
projector outcomes in Eq. (A3) and Eq. (A4). In Fig. 18(a),
both the initial and the final bond pairs are bipartite, whereas
in Fig. 18(b) the bonds after the operator has acted are
nonbipartite. The nonbipartite bonds do not belong to the
restricted basis of bipartite valence-bond basis in which we
normally work. However, when generating nonbipartite bonds
such as this (which can happen in the course of calculations),
we can always rewrite them in terms of bipartite bonds.
One can easily verify the following equivalence between
valence-bond pairs:

(a,c)(b,d) = (a,b)(c,d) − (a,d)(c,b), (A5)

which is illustrated in Fig. 19. This relationship is particularly
useful when sites a,c ∈ A and b,d ∈ B, but it of course holds
irrespective of sublattices.

As in Eq. (2.11), we can take advantage of the spin-
rotational symmetry also when considering a four-spin cor-
relation function, writing the corresponding matrix element
as

〈Vβ |(Sk · Sl)(Si · Sj )|Vα〉 = 3〈Vβ |Sz
kS

z
l (Si · Sj )|Vα〉. (A6)

Note, however, that we can not further reduce this expression
to a correlation function involving only z-spin components
because, if γ �= z,

〈Vβ |Sz
kS

z
l S

z
i S

z
j |Vα〉 �= 〈Vβ |Sz

kS
z
l S

γ

i S
γ

j |Vα〉. (A7)

a b c d
=

a b c d
-

a b c d

FIG. 19. (Color online) Illustration of the equivalence Eq. (A5),
due to overcompleteness, between a state formed by two nonbipartite
valence bonds and a superposition of two states involving only
bipartite bonds.
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(a)

i j

k

l

= 1
2

k

l (b)

i j

k l

= 1
2

k l

(c)
i

j

k

l

= 1
2

k

l

= 1
2

k

l

- 1
2

k

l

FIG. 20. (Color online) Operations for evaluating the four-spin
matrix element 〈Vβ |(Sk · Sl)(Si · Sj )|Vα〉 when all the sites i,j,k,l are
in the same loop of the transition graph. The thin lines connecting
labeled sites refer to the operator components Sz

kS
z
l and Cij in

Eq. (A8). The solid and dashed bonds belong to |Vα〉 and 〈Vβ |,
respectively.

It is easy to see that the matrix element Eq. (A6) is nonzero
only if all four indices i,j,k,l belong to the same loop, or if
there are two indices in each of two loops. To carry out the
calculations for these cases, it is convenient to make use of
the singlet projection operator Eq. (A1) and write the matrix
element as

〈Vβ |Sz
kS

z
l (Si · Sj )|Vα〉 = 1

4 〈Vβ |Sz
kS

z
l |Vα〉 − 〈Vβ |Sz

kS
z
l Cij |Vα〉.

(A8)

We only go through the calculation in detail for the case where
all four indices belong to the same loop, which is the most
complicated situation.

The procedure is illustrated in Fig. 20. Acting first with the
singlet projector Cij , the loop is split into two separate loops
if i,j are on different sublattices, as shown in Figs. 20(a) and
20(b). If these sites are on the same sublattice, as in Fig. 20(c),
the loop instead becomes “twisted” by two nonbipartite bonds.
This loop can be recast in terms of two different contributions
containing only bipartite bonds by using the valence-bond
equality illustrated in Fig. 19. In each case, after Cij has
acted, we can return to the spin representation of the valence
bonds and evaluate the average of the remaining operator
Sz

kS
z
l exactly as we did for the two-spin correlation function.

Here, the result depends on whether k,l are in the same loop
(giving a nonzero correlation) or different loops (giving a zero
average) after the loop splitting with Cij has been enacted;
these two different cases are illustrated in Figs. 20(a) and
20(b) for the case i,j in different sublattices [while for i,j on
the same sublattice, Fig. 20(c) only shows the case of k,l in
different parts of the split loop]. In all cases, the matrix element
ratio 〈Vβ |Sz

kS
z
l Cij |Vα〉/〈Vβ |Vα〉 is now easy to compute using

Fig. 20 and keeping in mind that an increased number of loops
after a split by Cij increases the corresponding matrix element
by a factor 2 according to the loop expression Eq. (2.6) for the
overlap. The four-spin correlation can then be extracted using
Eqs. (A6) and (A8).

In order to write the final result in a compact unified form
for all the different cases, it is useful to introduce the concept of

i j i

j

FIG. 21. (Color online) Subloops of a valence-bond loop with
respect to two sites i,j . The “cuts” splitting the loop into subloops
are at the solid bonds connected to i and j (which belong to the ket
|Vα〉, the state on which Cij acts), irrespective of the two possible
locations of i,j within these bonds. When i,j are sites in the same
bond in |Vα〉, there is only a single subloop (the whole loop).

subloops with respect to the operator Cij of a loop containing
sites i,j , or (i,j ) subloops. As seen in Fig. 20, regardless of
whether i,j are on the same or different sublattices, the loop is
split in the same way by Cij in all cases where such split loops
appear. This can be formalized by the following convention:
The splitting of a loop into (i,j ) subloops is accomplished
using the bonds in the ket |Vα〉 (the solid bonds in Fig. 20,
on which Cij acts), i.e., the two Vα bonds on which i,j are
located are those that are reconfigured in such a way that the
loop splits into two. The subloops then always contain only
bipartite bonds. This definition is illustrated in Fig. 21. We also
introduce a symbol to distinguish between the cases of k,l in
the same subloop or different subloops:

δkl
ij =

{
0 for k,l in the same (i,j ) subloop,

1 for k,l in different (i,j ) subloops.
(A9)

If i,j are on the same bond of |Vα〉, Cij does not change the
loop and there is then only a single subloop (the intact original
loop) and δkl

ij = 0 for all k,l.
The remaining cases of nonzero four-spin matrix elements

involve two loops (with two indices in each loop). These
calculations are easier than the case of all indices in the same
loop because there are no subloops to consider, and we just
list the results. The full final result for all nonzero four-spin
matrix elements is given in the main text as Eq. (2.14).

Note that whereas the sign of the two-spin correlation (2.12)
is always dictated by the staggered phase factor, the sign of the
four-spin correlation is different from the four-site staggered
phase φijφkl if all the indices are in the same loop and k,l

belong to different (i,j ) subloops.
The concept of subloops may seem unnecessarily compli-

cated in the definition of δ
ij

kl in Eq. (A9) since this number (0
or 1) is essentially also determined by the order in which the
indices i,j,k,l appear when traversing a loop. If only one of
the indices k,l appear between i,j , then, in most cases, k,l are
in different subloops and δ

ij

kl = 1. There are, however, special
cases where the definition based on the order of indices is
ambiguous, e.g., when they are all on the same valence bond
in the ket |Vα〉. In that case, k,l are in the same subloop and
δ

ij

kl = 0, as also explained in Fig. 21.
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APPENDIX B: CALCULATIONS BASED ON HEIGHT
REPRESENTATION

Any complete covering of a bipartite planar lattice (such
as the square lattice) by dimers can be mapped into a
configuration of “heights” representing a kind of interface
model. Often, the ensemble weighting corresponds to the
“rough” phase of the interface. In this case, many statis-
tical properties may be derived from a simple (Gaussian)
classical field theory in terms of the coarse-grained height
function, using the “Coulomb-gas” formalisms introduced in
the Kosterlitz-Thouless theory of the two-dimensional XY

model.49,50 Bipartite dimer coverings are a subset of a larger
class of “height” models treated by this formalism, which also
include random-tiling quasicrystals.39,40

The CDM is known to be in this “rough” phase. In the
case of the RVB wave function, for which this property had
not been known, it is shown in this paper that all statistical
behaviors are consistent with a rough height model. It should
be emphasized that this is an emergent behavior since there is
no exact way to map spin states to dimer coverings (the dimers
to spins mapping is not invertible). We might hypothesize
the existence of some hidden, nonlocal way to define winding
numbers and perhaps height fields from the spins; however, the
nonzero overlap between configurations in different winding-
number sectors (see Fig. 5) shows that there can not be an
exact mapping of that sort.

The starting point of the height treatment is that the
probability of a (coarse-grained) height field {h̄(r)} is given
by exp[−Ftot({h̄(r)})], where

Ftot =
∫

d2r
1

2
K|∇h̄(r)|2. (B1)

We here study various consequences following from this.

1. Relation of height field and dimer operators

There are two closely related ways to define a height
function, for a dimer model, as laid out in Ref. 37. The
microscopic height h(r) is defined on dual vertices (centers
of plaquettes); we set

h
(
x + 1

2 ,y + 1
2

) − h
(
x − 1

2 ,y + 1
2

)
= (−1)x+y[4ny(x,y) − 1], (B2a)

h
(
x + 1

2 ,y + 1
2

) − h
(
x + 1

2 ,y − 1
2

)
= (−1)x+y[4nx(x,y) − 1]. (B2b)

Thus, h takes a step ±3 across a dimer, or ∓1 across an
unoccupied bond, where the sign alternates between even and
odd vertices of the lattice. If one takes four steps around a
vertex, one crosses a dimer once and an unoccupied bond
three times such that the net difference is zero, ensuring a
well-defined height field.

A second, locally averaged height function h̄(x,y) is defined
on the original vertices, being the mean of h on the four
surrounding plaquettes. [Note the locally averaged h̄(x,y) is
not quite identical to the fully coarse-grained height function
assumed in the field theory, although we use the same notation
h̄(r).] This h̄(x,y) is uniform in any one of the four special
domains in which the dimers are aligned on opposite sites of

plaquettes; it shifts by one unit on crossing a domain wall to
the next domain. A change of ±4 in h̄ brings us back to the
same domain.

Thus, the dimer occupation can be written as a period-four
function of the local height variable

nx(r) = 1

2

[
cos

(
2πh̄

4

)2

+ (−1)x cos

(
2πh̄

4

)]
, (B3a)

ny(r) = 1

2

[
sin

(
2πh̄

4

)2

+ (−1)y sin

(
2πh̄

4

)]
. (B3b)

The configurations with a given winding number may be
visualized as fluctuating domains with smoothed domain
walls. For winding number W = (Wx,0), a net number of
domain walls 4Wx must be crossed as the system is traversed
in the x direction. There is no long-range dimer order, so the
domain walls thereby enforced are delocalized; indeed, in a
snapshot of the configuration, they are lost in the dense array of
random domain walls that are part of the inherent fluctuations
even in the W = (0,0) sector.

2. Effects of long dimers

In the present simulations, sometimes dimers are permitted
(both in CDM and RVB models) between sites separated by a
(2,1)-type vector with a fugacity Z2. This requires us to modify
the height construction. Say this dimer extends from (0,0) to
(2,1). The height changes across the lattice edges (0,0)–(1,0)
and (1,1)–(2,1) as if there were ordinary dimers occupying
both edges (i.e., −1 times the height change if those edges
were vacant). As for the lattice edge (1,0)–(1,1) bisected by
the long dimer, the height change is +5 times the height change
that the vacant edge would have had. Around the vertex (1,0) or
(1,1), the net height changes are 3 + 3 − 5 − 1 = 0, showing
the modified construction is well defined.

It can be seen that long dimers allow larger differences in
height between adjacent sites. In the coarse-grained picture,
this means that height gradients are penalized less and thus K

is decreased. Indeed, it was observed in previous work12 that
in the CDM when only long dimers are present, K is reduced
by a factor of 2/9.

3. Dimer correlations: Dipolar term

It seems as if Eqs. (B2) and (B3) express contradictory
relations between the height field and the dimer configuration.
The proper resolution is that the dimer field has two slowly
varying parts that are modulated in different ways with respect
to the lattice:

nx(x,y) − 1

4
≈ (−1)x+y dh̄

dy
+ (−1)x

2
cos

(
2πh̄

4

)
, (B4a)

ny(x,y) − 1

4
≈ (−1)x+y+1 dh̄

dy
+ (−1)y

2
sin

(
2πh̄

4

)
, (B4b)

which is equivalent to Eq. (2.4) of Ref. 26. It turns out
that the nx–nx dimer occupation correlation, as a function of
displacement r = (x,y), breaks up into two slowly decaying
terms Dxx(r) = D

dip
xx (r) + Dcrit

xx (r), which are due to the two
kinds of terms in Eqs. (B4).
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Consider the first kind of term. Equation (B1) implies, for
the Fourier transform of the height field, 〈|h̃(q)|2〉 ≈ 1/K|q|2
for small wave vectors q. Combining with the h̄ gradient terms
in Eq. (B4), we find

S(Q + k) ≈ k2
y

K|k|2 (B5)

for the x-dimer structure factor near Q = (π,π ). Taking the
Fourier transform of Eq. (B5) gives the (two-dimensional)
pseudodipolar correlations

Ddip
xx (r) ≈ (−1)x+yConst

x2 − y2

2πK|r|4 . (B6)

The radial dependence of this is 1/r2 in any direction,
irrespective of the value of K .

4. Dimer correlations: Critical term

We now turn to the second kind of term in Eqs. (B4), the
terms periodic in h̄. By a calculation standard in height-model
literature,37,38 they imply the Coulomb gas (critical) term

Dcrit
xx (r) ∝ (−1)x

|r|α , (B7)

where

α = (2π/4)2

2πK
≡ π

8K
. (B8)

It is a peculiarity of the CDM, with nearest-neighbor dimers
and equally weighted configurations, that α = 2. Thus, both
terms have the same decay exponent and in fact they cancel
exactly on certain sites. Modifying the relative weighting
of dimer configurations normally changes α. If α < 1/4,
the height configuration locks into a flat state (roughening
transition), which means that the dimers lock into a long-
range-ordered state. However, in this study, α is reduced from
the CDM value of 2 by a relatively modest amount.

The same kind of calculation implies that

Dcrit
xx (L/2,L/2) ∝ 1

Lα
, (B9)

with the same α as in Eq. (B7), but a different prefactor.
Note that (so long as the elasticity is isotropic) the dipolar
contribution D

dip
xx (r) is exactly zero along the lines x = ±y

(even as its asymptotic r dependence breaks down) and
therefore does not contribute to Dxx(L/2,L/2).

5. Topological (monomer) defects and their correlations

If a site is uncovered, the height differences do not cancel
in going around it, but change by b = ±4 (where the sign
depends on whether the vertex is even or odd). Such defects
can only be created in pairs of opposite charge, and play the
same role as vortices in the Kosterlitz-Thouless theory. The
K values in our simulations are small enough that we are
above the Kosterlitz-Thouless unbinding transition, i.e., if
there were nonzero fugacity to have defects, they would
destroy the critical state at sufficiently long length scales.
However, the fugacity is in fact zero (except that in some
simulations, one pair is inserted by hand as a probe).

The presence of a defect at (say) the origin enforces a
background gradient in the height field with |∇h̄| = b/2πr .
When substituted into Eq. (B1), that would give a logarith-
mically divergent total, except that the divergence gets cut
off by another defect at distance R. The result is that the
effective potential cost for the defects to be separated by R is
(K/2π )b2 ln R, and the pair distribution is given by

M(R) ∝ 1

Rβ
, (B10)

with

β = Kb2

2π
= 8K

π
, (B11)

and in particular β = 1/2 for the basic CDM.

6. Sector probabilities

We now turn to the effects of enforcing net winding
numbers Wx,Wy . This is equivalent to a boundary condition
that h̄(L,y) ≡ h̄(0,y) + 4Wx and h̄(x,L) ≡ h̄(x,0) + 4Wy . In
light of Eq. (B3), no discontinuity is implied in the actual
dimer pattern since that depends on h̄(r) with period 4. It
would be exactly analogous to enforcing, in an XY model,
angle differences (2πWx,2πWy) across the system.

Thus, the effect of winding number (Wx,Wy) is to impose
a uniform “background” height tilt (mx,my) = 4(Wx,Wy)/L.
We write

h̄(r) = mxx + myy + h̄′(r), (B12)

separating the height field into the background plus a (smaller)
deviation h̄′(r) that satisfies periodic boundary conditions.

If we substitute the free energy Eq. (B1) into Eq. (B12), we
see that

Ftot({h̄}) = Ftot({h̄′}) + �F (Wx,Wy), (B13)

where

�F (Wx,Wy) = 1
2KL2

(
m2

x + m2
y

) = 8K
(
W 2

x + W 2
y

)
. (B14)

Since Ftot in Eq. (B13) is exactly the same function as before,
it follows that when we integrate over all configurations of
{h̄′(r)} to obtain the partial partition function Z(Wx,Wy) for
a given sector, Z(Wx,Wy) = Z(0,0) exp[−�F (Wx,Wy)]. We
conclude that the relative probabilities of different sectors are
given by

P (Wx,Wy) = P (0,0)e−8K(W 2
x +W 2

y ). (B15)

In checking the normalization of P (Wx,Wy), it should be
remembered that, e.g., the (1,0) sector is fourfold degenerate
[the possible winding numbers are (±1,0) and (0, ± 1)], as are
the (1,1) and (2,0) sectors.

7. Correlation modulation due to winding number

To calculate the critical contribution in the presence of a
background h̄ gradient associated with a winding number,
we merely need to substitute Eq. (B12) into Eqs. (B4),
remembering that the rightmost terms are the ones contributing
to the desired correlation. The result is that we get the
correlation due to the h̄′ field (i.e., the same as before) times
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cos[ 2π
4 (mxx + myy)], where (x,y) is the vector connecting the

two points. In other words,

Dcrit
xx (r; W ) = Dcrit

xx (r; 0) cos(δQ · r), (B16)

where Dcrit
xx (r; W ) means Dcrit

xx (r) given winding numbers W ,
and

δQ ≡ 2π

4
(mx,my) = 2π (Wx,Wy)/L. (B17)

Since Dcrit
xx (r; 0) already includes a (−1)x modulation, it

follows that the structure factor singularity of Dcrit
xx (r; W ) gets

shifted to

Q = (π,0) ± δQ. (B18)

8. Anisotropic effects due to winding number

In a height model, the free-energy density is a function of
∇h̄(r) and its derivatives, satisfying all lattice symmetries. The
free-energy density in Eq. (B1) is the lowest term of its Taylor
expansion in ∇h̄. The next terms consistent with the square
lattice are quartic, thus, the free-energy density becomes

f (∇h̄) = 1

2
K|∇h̄|2 + g11

[(
dh̄

dx

)4

+
(

dh̄

dy

)4]

+ 2g12

(
dh̄

dx

)2
(

dh̄

dy

)2

. (B19)

If we insert Eq. (B19) into Eq. (B12), the effective free-
energy density to lowest order in h̄′ is

f = 1

2
Kx

(
dh̄

dx

)2

+ 1

2
Ky

(
dh̄

dy

)2

+ Kxy

(
dh̄

dx

)(
dh̄

dy

)
,

(B20)

where

Kx ≡ K + 12g11m
2
x + 2g12m

2
y, (B21a)

Ky ≡ K + 12g11m
2
y + 2g12m

2
x, (B21b)

Kxy ≡ 4g12mxmy. (B21c)

The nonlinear terms of a background tilt were considered
and measured from simulations in the quasicrystal random
tiling context.40 It is possible, in principle, to extract an-
alytical expressions for the nonlinear terms from the exact
solutions.

Next, we consider how this modifies correlations. For
simplicity, consider the case my = 0. We make a change of
variables

x ′ ≡ γ x, y ′ ≡ γ −1y, (B22)

where

γ ≡ (Kx/Ky)1/4. (B23)

In the new coordinates, the free-energy density
is

f = 1

2
K ′

[(
dh̄′

dx ′

)2

+
(

dh̄′

dy ′

)2]
, (B24)

with an effective stiffness K ′ ≡ √
KxKy. In these new coor-

dinates, Eq. (B24) looks isotropic again and the same results
must follow for the behavior of all correlations. In particular,
the dimer and monomer correlation decay exponents α and
β depend on K ′ in the same way that they previously did on
K . In the general case that mxmy �= 0, the effective stiffness
is

K ′ ≡
√

KxKy − K2
xy. (B25)

For small W/L, i.e., small (mx,my), this reduces in light of
Eqs. (B21) to K ′ ≈ K + 96(g11 + g12)(W 2

x + W 2
y )/L2.

Hence, for large L and a winding number W , the corrections
to exponents scale the same way, δα ∼ δβ ∼ W 2/L2.

Notice that the decay exponent is the same in all spatial
directions. The way the anisotropy gets expressed in the corre-
lations with variable exponents is that, e.g., dimer correlations
do not fall off exactly as 1/rα , but rather as 1/r ′α , where r ′ ≡√

γ 2x2 + γ −2y2, and similarly for monomer pair separations.
It would be interesting to see whether the anisotropy of spin
correlations, as shown in Fig. 6, is expressed by the same
ratio γ .
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