
PHYSICAL REVIEW B 84, 174426 (2011)

Fidelity susceptibility in two-dimensional spin-orbit models
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We study the quantum phase transitions in the two-dimensional spin-orbit models in terms of fidelity
susceptibility and reduced fidelity susceptibility. An order-to-order phase transition is identified by fidelity
susceptibility in the two-dimensional Heisenberg XXZ model with Dzyaloshinsky-Moriya interaction on a
square lattice. The finite size scaling of fidelity susceptibility shows a power-law divergence at criticality,
which indicates the quantum phase transition is of second order. Two distinct types of quantum phase transitions
are witnessed by fidelity susceptibility in Kitaev-Heisenberg model on a hexagonal lattice. We exploit the
symmetry of two-dimensional quantum compass model, and obtain a simple analytic expression of reduced
fidelity susceptibility. Compared with the derivative of ground-state energy, the fidelity susceptibility is a bit
more sensitive to phase transition. The violation of power-law behavior for the scaling of reduced fidelity
susceptibility at criticality suggests that the quantum phase transition belongs to a first-order transition. We
conclude that fidelity susceptibility and reduced fidelity susceptibility show great advantage to characterize
diverse quantum phase transitions in spin-orbit models.
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I. INTRODUCTION

Spin-spin interactions have been intensively studied in
quantum magnets and Mott insulators in the last decades.1

The effect of the orbital degree of freedom has received
much attention since the discovery of a variety of physical
phenomena and a diversity of phases in transition metal oxides
(TMOs).2,3 In particular, under an octahedral environment,
the d orbital degeneracy of transition metal ions is partially
lifted, and the remaining orbital degrees of freedom can
be generally described by localized S = 1/2 pseudospins.
A typical effect induced by such a symmetry degradation
of orbital degeneracy is the presence of bond-selective
pseudospin interaction. This is because the spatial orientations
of the orbits lead to anisotropic overlaps between neighboring
ions. Consequently, the interactions among different bonds
are intrinsically frustrated. To understand the orbital degree of
freedom, the so-called quantum compass model (QCM) has
given rise to intensive research.4–15 In QCM, the pseudospin
operators are coupled in such a way as to mimic the
built-in competition between the orbital orders in different
directions.2,3 The frustration leads to macroscopic degeneracy
in the classical ground state,4 and even highly degenerate
quantum ground state.13,14 Interestingly, the two-dimensional
(2D) QCM has become a prototype to generate topologically
protected qubits.15,16

Besides, considering the spin-orbit coupling in TMOs is
inevitable and intriguing. For example, octahedra tilt may give
rise to effective Dzyaloshinsky-Moriya interaction (DMI).17

Comparing those that only possess spin-spin coupling, spin-
orbit models appear to be more intricate. The interplays
between spin and orbital degree of freedom host a variety of
different phases. For instance, the orbital exchange in a hon-
eycomb lattice induces orbital ordering18,19 and topological
order.20

In this paper, we concentrate on portraying the quan-
tum phase transitions (QPTs) in 2D spin-orbit interaction
Hamiltonians. As we know, a QPT identifies any point of
nonanalyticity in the ground-state (GS) energy of an infinite

lattice system.21 Conventionally, local order parameters are
needed to detect the nonanalyticity in the GS properties as
the system varies across the quantum critical point (QCP).
However, the knowledge of the local order parameter is not
easy to retrieve from a general many-body system, especially
for QPTs beyond the framework of the Landau-Ginzburg
symmetry breaking paradigm.20,22 Recently, quantum fidelity,
also referred to as the GS fidelity, sparked great interest among
the community to use it as a probe for the QCP.23,24 The fidelity
defines the overlap between two neighboring ground states of
a quantum Hamiltonian in the parameter space, i.e.,

F (λ,δλ) = |〈�0(λ)|�0(λ + δλ)〉|, (1)

where |�0(λ)〉 is the GS wave function of a many-body Hamil-
tonian H (λ) = H0 + λHI , λ is the external driving parameter,
and δλ is a tiny variation of the external parameter. Though
borrowed from the quantum information theory, fidelity has
been proved to be a useful and powerful tool to detect and
characterize QPTs in condensed matter physics.25 In order to
remove the artificial variation of external parameters, one of
the authors and collaborators in Ref. 26 introduced the concept
of fidelity susceptibility (FS), which is the leading-order term
of fidelity with respect to the external driving parameter,

χF ≡ lim
δλ→0

−2 ln F

δλ2
. (2)

FS elucidates the rate of change of fidelity under an infinitesi-
mal variation of the driving parameter. There exists an intrinsic
relation between the FS and the derivatives of GS energy as
follows:

χF(λ) =
∑
n�=0

|〈�n(λ)|HI |�0(λ)〉|2
[E0(λ) − En(λ)]2

, (3)

∂2E0(λ)

∂λ2
=

∑
n�=0

|〈�n(λ)|HI |�0(λ)〉|2
E0(λ) − En(λ)

. (4)

Here the eigenstates |�n(λ)〉 satisfy H (λ)|�n(λ)〉 =
En(λ)|�n(λ)〉. The apparent similarity between Eq. (3) and
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Eq. (4) arouses similar critical behavior around the critical
point.

In addition, the reduced fidelity and its susceptibility were
also suggested in the studies of QPTs.27–30 The reduced fidelity
concerns the similarity of a local region of the system with
respect to the driving parameter. Despite the locality, the
reduced fidelity susceptibility (RFS) encodes the fingerprint
of QPTs of the whole system, and is even more sensitive than
its global counterparts.31,32

For a second-order QPT, around the critical point, the
correlation length ξ diverges as (λ − λc)−ν , while the gap
in the excitation spectrum vanishes as (λ − λc)zν , where λc

is the critical point in the thermodynamic limit, ν and z are
the critical exponents. At the critical point (i.e., ξ = ∞) the
only length scale is the system size L. We can account for
the divergence at the QPT by formulating a finite-size scaling
(FSS) theory. Universal information could be decoded from the
scaling behavior of FS.33–35 FS increases as the system size
grows, and the summation in Eq. (3) contributes to an extensive
scaling of χF in the off-critical region. Therefore, FS per site
χF/N appears to be a well-defined value, where N = Ld is
the number of sites and d stands for system dimensionality.
Instead, FS exhibits stronger dependence on system size across
the critical point than in noncritical region, showing that a
singularity emerges in the summation of Eq. (3). This implies
an abrupt change in the ground state of the system at the QCP
in the thermodynamic limit. Following standard arguments in
scaling analysis,36 one obtains that FS per site scales as37–39

χF/N ∼ L2/ν−d . (5)

Due to the arbitrariness of relevance of the driving Hamiltonian
HI under the renormalization group transformation, χF/N

could be (i) superextensive if νd < 2,37 (ii) extensive if νd =
2,40,41 (iii) subextensive if νd > 2.42 From Eq. (3) we can
deduce that the ground state of the system should be gapless if
χF is superextensive, but not vice versa. For finite-size systems,
the position of a divergence peak defines a pseudocritical point
λ∗

L as the precursor of a QPT, and it approaches the critical
point λc as L → ∞. For sufficiently relevant perturbations on
large-size systems (i.e., νd < 2) the leading term in expansion
of pseudocritical point obeys such scaling behavior as43

|λ∗
L − λc| ∼ L−1/ν . (6)

Thus, the behavior of χF on finite systems in the vicinity of a
second-order QCP can be estimated as44–46

χF/N ≈ CL2/ν−df (|λ − λc|L1/ν), (7)

where f is an unknown regular scaling function, and C is a
constant independent of λ and L.

However, many important QPTs fall in the category of
first-order QPTs, in which the first derivative of GS energy
exhibits discontinuity at critical point. Different from second-
order QPTs, there is no characteristic correlation length ξ in
first-order QPTs, and in general the FSS will violate the scaling
relations of second-order QPTs.47 For a typical first-order
QPT, two competing ground states |�<(λ)〉 and |�>(λ)〉 are
degenerate at critical point λc in the thermodynamic limit,
and they become energetically favorable on one side of λc

such as |�<(λ)〉 = |�0(λ < λc)〉 and |�>(λ)〉 = |�0(λ > λc)〉

respectively. The level crossings in the thermodynamic limit
usually turn into avoided level crossings for finite sys-
tems, and degeneracy at critical point in general is lifted,
opening an energy gap 	g . In the low-energy subspaces
spanned by |�<(λc)〉 and |�>(λc)〉, the diagonal matrix el-
ements coincide 〈�<(λc)|H |�<(λc)〉 = 〈�>(λc)|H |�>(λc)〉,
but the off-diagonal matrix elements 〈�<(λc)|H |�>(λc)〉 =
[〈�>(λc)|H |�<(λc)〉]∗ induce an avoided level crossing with

	g = 2|〈�<(λc)|H |�>(λc)〉|. (8)

For a Hamiltonian with local interactions (e.g., nearest neigh-
bors),

〈�<(λc)|H |�>(λc)〉 =
∑

m,n∈S
c∗
mcnHmn, (9)

where Hmn = 〈ϕm|H |ϕn〉, |�<(λc)〉 = ∑
m∈S cm|ϕm〉,

|�>(λc)〉 = ∑
n∈S cn|ϕn〉, |ϕm〉 (|ϕn〉) form a complete set

of basis vectors in Hilbert space S, and cm (cn) are the
corresponding coefficients. The dimension of S is of DN

(D is the degree of freedom of Hamiltonian constituent,
e.g., D = 2 for spin-1/2 Hamiltonian), and cm (cn) are of
order D−N/2. The finite Hamming distance between |ϕm〉
and |ϕn〉 gives a limited number (roughly speaking, O(N ))
of nonzero Hmn. Hence, the off-diagonal matrix elements
scale exponentially 〈�<(λc)|H |�>(λc)〉 ∼ O(ND−N ), and
consequently 	g ∼ O(ND−N ).48,49 If any of the ground
states are degenerate protected by symmetries, H should
be written in the subspace of all the degenerate states,
and the dimension of the matrix will be larger than 2.
Considering Eq. (3), the exponentially closing gap gives
a dominant contribution, manifesting that the FS χF

should carry the signature of an exponential divergence at
critical point. Moreover, from another point of view, due
to their macroscopic distinguishability, the overlap between
states |〈�<(λ)|�>(λ)〉| should be exponentially small with
system size N at criticality.48 In general, FS per site scales
exponentially, i.e.,

χF /N ∼ g(N )e−μN, (10)

where μ is a size-independent constant, and g(N ) is a
polynomial function of N , which is a correction to the
exponential term.

In this work, we use FS and RFS to incarnate the critical
phenomena in 2D spin-orbit models. We show that the FS and
RFS manifest themselves as extreme points at the QCPs. In
other words, FS and RFS are quite sensitive detectors of the
QPTs in spin-orbit models. This article is organized as follows:
In Sec. II, a general Hamiltonian is given. We investigate QPTs
in the spin-orbit model on a square lattice in Sec. III. The
phase diagram and the FSS are studied through FS. Next, in
Sec. IV, we study QPTs in Kitaev-Heisenberg model on a 2D
honeycomb lattice by FS and the second derivative of the the
GS energy. Both approaches identify three distinct phases, and
FS behaves more sensitively. After that, we take advantage of
the RFS to locate the QCP of 2D compass model in Sec. V,
and show that the exponentially divergent peaks of FS and RFS
imply that the first order QPT. A brief summary is presented
in Sec. VI.
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II. GENERAL HAMILTONIAN

Motivated by a broad interest in Mott insulators, we
construct the general structure of model Hamiltonian on a
given γ bond connecting two nearest-neighbor (NN) sites i
and j,

Hγ

ij = Jγ Sγ
i S

γ

j + J �Si · �Sj + �D · (�Si × �Sj). (11)

The first term in Hamiltonian (11) describes bond-selective
interaction, where the orbital exchange constant Jγ = 4t2

γ /U

is derived from multiorbital Hubbard Hamiltonian consisting
of the local on-site repulsion U and the hopping integral
tγ . The second term corresponds to the isotropic Heisenberg
coupling, and Dzyaloshinsky-Moriya anisotropy �D in the third
term comes from the lattice distortions. The Hamiltonian (11)
extrapolates from the Heisenberg model to QCM depending on
the bond’s geometry. In this paper, we devote our study to 2D
lattices, either square or hexagonal lattice. Several real systems
motivate the investigation of these kinds of lattices, such as
SrTiO3,50 Sr2IrO4.

51–53 The flexibility of parameters induces
a rich variety of phases and various fascinating physical
phenomena.

III. FIDELITY SUSCEPTIBILITY IN THE
SPIN-ORBIT MODEL

In strong spin-orbit coupling materials, an XXZ model with
DMI was suggested,

HDM(	,D) = J
∑
〈ij〉

Sx
i Sx

j + Sy
i S

y

j + 	Sz
i S

z
j + �D · (�Si × �Sj),

(12)

where 	 is the anisotropic parameter and D is the strength
of DMI. A general boundary condition can be written as
S±

N+1 = pS±
0 , where S±

i = Sx
i ± iS

y
i , p = 0 corresponds to

open boundary condition (OBC) and p = 1 to the periodic
boundary condition (PBC). The Hamiltonian (12) was pro-
posed to describe the layered compound Sr2IrO4.

17 The spin
canting is induced by lattice distortion of corner-shared IrO6

octahedra. The DMI was introduced originally to explain
the presence of weak ferromagnetism in antiferromagnetic
(AFM) materials,54,55 such as α-Fe2O3, MnCO3, and CoCO3,
since such antisymmetric interaction could produce small spin
cantings. Recently, the influence of DMI has become very
important in elucidating many interesting properties of dif-
ferent systems (e.g., ferroelectric polarization in multiferroic
materials,56 exchange bias effects in perovskites,57 asymmetric
spin-wave dispersion in double layer Fe,58,59 and noncollinear
magnetism in FePt alloy films).60 For simplicity, we assume
the DMI fluctuation is acting on the x-y plane, and the vector
�D is imposed along the z direction (i.e., �D = D�z).

The Hamiltonian (12) reduces to the anisotropic Heisenberg
XXZ model when the rotations of IrO6 octahedra are absent
(i.e., D = 0). When 	 
 1, one-dimensional (1D) spin-1/2
XXZ chain has long range order and gapped domain-wall
excitations. On the other hand, in the XX limit (i.e., 	 = 0)
the system is equivalent to a chain of noninteracting fermionic
model, which becomes gapless in the thermodynamic limit.
The QPT takes place at the isotropic point 	c = 1, which is a
Berezinskii-Kosterlitz-Thouless (BKT) transition point. BKT

phase transition belongs to an infinite-order phase transition,
and the ground-state energy and all of its derivatives with
respect to 	 are continuous at the critical point. However,
the FS succeeds in detecting the nonanalyticities of the ground
state across BKT transition.61 For instance, the BKT transition
from gapless Tomonaga-Luttinger liquid to gapped Ising phase
in the 1D XXZ model is detected by the divergence of the
FS using the density-matrix-renormalization-group (DMRG)
technique.62 In addition, the BKT transition from spin fluid
to dimerized phase in the J1-J2 model63 and the superfluid-
insulator transition in the Bose-Hubbard model at integer
filling35 are also able to be signaled by FS.

Different from the 1D case, 2D XXZ model exhibits a
second-order QPT at the isotropic point 	c = 1 in the
thermodynamic limit, where the first excited energy levels
cross.64 For 	 
 1, the Ising term in the Hamiltonian
dominates and the ground state is an AFM phase along the
z direction. For 	 � 1, the first two terms in the Hamiltonian
dominate and the ground state is also an AFM phase, but in the
x-y plane. It is well known that long-range orders are present
in both phases.65 FS can serve as a sensitive detector of the
critical point in the 2D XXZ model on a relatively small square
lattice.34

Actually, the DMI does not change the universality class of
XXZ model. The DMI can be eliminated from the Hamiltonian
(12) by a spin axes rotation,66–68 and after rotation a unitarily
equivalent form is given by

HDM(	,D) ∼ 1

cos φ
HXXZ(	̃), (13)

where tan φ = D, 	̃ = 	 cos φ and HXXZ(	̃) =
J

∑
〈ij〉 S

x
i Sx

j + S
y
i S

y

j + 	̃Sz
i S

z
j with boundary condition

S±
N+1 = pe∓i(Nφ)S±

0 . Note that the mapping becomes
exactly equivalent only in the thermodynamic limit and for
open boundary condition. In the thermodynamic limit, the
boundary condition does not affect the critical behavior and
consequently the HDM(	,D) will have the same critical
properties as the HXXZ(	̃). Hence, QCP at 	c = 1 in HXXZ

becomes a critical line 	c = √
1 + D2 in HDM.

FS and the second derivative of GS energy of N = 20
square lattice (see Fig. 1) as a function of anisotropy 	

for D = 0 and D = 2 are demonstrated in Fig. 2. As is
sketched, both approaches display broad peaks at an identical
	. However, the peak of FS is slightly narrower than that
of second derivative of GS energy. The locations of peaks are
specified as pseudocritical points. The heights of local maxima
decrease as D increases.

Next, to check whether these extreme points can be regarded
as QCPs, we should perform FSS analysis, as is illustrated in
Fig. 3. In Figs. 3(a) and 3(b), we plot FS per site as a function
of 	 for different lattice sizes N = 10,16,18,20,and 26. It
is clearly shown that χF becomes more pronounced for
increasing N . χF is extensive in the off-critical region, while
superextensive at the pseudocritical point. From the scaling
relation Eq. (5), a linear dependence for the maximum fidelity
susceptibilities χmax

F on L2/ν is expected with effective length
L = √

N . This is confirmed by the results shown in Figs. 3(c)
and 3(d), in which we plot the logarithm of maximum fidelity
susceptibilities χmax

F at pseudocritical points versus a function
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N=10                  N=16                 N=18

  N=20               
  N=26               

FIG. 1. Two-dimensional square structures for different system
sizes N = 10,16,18,20,26.

of ln N . For large N , ln χmax
F scales linearly with ln N , and

the slope is interpreted as the inverse of critical exponent of
the correlation length 1/ν from Eq. (5). By applying linear
regression to the raw data obtained from XXZ model on
various square lattices, we derive 1/ν ≈ 2.68(6) for D = 0,
while 1/ν ≈ 2.62(8) for D = 2. The values resulting from the
measurements of D = 0 and D = 2 are consistent with each
other up to two digits. The validation of Eq. (5) implies that

FIG. 2. (Color online) The second derivative of ground-state
energy (solid line) and fidelity susceptibility (dash line) of N = 20
square lattice as a function of 	 for (a) D = 0 and (b) D = 2.

the QPT in 2D XXZ with DMI manifests itself as a clear sign
of a second-order QPT.

From Figs. 3(a) and 3(b), the positions of cusps seemingly
converge toward the critical points. However, these system
sizes seem to estimate insufficiently the critical exponents from
Eqs. (6) and (7), and the corrections to scaling relations are
not negligible. In this case, the shift of the location of the
pseudocritical point from real critical point should be replaced
with |	∗

L − 	c| ≈ c1L
−1/ν + c2L

−2/ν + · · ·, where c1 and c2

are the coefficients.43 As is shown in insets of Figs. 3(c)

FIG. 3. (Color online) Top: the fidelity susceptibility per site χF/N as a function of anisotropy parameter 	 for various size N =
10,16,18,20,26 with (a) D = 0 and (b) D = 2. Bottom: finite-size scaling analysis for the height and location of the peaks. The logarithm of
maximum fidelity susceptibilities χmax

F for (c) D = 0 and (d) D = 2, respectively, are plotted as a function of ln N . The dash lines are least
square straight line fits with 1/ν ≈ 2.68(6) for (c) D = 0 and 1/ν ≈ 2.62(8) for (d) D = 2. The insets in panels (c) and (d) show pseudocritical
points 	∗

L for various sizes N correspondingly.
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FIG. 4. (Color online) The fidelity susceptibility χF as a function
of D for 	 = 1.5 and 	 = 2.0. Inset shows the pseudocritical line
retrieved from the peaks of fidelity susceptibility for N = 20 (solid
dotted line) and the critical line Dc = √

	2 − 1 in thermodynamic
limit (dash line).

and 3(d), we notice that the data points corresponding to
the small system sizes clearly deviate from the linear fit
obtained for the points for the two largest N . As N → ∞,
the pseudocritical points 	∗

L approach the critical points
	c. The linear fits from results of N = 20 and N = 26
(see Fig. 1) yield the estimates the 	c are 1.02 and 2.47,
respectively. To get more precise critical exponents, more
elaborate schemes are needed, such as large-scale quantum
Monte Carlo simulations.37,44

To proceed, we calculate the FS on N = 20 square lattice
for different sets of parameters 	 and D. The FS as a function
of D for 	 = 1.5 and 	 = 2.0 are depicted in Fig. 4, and the
FS as a function of 	 for D = 0, 1, 2, and 3 are plotted in
Fig. 5. A boost of 	 and D suppress the FS. By retrieving
the critical points from the locations of FS peaks, we are able
to draw the corresponding phase diagrams. The pseudocritical
lines in the (D,	) plane and the (	,D) plane are shown in the

FIG. 5. (Color online) The fidelity susceptibility χF in the ground
state of the 2D 20-site XXZ model in terms of anisotropy for different
values of DMI. Inset shows the pseudocritical line by the extraction
from the maximum points of the fidelity susceptibility (solid dotted
line), and the critical line 	c = √

1 + D2 in thermodynamic limit
(dashed line).

insets of Fig. 4 and Fig. 5. We can notice that pseudocritical
line for N = 20 (solid dotted line) are qualitatively similar to
the critical line in the thermodynamic limit (dashed line).

IV. FIDELITY SUSCEPTIBILITY IN THE
2D KITAEV-HEISENBERG MODEL

Since Kitaev introduced a spin 1/2 quantum lattice model
with Abelian and non-Abelian topological phases, finding a
physical realization of Kitaev model has triggered a tremen-
dous amount of interest.69 It is proposed that in iridium
oxides A2IrO3, the strong spin-orbit coupling may lead to
the desired anisotropy of the spin interaction. The Ir4+ ions
in iridium oxides A2IrO3 can be effectively illustrated as spin
half on a honeycomb lattice, where three distinct types of
NN bonds are referred to as γ = (0◦, 120◦, 240◦) bonds.
To describe the competition between direct exchange and
superexchange mechanisms, a so-called Kitaev-Heisenberg
model was dedicated, i.e.,

HKH =
∑
〈ij〉||γ

−2αSγ
i S

γ

j + (1 − α)Si · Sj. (14)

The Hamiltonian (14) has been parameterized, which en-
compasses a few well-known models. For α = 0, it reduces
to the Heisenberg model on a hexagonal lattice, while it
becomes exactly solvable ferromagnetic Kitaev model at α =
1. Another solvable point corresponds to α = 1/2, where it is
unitarily equivalent to the ferromagnetic Heisenberg model.
The ground state of Hamiltonian (14) evolves from 2D Néel
AFM state (α = 0) to stripy antiferromagnetism (α = 1/2),
and to spin liquid (α = 1) as α increases. We perform exact
diagonalization (ED) on two geometries with N = 16 and
N = 24 (see Fig. 6) to calculate the GS energy E0 and fidelity
susceptibility χF.

The second derivative of energy density e0 ≡ −E0/N and
FS per site χF/N as a function of coupling strength α are
obtained by Lanczos calculation. As is illustrated in Fig. 7, two

FIG. 6. (Color online) Two-dimensional structures for system
sizes N = 16 and 24, which can be placed on a hexagonal lattice
with periodic boundary conditions.
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FIG. 7. (Color online) (a) The second derivative of energy density
e0 verse α for N = 16 and N = 24. (b) Fidelity susceptibility per site
χF/N as a function of α.

anomalies emerge when α increases from 0 to 1, indicating the
system undergoes two phase transitions. The characterization
of QPTs by FS is compatible with the second derivative
of energy density. We find that they play similar roles in
identifying the QPTs.63 However, the former demonstrates
more pronounced peaks than the latter (notice the y axis is of
a logarithmic scale). QPT from Néel-ordered to stripe-ordered
phase takes place at α ≈ 0.4, and this order-to-order phase
transition seems insensitive to system size N for these two
configurations. On the other hand, the second order-to-disorder
phase transition at α ≈ 0.8 appears to be sensitive to N . The
numerical calculations point out that the QPT around α = 0.4
is first order, while there is no consensus on the character
of the QPT around α = 0.8.70,71 However, it is difficult to
carry on ED on larger clusters for the hexagonal geometry
and substantiate the scaling behavior of 2D Kitaev-Heisenberg
model unless sophisticated techniques are used.37,44

V. REDUCED FIDELITY SUSCEPTIBILITY IN THE 2D
COMPASS MODEL

In recent years, the 2D AFM QCM has attracted consid-
erable attention due to its interdisciplinary character. On one
hand, it plays an important role in describing orbital interac-
tions in TMOs. On the other hand, 2D QCM is equivalent
to Xu-Moore model72 and toric code model in a transverse
field,73 which could possibly be used to generate protected
qubits realized by Josephson-coupled p ± ip superconducting
arrays.15

QCM is defined on a N = L × L square lattice with PBC
by the Hamiltonian

HQCM = Jx

∑
〈i,j〉||ex

Sx
i Sx

j + Jz

∑
〈i,j〉||ez

Sz
i S

z
j , (15)

where ex,ez are unit vectors along the x and z directions, and
Jx (Jz) is the coupling in the x (z) direction. Sα

i (α = x,y,z) are
the pseudospin operators of lattice site i obeying [Sα

i ,S
β

j ] =
iεαβγ S

γ
i δi,j. There exists a first-order phase transition at the

self-dual point (i.e., Jx = Jz) and it is widely believed that the
phase transition belongs to first order.7–9,73

In the case of L being even, this model is equivalent to the
ferromagnetic QCM by rotating the pseudospin operators at
one sublattice by an angle π about Ŝy axis. The Hamiltonian
(15) enjoys such a commutation relation with the parity
operators P̂j and Q̂i , which are defined as

P̂j =
L∏

i=1

(
2Ŝz

i,j

) =
L∏

i=1

σ̂ z
i,j , Q̂i =

L∏
j=1

(
2Ŝx

i,j

) =
L∏

j=1

σ̂ x
i,j ,

(16)

where indices i and j are the x and z component of lattice
site i. However, column parity operator P̂j does not commute
but anticommutes with row parity operator Q̂i . In such
circumstance, the Hilbert space can then be decomposed into
subspace V ({pj }), where pj is the eigenvalue of P̂j and is
specified in each subspace. Since P̂ 2

j = 1, pj can be either 1
or −1. The lowest energy of the Hamiltonian in the subspace
V ({pj }) is nondegenerate. In Ref. 74, the authors unraveled the
hidden dimer order therein. The symmetries in these systems
induce large degeneracies in their energy spectra, and make
their numerical simulation tricky. Recently, the ground state of
HQCM is proven to reside in the most homogeneous subspaces
V ({pj = 1}) and V ({pj = −1}), in other words, they are
twofold degenerate.75

At this stage, a single-site pseudospin-flipping interaction
will change the parity of the chain, contrary to the flipping
terms in H . For example, Ŝx

i or Ŝ
y
i acting on one chain along

x direction will change the parity of the chain. For two-point
correlation functions between sites i and j separated by n sites,
it is not difficult to yield

ex
nz = (−1)n

〈
�0(�)

∣∣Ŝx
i Ŝx

i+nẑ

∣∣�0(�)
〉 = 0. (17)

Similarly, e
y
nz = 0, e

y
nx = 0, ez

nx = 0. The only correlation
functions surviving are Cnx ≡ 4ex

nx and Cnz ≡ 4ez
nz, as are

shown in Fig. 8 and inset of Fig. 11. As Jx increases, Cz

decreases while Cx increases accordingly. They become equal
at Jx = Jz.

FIG. 8. (Color online) The nearest-neighbor correlation functions
Cx and Cz with respect to Jx/Jz for N = 16 square lattice. Two curves
cross at Jx/Jz = 1.
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FIG. 9. (Color online) The second derivative of ground-state
energy (solid line) and reduced fidelity susceptibility (dash line) of
N = 18 square lattice as a function of Jx/Jz.

With these properties of the ground state |�0〉 of the
2D QCM, a simple form for the two-site density matrix is
obtained,

ρ(i,j) = Tr′(|�0〉〈�0|) = 1

4

3∑
α,α′=0

〈
σα

i σα′
j

〉
σα

i σα′
j , (18)

in which the prime means tracing over all the other pseudospin
degrees of freedom except the two sites i and j. σα are Pauli
matrices σx , σy and σ z for α = 1 − 3, and 2 × 2 unit matrix
for α = 0. If the two pseudospins are linked by an x-type bond,

we have

ρx(i,j) = Tr′(|�0〉〈�0|) = 4
〈
Sx

i Sx
j

〉
Sx

i Sx
j + 1

4IiIj, (19)

in which Ii and Ij are the 2 × 2 unit matrices. If translational
invariance is preserved in the ground state |�0〉, the reduced
density matrix can be simplified as

ρx(i,j) = −CxS
x
i Sx

j + 1
4IiIj. (20)

Similarly, if the two sites i and j are linked by z-type bond, we
have

ρz(i,j) = −CzS
z
i S

z
j + 1

4IiIj. (21)

In addition, the NN two-point correlation functions Cα can
be calculated using the Feynman-Hellmann theorem

Cα = − 4

N

∂E0

∂Jα

, (22)

where α = x,z means x-type and z-type bond, respectively.
The reduced fidelity Fr is defined as the overlap between

ρα(i,j) and ρ ′
α(i,j), i.e.

Fr(ρα(i,j),ρ ′
α(i,j)) = Tr

√
ρ

1/2
α ρ ′

αρ
1/2
α . (23)

The prime means a different reduced density matrix induced
by the tiny changes of driving parameters in the Hamiltonian.
By Eqs. (20) and (21), it is obvious that ρα commutes with ρ ′

α ,
and we can easily evaluate the reduced fidelity

Fr(ρα(i,j),ρ ′
α(i,j))

= 1

2
(
√

(1 + Cα)(1 + C ′
α) + √

(1 − Cα)(1 − C ′
α)). (24)

FIG. 10. (Color online) (a) The fidelity susceptibility and (b) the reduced fidelity susceptibility of x bond and (c) z bond in the ground
state of the 2D compass model on a square lattice as a function of Jx/Jz. The curves correspond to different lattice sizes N = 8, 16, and
18, respectively. (d) The log-linear plot of maximum fidelity susceptibility and maximum reduced fidelity susceptibility against the system
size N .
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FIG. 11. (Color online) The reduced fidelity susceptibility of two
next-nearest-neighbor sites for N = 18 square lattice with respect to
Jx/Jz. Inset shows the next-nearest-neighbor correlation functions
verse Jx/Jz.

The two-site RFS χr could also be obtained
straightforwardly,

χαβ
r = lim

δJβ→0

−2 ln Fr

(δJβ)2
= (∂Jβ

Cα)2

4(1 − C2
α)

, (25)

inwhich Jβ (β = x,z) is the driving parameter for the
QPT. According to Eqs. (22) and (25), we observe that
the numerator of χαα

r is proportional to the square of the
second derivative of GS energy and the denominator is finite
in unpolarized state. The second power in the numerator
indicates that the two-site RFS is more effective than the
second derivative of the GS energy in measuring QPTs.76 We
compare the RFS of two NN sites with the second derivative
of GS energy of N = 18 square lattice (see Fig. 1) displayed
in Fig. 9, and find that they indeed present cusp-shaped peaks,
but the former is more sensitive to phase transition than the
latter. The pronounced maxima of peaks arise at Jx/Jz = 1.

Figure 10 unveils the results from ED on various 2D
square lattices with PBC. As the coupling Jx changes, both
FS and RFS of two NN sites exhibit peaks around Jx =
Jz. With increasing system size, the peaks of χF (or χr)
become more pronounced and pseudocritical points seemingly
converge toward the real critical point Jx = Jz quickly. We
plot the maximum fidelity χmax

F and maximum reduced fidelity
susceptibility χmax

r against the system size N in Fig. 10(d). The
scaling of the peaks reveals approximately exponential diver-
gences at criticality instead of power-law divergences, which
indicates the occurrence of non-second-order phase transition.

As is argued in Eqs. (8)–(10), the approximately exponen-
tial divergence of FS and RFS hints at an exponentially small
gap at the critical point and thus a first-order phase transition.
For two next-nearest-neighbor (NNN) sites, we calculate the
RFS according to Eq. (25). We observe a similar behavior of

the RFS with respect to Jx/Jz, and find that the RFS of NNN
pair is a bit larger than the RFS of NN bond. This is illustrated
in Fig. 11. In a word, the two-site RFS can serve as a signature
for the QPTs in the 2D compass model.

VI. CONCLUSION

Motivated by recent theoretical and experimental work on
orbital degree of freedom in Mott insulators, we have studied
the QPTs in various 2D spin-orbit models using FS and RFS.
The numerical analysis is performed on 2D clusters with
the Lanczos algorithm. The spin-orbit model hosts plentiful
phases, including phase transitions within and beyond the
framework of Landau-Ginzburg paradigm. For the 2D XXZ
model with DMI, with increasing driving parameters, the
system undergoes a second-order phase transition from the
AFM state along the x-y plane to the AFM state along z

direction. We compare the FS with the second derivative
of GS energy, and find both of them exhibit similar peaks.
The FSS demonstrates that FS per site should diverge in the
thermodynamic limit at pseudocritical point, and the locations
of extreme points approach QCPs accordingly. The power-law
divergence of FS at criticality indicates the quantum phase
transition is of second order and the critical exponent ν is
obtained. Analogously, as the exchange coupling changes, the
ground state of 2D Kitaev-Heisenberg model evolves from
Néel AFM state to stripy AFM state, and to Kitaev spin liquid.
The QCPs could be signaled by the peaks of both FS and
second derivative of GS energy. The nonlocal symmetries
in 2D AFM QCM guarantee that the RFS can be written in
an analytical form as a function of the correlation functions.
Peaks of the FS and the two-site RFS take place around Jx =
Jz. The quasicritical point develops into critical point quickly
with increasing the system size. Scaling of the peaks reveals
an exponential divergence at criticality, which suggests that
a first-order phase transition happens. In conclusion, the FS
and RFS are effective tools in detecting diverse QPTs in 2D
spin-orbit models, and their scaling behaviors may hint the
orders of phase transitions.
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48R. Schützhold, J. Low Temp. Phys. 153, 228 (2008).
49T. Jörg, F. Krzakala, J. Kurchan, A. C. Maggs, and J. Pujos,

Europhys. Lett. 89, 40004 (2010).
50O. F. Schirmer, A. Forster, H. Hesse, M. Wohleeke, and S. Kapphan,

J. Phys. C 17, 1321 (1984).
51G. Cao, J. Bolivar, S. McCall, J. E. Crow, and R. P. Guertin, Phys.

Rev. B 57, R11039 (1998).
52S. J. Moon, M. W. Kim, K. W. Kim, Y. S. Lee, J.-Y. Kim, J.-H.

Park, B. J. Kim, S.-J. Oh, S. Nakatsuji, Y. Maeno, I. Nagai, S. I.
Ikeda, G. Cao, and T. W. Noh, Phys. Rev. B 74, 113104 (2006).

53B. J. Kim, Hosub Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem,
Jaejun Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj,
G. Cao, and E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008).

54I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
55T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
56I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
57Shuai Dong, Kunihiko Yamauchi, Seiji Yunoki, Rong Yu, Shuhua

Liang, Adriana Moreo, J.-M. Liu, Silvia Picozzi, and Elbio Dagotto,
Phys. Rev. Lett. 103, 127201 (2009).

58Kh. Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr, W. X.
Tang, and J. Kirschner, Phys. Rev. Lett. 104, 137203 (2010).

59Thomas Michael and Steffen Trimper, Phys. Rev. B 82, 052401
(2010).

60J. Honolka, T. Y. Lee, K. Kuhnke, A. Enders, R. Skomski,
S. Bornemann, S. Mankovsky, J. Minár, J. Staunton, H. Ebert,
M. Hessler, K. Fauth, G. Schütz, A. Buchsbaum, M. Schmid,
P. Varga, and K. Kern, Phys. Rev. Lett. 102, 067207 (2009).

61M. F. Yang, Phys. Rev. B 76, 180403(R) (2007).
62Bo Wang, Mang Feng, and Ze-Qian Chen, Phys. Rev. A 81, 064301

(2010).
63S. Chen, L. Wang, Y. Hao, and Y. Wang, Phys. Rev. A 77, 032111

(2008).
64G. S. Tian and H. Q. Lin, Phys. Rev. B 67, 245105 (2003).
65T. Kennedy, E. H. Lieb, and B. S. Shastry, Phys. Rev. Lett. 61, 2582

(1988).
66J. H. H. Perk and H. W. Capel, Phys. Lett. A 58, 115 (1976).
67D. N. Aristov and S. V. Maleyev, Phys. Rev. B 62, 751(R) (2000).
68F. C. Alcaraz and W. F. Wreszinski, J. Stat. Phys. 58, 45 (1990).
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Dusuel, Phys. Rev. B 80, 081104(R) (2009).

74Wojciech Brzezicki and Andrzej M. Oleś, Phys. Rev. B 82,
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