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Magnon spectrum of transition-metal oxides: Calculations including long-range magnetic
interactions using the LSDA + U method

F. Essenberger,1 S. Sharma,1 J. K. Dewhurst,1 C. Bersier,1 F. Cricchio,2 L. Nordström,2 and E. K. U. Gross1

1Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, DE-06120 Halle, Germany
2Department of Physics, Uppsala University, P.O.Box 530, SE-75121 Uppsala, Sweden

(Received 9 August 2011; published 18 November 2011)

We present LSDA + U calculations of the magnon frequencies of transition-metal monoxides (TMOs) using
the frozen magnon approach. We systematically vary U to investigate the effect of the on-site Coulomb repulsion
on various properties such as the gap, the magnetic moment, and the magnon energies. For all TMOs, a similar
behavior of the gap and moment with respect to U is found: the gaps start to increase linear and saturate for large
U . The moment is enhanced by ≈0.4 μB towards the pure spin limit. Magnon energies are strongly suppressed
on increasing the on-site Coulomb repulsion. The reason for this behavior is related to charge localization.
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I. INTRODUCTION

Among the strongly correlated materials, TMOs are partic-
ularly interesting as these materials are prototypical Mott in-
sulators (with strongly localized d electrons). Experimentally,
TMOs are known to be antiferromagnetic (AFM) insulators
with a gap ranging from 2.6 (FeO) to 4.3 eV (NiO). On
going above the Néel temperature, the long-range AFM order
is lost but the TMOs still remain insulating in nature with
very little change in the value of the gap. This indicates that
the occurrence of the gap in TMOs is independent of the
long-range spin order. The explanation why TMOs are insu-
lating was formulated by Mott.1 He showed that the electron
hopping can be entirely dominated by a large on-site repulsion
U , which gives rise to lower and upper Hubbard bands
separated by a gap (of the order of U ). Conventional density
functional theory (DFT) calculations, using local/semilocal
exchange-correlation functionals, cannot capture such strong
Mott correlations;2 Mott insulators when treated with these
types of exchange-correlation functionals and without any
long-range magnetic order, show a metallic ground state. On
explicit incorporation of AFM order, a small Slater-like gap
(up to 90% smaller than experiments) opens in some of the
TMOs (NiO and FeO) while others remain metallic.3

Over the years, many ideas were developed to treat
these strongly correlated systems. Among them, most promi-
nent within the frame work of DFT are self-interaction
corrected local spin density approximation (LSDA),4,5 hy-
brid functionals,6–8 and LSDA + U . Out of these methods,
LSDA + U is particularly useful as it is computationally less
demanding and hence can easily be used for larger systems
of modern-day interest. Furthermore, with LSDA + U it is
possible to systematically increase the strength of the on-site
repulsion in order to gain insight into the effect of Coulomb
correlations. The first very simple version of LSDA + U was
not rotationally invariant9 and when applied to the TMOs,
was able to solve the gap problem of pure LSDA. As a
consequence LSDA + U became the method of choice for
treating correlated materials.10–12 The most general method
containing two parameters (U the averaged screened Coulomb
interaction and J the exchange interaction) was presented
by Lichtenstein et al.,13 rotationally averaged approaches14–16

with only one parameter are also widely used. However, for
small energy differences (μeV), the second parameter, J, may
become important.17

Magnons are quantized, low-energy collective magnetic
excitations and play an important role in the phase-diagram
of high-Tc superconductors.18,19 In fact, in the case of the
cuprates, a simple empirical relation between the magnetic
coupling constant and the critical temperature is found.20–22

The Mott physics in these cuprates is similar to that in the
TMOs,9,23 but the chemical unit cells are much smaller for
the latter. Hence, the TMOs can act as benchmark systems
for undoped cuprates. With this in mind, we combine, in
the present work, the LSDA + U method with the frozen
magnon formalism to calculate the magnon spectrum of
TMOs.

Many results have been published, studying the TMOs
(especially NiO), with the LSDA + U method.9,12,14,15,24–27

These works mainly revolve around the calculation of ground-
state properties like gaps, moments, and density of states
(DOS). Magnon spectra of various TMOs have also been
calculated.5,28–30 However, all these calculations have been
performed using the so-called J1J2 model in real space
and as a result only the nearest- and next-nearest-neighbor
magnetic interactions are taken into account. In this work,
we systematically study the magnon spectra for the TMOs.
With calculations performed using the Fourier transformed
magnetic interactions; the upshot of which is that magnetic
interactions with an infinite number of neighbors are accounted
for. As in previous magnon calculations,5,28,29 the present
work also uses a frozen magnon approach, but at each
point in the Brillouin zone (BZ), a fully self-consistent
calculation is performed to accurately determine the total
energies. Furthermore, a detailed investigation of the effect
of Coulomb correlations on magnon energies as well as
ground-state properties, like gaps and moments, is performed
by systematically changing the value of U .

The paper is organized as follows: Sec. II contains the
theoretical background for magnon calculations, a brief in-
troduction to LSDA + U method is given and the general
equation for the magnon energies (for any FM or AFM ground
state) is derived. In Sec. III, the computational details are
presented, followed by the results in Sec. IV.
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II. THEORETICAL BACKGROUND

A. Formalism for magnons

1. Real-space formalism

There are two main ways of calculating magnons within the
framework of DFT. The first one is the dynamical susceptibility
method in which a spiral external field is applied to the
system and the induced magnetic moment is calculated using
linear response theory.30–32 The second is based on the frozen
magnon method;33 in this approach, the magnetic interactions
are mapped to a Heisenberg Hamiltonian of the form (atomic
units are used throughout)

Ĥ (t) = −1

2

∑
i �=j

Jij M̂i(t) · M̂j (t), (1)

where the sum runs over all atoms, i, with on-site moment
M̂i(t), defined as

M̂i(t) = −
2∑

α,β=1

∫
Vi

d3r �̂†
α (r,t) �σαβ�̂β (r,t) , (2)

where Vi is a volume enclosing the atom i, �σ are the Pauli
matrices and �̂†

α(r,t) are the the spinor-field operators in the
Heisenberg picture. Jij in Eq. (1) are the coupling constants34

between two magnetic atoms located at Ri and Rj . These
coupling constants are real and symmetric (Jij = Jji). Since
we are dealing with periodic systems, the Jij are also invariant
with respect to lattice-vector translations.

To study the magnetic modes of a system, the following
equation of motion needs to be solved:〈

dM̂j (t)

dt

〉
=

∑
i(�=j )

Jij 〈M̂j (t) × M̂i(t)〉. (3)

To solve this equation, certain approximations are made. The
first is a type of mean-field approximation:

〈M̂j (t) × M̂i(t)〉 ≈ 〈M̂j (t)〉 × 〈M̂i(t)〉 (4)

= Mi(t) × Mj (t).

The approximation is valid for systems where the correlation
hole of electrons on different lattice sites is small.33 The
second approximation is a restriction on the type of spin
waves considered: (1) the angle θj that the on-site moment
makes with the z axis is very small and time independent
[θj (t) = θ0

j or θj (t) = θ0
j + π and θ0

j → 0], (2) the magnitude
Mi of the on-site magnetic moment is similarly assumed to be
time independent, and (3) the azimuthal angle has the form

φ
q
i (t) = q · Ri + ωqt, (5)

with q being the wavelength and ωq the frequency of the spin
wave. With these assumptions the moment becomes

Mq
i (t) = Mi

⎛
⎜⎝ cos φ

q
i (t) sin θi

sin φ
q
i (t) sin θi

cos θi

⎞
⎟⎠ , (6)

as schematically illustrated in Fig. 1. The considered type of
spin wave represents low-lying (small θ ), collective (extended
over the whole crystal) excitations of the ordered magnetic

FIG. 1. AFM ground state (top row) and symmetry of the spin
excitation (2nd and 3rd rows). The volume Vi in Eq. (2) for which
the on-site moment is calculated is indicated by the white sphere.

ground state, and the magnons are defined as the quantized
modes of these excitations.

Eqs. (4) and (6) together lead to the equations of motion for
φ

q
i (t) and θi :

ωq sin θj =
∑
i(�=j ),

JijMi[(sin θj cos θi)

− cos θj sin θi cos(q · Rj − q · Ri)] (7)∑
i(�=j ),

JijMi sin θi sin(q · Rj − q · Ri) = 0. (8)

Expanding Eq. (7) up to first order in θ0
j leads to

θ0
j ωq =

∑
i(�=j ),

JijMi

{
θ0
j − θ0

i AjAiRe[eiq·(Rj −Ri )]
}
, (9)

where the prefactor Ai is defined as

Ai :=
{

1 if θi ≈ 0,

−1 if θi ≈ π.
(10)

For a FM, the prefactor is always +1 and for an AFM it is
alternatingly +1 and −1. In materials where only the nearest-
and next-nearest-neighbor magnetic coupling is important,
Eq. (9) can be solved to calculate the magnon frequencies.5

2. Inverse space formalism

The equations of motion can be further simplified by
transforming to a normal-mode coordinate system. Owing to
the underlying periodicity of the magnetic ground state, the
normal modes are infinite-ranged plane-wave fluctuations with
wave vector q. To describe the periodicity, it is convenient to
label atomic positions with a double index, one Greek letter
labeling the atomic position inside the unit cell and the second
defining the unit cell itself [shown schematically in Fig. (2)]:

Rj = Rn+μ = Tn + �τμ. (11)

The magnitude of the moment Mj and the angle θj are the
same in every unit cell, hence

Mj = Mn+μ = Mμ and θj = θn+μ = θμ. (12)

The periodicity of φ
q
i (t) in Eq. (5) is given by the spin-spiral

vector q, which fulfills the relation

φ
q
j (t) = φ

q
n+μ(t) = q · Rn+μ + ωt. (13)
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FIG. 2. (Color online) Example of the double index notation,
where we have two magnetic atoms (located at �τ1 and �τ2) per unit cell
(dashed hexagon).

By inserting Eqs. (13) and (12) in Eq. (6), we obtain the
moment adapted to the symmetry shown in Fig. (1):

Mq
nμ(t) = Mμ

⎛
⎜⎝ cos(q · Rn+μ + ωt) sin θμ

sin(q · Rn+μ + ωt) sin θμ

cos θμ

⎞
⎟⎠ . (14)

Thus Eq. (9) for the magnon modes transforms to

θ0
μωq =

∑
ν

∑
n

Jν+nμMν+n(1 − δ0nδμν)

× [
θ0
μ − θ0

ν+nAμAν+nRe(e−iq(Rn+ν−Rμ))
]

=
∑

ν

∑
n

Jμν+nMν(1 − δ0nδμν)

× [
θ0
μ − θ0

ν AμAνRe(e−iq(Rn+ν−Rμ))
]
, (15)

where the second step employs Eq. (12). The sum over n

is merely the Fourier transform of the real-space coupling
constants

J q
μν := −

∑
n

(1 − δ0nδμν)Jμ,ν+ne−iq(Rn+ν−Rμ). (16)

Symmetry between the real-space coupling constants leads to
the following relations:

J q
μν = J−q

νμ , Re
[
J q

μν

] = Re
[
J q

νμ

]
, (17)

Im
[
J q

μν

] = −Im
[
J q

νμ

]
. (18)

In terms of the Fourier transformed coupling constants, the
equation of motion then becomes

θ0
μω =

∑
ν

Mν

(
AμAνRe

[
J q

μν

] − δμν

∑
κ

Mκ

Mμ

J 0
κμ

)
θ0
ν , (19)

√
Mμθ0

μω =
∑

ν

√
MμMνRe

[
J̃ q

μν

]√
Mνθ

0
ν (20)

⇒ 0 = det
(
δμνωq − √

MμMνRe
[
J̃ q

μν

])
. (21)

The magnon energies are thus the eigenvalues of the matrix√
MμMνRe[J̃ q

μν] with

J̃ q
μν := AμAνJ

q
μν − δμν

∑
κ

Mκ

Mμ

J 0
κμ. (22)

Note that this result can be applied to FM or AFM ground
states, as the prefactor Aμ in the definition of the J̃

q
μν is +1 for

FM and alternatingly +1 and −1 for AFM.

3. Magnon frequencies from DFT ground-state calculations

In order to determine J̃
q
μν from DFT ground-state calcula-

tions, we start with writing the total energy per unit cell as

Eq = ENM
0 − 1

2N

∑
i �=j

Jij Mq
i (0) · Mq

j (0), (23)

where N is the total number of unit cells in the system and ENM
0

is the energy when the system is treated without magnetism.
With Eq. (16) and the specific form of the moment [see
Eq. (14)] the total energy in Eq. (23) reads

Eq = ENM
0 + 1

2

unit cell∑
μν

MμMν

× (
J 0

μν cos θμ cos θν + sin θμ sin θνRe
[
J q

μν

])
. (24)

For practical calculations, a spin spiral ansatz for the Kohn-

Sham (KS) orbitals of the form ϕkj (r,q) = (
ukj,1(r)ei(k− q

2 )·r

ukj,2(r)ei(k+ q
2 )·r )

is used to reproduce the moment in Eq. (14). Expanding sin θμ

up to second order in the angle gives

Eq = 1

2

∑
μν

MμMν

{
J 0

μν

[
1 −

(
θ0
μ

)2

2
−

(
θ0
ν

)2

2

]

+AμAνRe
[
J q

μν

]
θ0
μθ0

ν

}
+ ENM

0 . (25)

The second derivative of this energy with respect to the angle
θ0
μ leads to the needed coupling constant and the resulting

equation reads

Re
[
J̃ q

μν

] = 1

MμMν

∂2Eq
({

θ0
μ

})
∂θ0

μ∂θ0
ν

∣∣∣∣∣
{θ0

μ}=0

. (26)

This provides a procedure to calculate magnon energies
using DFT ground-state calculations: first the energy surfaces,
Eq({θ0

μ}), are determined by fully self-consistent ground-
state calculations, then the second derivative of these energy
surfaces is calculated to get the matrix elements Re[J̃ q

μν], and
finally, the diagonalization of the matrix

√
MμMνRe[J̃ q

μν], is
performed to obtain the magnon energies. The computationally
most demanding part of this procedure is the calculation of the
energy surface.

B. Magnons in the TMOs

To simplify the calculation of the energy surface, one
can exploit the symmetry of the system under investigation.
TMOs have two magnetic atoms per unit cell with equal (in
magnitude) on-site moments and an AFM ordering which
implies that θ1 ≈ 0 and θ2 ≈ π . Hence Eq. (21) for the magnon
modes simply becomes√(

ωq − MRe
[
J̃

q
11

])(
ωq − MRe

[
J̃

q
22

]) = ±MRe
[
J̃

q
12

]
. (27)
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Due to the symmetry of the crystal (see Fig. 2) and the
transformation defined in Eq. (16), the following symmetry
relations can be obtained:

J
q+b3
12 = −A1A2

∑
k

J1,2+ke−i(q+b3)( �τ2−Rk−�τ1) = −J
q
12 (28)

J q+b3
μμ = J q

μμ. (29)

These symmetry relations and Eq. (27), then lead to
±Re[J̃ q

12] = ∓Re[J̃ q
12] = 0. Thus the two magnon modes

given in Eq. (27) are

ωq1 = MRe
[
J̃

q
11

]
and ωq2 = MRe

[
J̃

q
22

]
. (30)

The symmetry of the problem thus reduces the number
of needed matrix elements in Eq. (21) from four to two.
It is further possible to lower the computational cost by
determining the magnon energies without calculating the
derivative of the full energy surface as implied by Eq. (26).
This can be achieved by exploiting the symmetry relation
J

q
μν = δμνJ

q
μμ that leads to the following simplification of

Eq. (25):

Eq = ENM
0 + M2

2

2∑
μ=1

{
J 0

μμ

[
1 − (

θ0
μ

)2]
Re

(
J q

μμ

)(
θ0
μ

)2}
(31)

= ENM
0 + M2

2

2∑
μ=1

[
J 0

μμ + Re
(
J̃ q

μμ

)(
θ0
μ

)2]
. (32)

In this equation, the first term is the nonmagnetic energy, the
second term is the magnetization energy (EAFM

0 − ENM
0 ), and

the last term is the energy contribution from the spin spiral.
Since the two magnetic atoms are equivalent [see Fig. 3],
Eq. (32) can be further rewritten as

2
(
Eq − EAFM

0

)
M2

= Re
(
J̃

q
11

)[(
θ0

1

)2 + (
θ0

2

)2]
. (33)

FIG. 3. (Color online) AFM structure of the TMOs; the red balls
are oxygen and the large blue ones are the TM atoms. The yellow
arrows indicate the localized magnetic moments.
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θ1 and θ2 for NiO. The energies have been calculated with LSDA using
q = b3/2.

To solve Eq. (33), one can set

θ1 = θ0
1 = θ and θ2 − π = θ0

2 = θ.

Inserting this in Eq. (33) and using Eq. (30) leads to the final
expression for magnon frequencies:

ωq =
[
Eq(θ,π + θ ) − EAFM

0

]
Mθ2

. (34)

For practical calculations, one still needs to choose a value for
the angle θ . This choice is not easy since, in principle, this angle
needs to be infinitesimal. However, moderately large values of
θ can be used. In Fig. 4, the energy surface Eq − EAFM

0 as a
function of the angles θ1 and θ2 is shown. Good agreement
between the analytic solution [see Eq. (33)] and the calculated
values show that Eq. (34) is valid up to an angle of ∼15◦.

C. The Néel Temperature

The Néel temperature TN is the temperature where the long-
range AFM order is lost and the system becomes paramagnetic
(PM). The thermal average (depicted with 〈〉T ) of the on-site
moment within mean field approximation (MFA) is

〈Mν,〉T = Mν coth

(
AνMνB

eff
ν

kBT

)
− 1

βBeff
ν

, (35)

where the effective magnetic field is defined as

Beff
μ :=

unit cell∑
ν

AνJ
0
μν〈Mν〉T . (36)

Close to the critical temperature the effective field vanishes
and coth (x) can be expanded and the lowest order term gives

det

[
T δμν − AμAνM

2
μJ 0

μν

3kB

]
= 0, (37)

where the smallest eigenvalue of T gives the Néel temperature.
In the case of the TMOs, we only have diagonal terms and J 0

11 =
J 0

22, hence the solution simplifies to the well-known expression

kBT MFA
N = M2J 0

11

3
, (38)
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where the thermal energy required to destroy the long-range
AFM order depends only on J 0

11. The J 0
11 can be obtained by

integrating Eq. (22) over the Brillouin zone (BZ):∫
BZ

d3q J̃
q
11 =

∫
BZ

d3q
∑
n�=0

J1,1+n(1 − e−iq·Tn )

= VBZJ 0
11 −

∑
n�=0

J1,1+n

∫
BZ

d3qe−iq·Tn︸ ︷︷ ︸
=0 because Tn �=0

⇒ J 0
11 = 1

VBZ

∫
BZ

d3q J̃
q
11 = 1

VBZM

∫
BZ

d3q ωq.

Finally, the expression for the TN in MFA becomes (using a
discreet set of q points)

kBT MFA
N = M

3

⎡
⎣ 1

N

BZ∑
q=0

ωq

⎤
⎦ , (39)

where N is the number of calculated magnon energies. Another
way of calculating the Néel temperature is by using the random
phase approximation (RPA),35

kBT RPA
N = MN

3

⎡
⎣ BZ∑

q �=0

1

ωq

⎤
⎦−1

. (40)

Note, that the only difference between Eqs. (39) and (40) is
the kind of average performed. In the harmonic average used
for the RPA, small values have a strong weight, and therefore
the statement

T RPA
N < T MFA

N

can be shown to be true.36

III. COMPUTATIONAL DETAILS

All calculations are performed using the state-of-the-art
full-potential linearized augmented plane-wave (FPLAPW)
method,37 as implemented within the ELK code.38 To obtain
the Pauli spinor states, the Hamiltonian containing only the
scalar potential is diagonalized in the LAPW basis: this is the
first-variational step. The scalar states thus obtained are then
used as a basis to set up a second-variational Hamiltonian with
spinor degrees of freedom.37 This is more efficient than simply
using spinor LAPW functions, but care must be taken to ensure
that there is a sufficient number of first-variational eigenstates
for convergence of the second-variational problem.

For the lattice constants, we use the experimental
values39 and neglect the small rhombohedral or tetragonal
distortions.40,41 We have used a total of 330 k points in
the irreducible BZ and 100 states per k point. This ensures
convergence of the second-variational step. The potential and
density are expanded with a plane-wave cutoff of |G| = 14/a0,
additionally Rmin × |G + k| is limited to 8.5, where Rmin is the
smallest muffin-tin (MT) radius in the system. The MT radii in
a.u. are NiO = (2.024; 1.725), CoO = (2.026; 1.767), FeO =
(2.078; 1.791), and MnO = (2.137; 1.852) for the transition
metal and oxygen, respectively. The maximum l for the
expansion of the wave function inside the MT is eight and
a smearing width of 1 mHa is used.

Calculations are performed using the GGA +U and
LSDA +U functional within DFT. For the Hubbard term in
Eq. (A1), we used the most general version, which contains
two independent parameters U and J .13 Unless otherwise
mentioned, we always use the fully localized limit (FLL) for
the double-counting term.14 For the LSDA functional, we used
the Perdew-Wang parametrization42 and for GGA, the Perdew,
Burke, and Ernzerhof43 functional is used.

For the magnon calculation, the moments have to make a
small angle with the z axis and this is achieved by applying
a small magnetic field in the MT sphere. The fields have a
magnitude of less than 10−3 a.u. and are used to fix only the
direction of the moment, the magnitude, on the other hand, is
fully self-consistently obtained. For the present calculations,
we use an angle of θ = 15◦, which is a reasonable choice [see
Fig. 4]. For calculating the critical temperatures, a q grid of
3 × 3 × 2 points is used.

IV. RESULTS

A. Gap and moment

There are several ways of estimating the value of U ;
the original idea was to choose the value of U based on
constrained LSDA calculations.9 Later, another scheme based
on the linear response was proposed.16 These two methods
keep the LSDA + U scheme ab initio in nature. However,
to reduce the computational cost, in many calculations, the
value of U has been chosen to reproduce one of the experi-
mental observables like gap, moment,12,44,45 density of states
(DOS),6,15,24 etc. As a consequence of this, widely different
values of U are used for the same material; for example, in the
case of NiO, the value of the on-site repulsion ranges from 4.6
to 8 eV depending upon the method.9,16 In order to gain insight
into how the choice of U affects the ground-state properties of
the TMOs, we analyze in this section, the behavior of the gap
and the on-site magnetic moment as a function of U . These
ground-state properties, especially the on-site moment, are
important for calculating the magnon spectrum of the system
[see Eq. (30)], determination of which is one of the main aims
of this work.

The gaps for NiO, CoO, FeO, and MnO as functions of
U obtained using LSDA + U and GGA + U are shown in
Fig. 5. At this point, it is important to mention that, unlike
for other TMOs, FeO has a metallic ground state even when
treated with LSDA + U . In order to obtain a gap for FeO, an
explicit symmetry breaking by inclusion of an L · S term in
the Hamiltonian is required.

For small (0–4 eV) and intermediate (4–6 eV) values of U

the gap increases linearly. This behavior can be understood by
looking at Eq. (A17). Occupied d states are shifted down in
energy whereas d states above the Fermi energy are shifted
up. The shift is proportional to U so the gap starts to increase
linearly. These results are similar to the previous results of
Petukhov et al.14 For large values of U (6–12eV), the d states
are shifted beyond states with mainly oxygen p character.
Since these states are only weakly affected by the LSDA + U

Hamiltonian (see discussion in Appendix), the gap starts to
saturate.
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FIG. 5. (Color online) Gap (in eV) as a function of U (in eV).
The closed symbols are LSDA + U , the open ones are GGA + U and
the dashed lines indicate the range of reported experimental values
for the gap.

The measured gap varies for each material depending on the
used experimental technique. The reported values for the gaps
are �NiO = 3.7–4.3 eV,46,47 �CoO = 2.5–3.6 eV,48,49 �FeO =
2.4 eV,50 and �MnO = 3.6–4.2 eV.51–53 For NiO, CoO, and
FeO, a reasonably good agreement between experiment and
the calculated gaps (with intermediate values of U ) is found.
For MnO, on the other hand, the gap is always underestimated
compared to the experimental values. Even for very large
values of U > 30 eV, the calculated gap does not reach the
experimental value. However, it has been shown that the
experimental gap can be reproduced by taking many-body
corrections on the level of a GW calculation into account.54,55

In Fig. 6, the on-site magnetic moments |MI | as functions
of U are presented. The moment is given by

|MI | =
2∑

m=−2

(
nI↑

mm − nI↓
mm

) = N
↑
I − N

↓
I ,

where the orbital occupation numbers nIσ
mm of d states at lattice

site I are defined in Eq. (A4). The limit N
↑
I = 5 and N

↓
I =

{3,2,1, or 0}, for Ni, Co, Fe, and Mn, respectively, is the “pure
spin limit.’ For any physical value of U , the pure spin limit
sets the least upper bound for |MI |.

For U = 0, the orbitals with spin up are filled to approxi-
mately 90%(N↑

I ≈ 4.5) and the occupation of the down spin
states is about 10% above the minimal vales of {3,2,1, or 0}.
Hence, the value of the moment is ≈0.7 μB below the pure
spin limit. On increasing the on-site repulsion, the occupation
numbers change. States with nIσ

mm > 0.5 are shifted down
in energy and states with nIσ

mm < 0.5 are shifted up. The
magnitude of the energy shift is proportional to U (see
discussion in part 4 of Appendix). The energy shift changes the
occupation numbers toward the pure spin limit. The more the
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FIG. 6. (Color online) Moment (in μB ) as a function of U (in eV).
The closed symbols are LSDA + U , the open ones are GGA + U ,
the dashed lines are the experimental values40,56,57 for the moment
and the solid gray lines are the pure spin limits.

states are shifted (larger U ), the closer the system gets to the
pure spin limit. Hence, the moments increase with increasing
U . The enhancement of the moment induced by U = 12 eV is
almost the same in all TMOs. The largest increase is observed
in NiO (≈0.5 μB) and the smallest one in FeO (≈0.3 μB).

The moments calculated with intermediate values of U

(4–6eV) for NiO, FeO, and MnO are in agreement with the
experimental data (with a maximum error of 8% for MnO).
The experimental value of the moment for MnO (4.58 μB)40

is reached only for very large values of U , while for FeO,
even with U = 0, a good agreement with experiments can be
obtained. For CoO, all reported experimental data are above
the pure spin limit of 3μB due to large contributions from
orbital-angular momentum.41,56–58 Finally, we note that for
U � 6 eV, LSDA + U and GGA + U lead to the same values
for the gap and the moment.

B. Remark on FeO

For FeO, the LSDA + U method does not open a gap with-
out including spin-orbit (L · S) coupling. After this symmetry
breaking, we get a reasonable gap for FeO. This inclusion
of spin-orbit coupling has dire consequences; to calculate the
magnon spectrum, the following ansatz for the Kohn-Sham
orbitals is used:

ϕkj (r,q) =
(

ei(k− q
2 )·r 0

0 ei(k+ q
2 )·r

)
︸ ︷︷ ︸

=↔
A

(
ukj,1 (r)

ukj,2 (r)

)
,

where the functions ukj,1 fulfill the boundary condition
ukj,1(r) = ukj,1(r + R). This ansatz is chosen in such a way
that only the chemical unit cell is required to calculate the
spin-spiral energy for any value of the spin-spiral vector
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FIG. 7. (Color online) Magnon spectrum for NiO, CoO, and
MnO. LSDA results are shown with red circles, the two different
values of U with green squares and blue diamonds, experiment61–63

with black triangles, and the J1J2 results5 with orange line.

q. Since the larger magnetic unit cells are not needed, the
calculation can be performed even for very small values of
q (long-range excitation), which are required to determine
the magnon spectrum.59 The condition for this “unwinding”

process is

[VKS,
↔
A]− = 0,

where VKS is the 2 × 2 potential in the KS equations. If the
L · S term is added to the KS potential, the commutator relation
is not fulfilled anymore and a calculation of magnons with this
technique is not possible.

C. Magnon spectra

As shown in the above section, using the LSDA + U

method with an intermediate value of U , the moments (gaps)
for TMOs are reproduced to within 8% (44%) in the worst case.
The question then arises how well is the magnon spectrum
reproduced within the LSDA + U technique. The calculation
of the magnon spectrum is challenging as it sensitively relies
not just on the ground-state magnetic moment but also on
the interatomic magnetic interactions, reproduction of which
has proved to be a difficult task for strongly correlated
materials.60

The magnon spectrum obtained using LSDA and LSDA +
U with two different values of U are presented together with
experimental data in Fig. 7. It is interesting to note that in
the small-|q| limit, i.e., close to the � point, LSDA magnon
frequencies are in good agreement with the experimental
data. As one goes away from the zone center, the LSDA
functional overestimates the magnon frequencies. Switching
on the Coulomb repulsion U , improves these overestimated
magnon energies. Increasing U has a dramatic effect on the
magnon energies; for example, in the case of NiO at the M
point, the magnon energy changes by 160% on changing the
value of U from 4 to 8 eV.

In order to see how the long-range magnetic interactions
affect the magnon spectrum for TMOs, we also compare our
findings with the standard nearest- and next-nearest-neighbor
(J1J2) model5 (depicted with the cyan curve in Fig. 7). We
find a striking difference between the present calculation
and the J1J2 model; finite energies at the special points M
and M̄ in agreement with experiment are obtained on the
use of long-range magnetic interactions, while the use of
nearest- and next-nearest-neighbor interactions in the J1J2

model incorrectly leads to vanishing magnon energies at M
and M̄ . We also note that the linear behavior close to the �

point found in the J1J2 model is not obtained in the present
case. This discrepancy is due to the well-known sensitivity of
the magnon energies in the small-q limit (negative magnon
energies for CoO close to the � point). The experimental
magnon spectrum in CoO shows finite energies at the � point
[in contradiction with Eq. (34)] and a splitting of the two
magnon modes. Both effects can be captured by extending the
Heisenberg model in Eq. (1) by an L · S and an L2 term.61 But
these terms would break the spin-wave symmetry as discussed
in Sec. IV B and make a calculation of the magnon spectrum
impossible. In order to gain insight into the behavior of the
magnon spectrum as a function of U (i.e., strong suppression
of the magnon frequencies), it is instructive to look at the
change in charge distribution around the constituent atoms
within the unit cell. This analysis is performed in the following
section.
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D. Charge distribution

In this section, we present the spatially averaged charge on
TM and oxygen atoms calculated using various values of U .
In order to make a systematic comparison between all TMOs,
it is convenient to introduce a parameter λ, such that

U = λU0 and J = λJ0. (41)

where U0 and J0 are the material specific screened av-
eraged Coulomb repulsion obtained using the constrained
LSDA method and λ = 0 is the pure LSDA limit. [The
constrained LSDA results9 for the TMOs for (U ; J ) in
eV are (8.0; 0.95)NiO, (7.8; 0.92)CoO, (6.8; 0.89)FeO, and
(6.9; 0.86)MnO]. In Fig. 8, we plot the difference between
NLDA+U and NLDA as a function of λ, where the NLDA+U and
NLDA are the MT or interstitial charge, respectively:

NLDA =
∫

V

d3r ρLDA(r) with V =
{

muffin tin,

interstitial region.

For all materials, a qualitatively similar behavior is ob-
served; by increasing λ, charge accumulates in the oxygen
MT and depletes from the transition-metal and the interstitial
region. This behavior is a direct consequence of the on-site
repulsion U acting on the TM d states, which pushes the
charge away from the TM atom. The effect of U is strongest
for Ni and decreases down the series being weakest for the Mn
atom. As expected, the reduction in the charge of the interstitial
region as a function of λ indicates an increased localization of
electrons due to increasing Coulomb repulsion. On the basis
of this behavior of the charge, it is easy to explain the trend in
the magnon spectrum as a function of U ; the magnon energy is
proportional to the on-site moment and the magnetic coupling
constant [see Eq. (30)]. The change in moment as a function of
U is quite small (the maximum change in moment is for MnO
by 8% on going from U = 4 to 8 eV), hence the dominating
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FIG. 8. (Color online) Amount of charge located in the atom
muffin tin as a function of the parameter λ [see Eq. (41)]. Plotted
are always the differences to λ = 0 values. The open symbols are
GGA + U , the filled are LSDA + U calculations. For all materials,
the TM charge is plotted with red triangles, oxygen with black circles,
and the interstitial region with green squares. The numbers at the right
upper and lower corners denote the number of electrons in the muffin
tin for the maximum value of λ.

term that leads to the suppression of the magnon energies as
a function of U is the magnetic coupling constant, which is
reduced by the enhanced charge localization.

At this point it is also worth mentioning that the charge
calculated using the LSDA (λ = 0) shows the correct trend;
NiO is the most electronegative and MnO is the least with
Ni+1.72, Co+1.81, Fe+1.89, and Mn+1.91. However, for large
values of λ (above ≈1.2), all the TM atoms have almost the
same electronegativity contrary to physical reality.

E. Néel Temperatures

Given the magnon energies using Eq. (34), the Néel
temperature can be easily determined. The calculated Néel
temperatures for various values of U are shown in Fig. 9. These
results are obtained using two different approximations for
averaging the magnon frequency; mean-field approximation
(MFA) [see Eq. (39)] and the random phase approximation
(RPA) [see Eq. (40)]. As expected from the behavior of the
magnon energies (see Sec. IV C), the critical temperature
decreases as the value of U increases. For comparison, in
Fig. 9, the experimental data are shown as dashed line. It is
well known that the MFA overestimates the Néel temperatures.
Hence, for larger values of U , where the magnon energies are
suppressed due to charge localization, the Néel temperatures
calculated using MFA are in reasonable agreement with the
experimental data. The RPA, on the other hand, is well known
to underestimate the Néel temperature. This can also be seen
in Fig. 9. This means that intermediate values of U lead to
reasonable agreement with the experimental data in this case.
At this point, it is important to note that the magnon energies
for MnO are very small as compared to other TMOs, which
makes the harmonic averaging of magnon energies, required
by the RPA, very sensitive, leading to Néel temperatures well
below the experimental data.
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FIG. 9. (Color online) Néel temperatures as a function of U for
NiO, CoO, and MnO. The dashed lines denote the experimental
values56 and the gray solid lines are Monte Carlo simulations.29
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V. SUMMARY

We have determined the magnon frequencies for TMOs
using the frozen magnon approach combined with the LSDA +
U formalism. The value of U is systematically increased to
investigate the effect of the on-site Coulomb repulsion on
various ground-state properties and the magnon frequencies. A
brief overview of the general formalism for treating magnons,
including an infinite number of magnetic interactions is
presented in the first part of the paper.

In the second part of the paper, we present results for the
gap and the on-site moment as a function of U . The qualitative
behavior of the gap and moment as a function of U is the same
for the materials under investigation. The experimental results
are well reproduced for intermediate values of U with two
exceptions: (1) the magnetic moment of CoO and (2) the gap
of MnO. The discrepancies are explained by an orbital-angular
momentum and many-body effects, respectively.

In the third part, we have presented the calculated magnon
spectrum for various values of U . The magnon energies
are strongly suppressed on increasing the on-site Coulomb
repulsion. The reason for this behavior is pinned to charge
localization: the magnon energies are proportional to the
on-site moment and the intersite magnetic coupling constant.
The on-site moment depends weakly on the Coulomb repulsion
but the magnetic coupling constant shows a very strong
dependence on U . We demonstrate by analyzing the spatially
averaged charge that this strong dependence of the intersite
magnetic interactions on U is a direct consequence of the
strong charge localization.

We compare our approach for calculating magnon ener-
gies, which includes magnetic interactions between infinite
number of neighbors, with the standard (nearest-) next-
nearest-neighbor J1J2 model. This comparison highlights the
importance of including long-range interactions especially to
correctly find finite magnon energies at the zone boundary.

Since the Néel temperature in MFA or RPA is found by
averaging magnon energies, the U dependence of TN is similar
to the U dependence of the magnon energies. For values of U

between 5–8 eV, the MFA as well as the RPA reproduce the
experimental Néel temperature.

The proper choice of the parameter U is critical, especially
for the sensitive properties (gap and magnons). We have found
for the gap, moment, charge, magnon spectrum, and T RPA

N a
reasonably good agreement with experiment, for intermediate
values of U (ranging from 4 to 6 eV) for the TMOs under
investigation in the present work.

APPENDIX: LSDA + U METHOD

Despite the success of the LSDA, it fails to describe Mott
insulators. On the other hand, the LSDA + U method has
proved to be able to reproduce the correct band structure for
the Mott insulators.9 These materials have a partially filled d

(or f ) shell and a d-d (or f -f ) band gap. The gap is caused by
a large on-site Coulomb repulsion, which splits the d (or f )
bands in a lower (occupied) and upper (unoccupied) Hubbard
bands.

In order to derive the LSDA + U total energy, one starts
from the Hartree-Fock (HF) approximation. It leads to a

general orbital-dependent form of the exchange interaction
(it contains no correlation), also known as the Fock term.
The orbitals in the Fock term are expanded in terms of an
atomic-basis set, followed by this, the atomic Slater integrals
occurring in HF are replaced by effective screened integrals,
expressed in terms of two parameters UI and J I .64 This
screened HF term, EHF, is reminiscent of a Hubbard-like term
and when combined together with the conventional LSDA
formalism is termed as the LSDA + U method.

1. The LSDA + U total energy

The total energy of the LSDA + U method consists of the
LSDA total energy plus a HF term. [Instead of the LSDA
total energy, the generalized gradient approximation (GGA)
can also be used. In this case, the method is called GGA +
U .] Since the interactions contained in EHF are also partially
included in ELSDA, a double-counting (DC) term EDC needs
to be subtracted from the total energy functional:13,64,65

ELSDA+U = ELSDA[ρ] + EHF − EDC︸ ︷︷ ︸
:=EU

= ELSDA + EU. (A1)

The term EHF can be derived directly from the orbital-
dependent interaction energy in the HF scheme. In terms of
the occupied single-particle Kohn-Sham orbitals, the direct
Coulomb term is

EH = 1

2

occ∑
ij

〈ϕiϕj |v̂|ϕiϕj 〉, (A2)

and the exchange term is

EF = −1

2

occ∑
ij

〈ϕiϕj |v̂|ϕjϕi〉. (A3)

These integrals for localized d and f electrons can be isolated
by expanding the Kohn-Sham orbitals in terms of a localized
atomic basis |I,nlmσ 〉. I denotes the lattice site, n is the main
quantum number, l is the orbital quantum number, m is the
magnetic quantum number, and σ is the spin index. The direct
Coulomb term then looks like

EH = 1

2

∑
I

occ∑
ij

∑
{σimi }

δσ1σ3δσ2σ4〈ϕiϕj |I,m1σ1m2σ2〉

× 〈I,m1m2|v̂|I,m3m4〉︸ ︷︷ ︸
:=MI

m1m2m3m4

〈I,m3σ3m4σ4|ϕiϕj 〉.

The occupation number matrix elements of one lattice site can
now be introduced:

nIσ
mm′ :=

occ∑
i

〈ϕi |I,mσ 〉〈I,m′σ |ϕi〉. (A4)

In terms of these occupation numbers, the direct Coulomb term
reads

EH = 1

2

∑
I

∑
σσ ′

∑
{mi }

nIσ
m1m3

nIσ ′
m2m4

MI
m1m2m3m4

. (A5)

174425-9



F. ESSENBERGER et al. PHYSICAL REVIEW B 84, 174425 (2011)

The same procedure can be performed for the exchange term,
which leads to

EF = −1

2

∑
I

∑
σ

∑
{mi }

nIσ
m1m3

nIσ
m2m4

MI
m1m2m4m3

. (A6)

We collect the Coulomb term [see Eq. (A5)] and the exchange
term [see Eq. (A6)], which results in the screened correction
to the LSDA energy in Eq. (A1):

EHF = 1

2

∑
I

∑
σ

∑
{mi }

[
nIσ

m1m3
nI−σ

m2m4
MI

m1m2m3m4
(A7)

− nIσ
m1m3

nIσ
m2m4

(
MI

m1m2m4m3
− MI

m1m2m3m4

)]
.

A major obstacle in the LSDA + U method is that the
electronic interactions are already partially included in the
LSDA energy thus a simple addition of the term EHF to the
LSDA energy would lead to DC. An ideal DC term should
subtract the mean-field part from the HF term, leaving only an
orbital-dependent correction to the orbital-independent LSDA
potential.64

Two main approximations for the DC term exist in the
literature: the first one is realistic for weakly correlated systems
and would become exact in the case of uniform occupation
numbers (around mean field).66 The second one is the fully
localized limit (FLL) DC term proposed by Lichtenstein
et al.13 This term describes very localized systems with integer
occupation numbers. The FLL DC term is constructed from
Eq. (A7) by the two simplifications: (1) one assumes fully
occupied orbitals,

nIσ
mm′ = δmm′ .

(2) The matrix elements are approximated by averaged matrix
elements:

MI
mm′mm′ = 1

(2l + 1)2

∑
mm′

MI
mm′mm′

︸ ︷︷ ︸
:=UI

, (A8)

MI
mm′m′m = 1

2l (2l + 1)

∑
m�=m′

MI
mm′m′m︸ ︷︷ ︸

:=J I

. (A9)

The DC term in the FLL is

EDC =
∑

I

[
UI

2
NI (NI − 1) − J I

2

∑
σ

NIσ (NIσ − 1)

]
,

(A10)

where NIσ = ∑
m nIσ

mm and NI = ∑
σ NIσ . Instead of ELSDA,

also other local/semilocal exchange-correlation functionals
can be used in Eq. (A1). A frequent choice is the generalized
gradient approximation, in this case, the method is called
GGA + U .

2. Screening effects

In the previous section, the total energy of the LSDA + U

method was derived. One could use atomic basis functions
to evaluate the matrix elements in Eq. (A7) and for the
determination of UI and J I in Eqs. (A8) and (A9). But
this would totally neglect the screening of the bare Coulomb

interaction. Hence, the matrix elements are replaced by
parameters. These parameters are chosen in such a way that
they allow for many-body (screening) effects. For the Coulomb
interaction, the matrix elements can be written as67

MI
m1m2m3m4

=
2l∑

k=0

ak (m1m3m2m4) F I
k , (A11)

where the ak(m1m3m2m4) are real numbers given by

ak =
2l∑

L=0

L∑
ML=−L

(−1)L(2l + 1)2(2L + 1)

(
l k l

0 0 0

)2

×
(

l l L

m1 m2 −ML

)(
l l L

m3 m4 −ML

)∗

×
{
l l k

l l L

}
. (A12)

Here, ( ···
··· ) denotes a Wigner 3 − j symbols and { ···

··· } is the
Wigner 6 − j symbols. It is worth analyzing the squared 3 − j

symbol68

(
l k l

0 0 0

)2

= 1

2

∫ 1

−1
dζPl (ζ ) Pk (ζ ) Pl (ζ ) dζ. (A13)

The integral of the three Legendre polynomials vanishes if
l + k + l is odd and hence

ak (m1m3m2m4) =
{

0 if k is odd,

given by Eq. (12).

This means that only the Slater integrals F I
k with even k are

needed in Eq. (A11). The Slater integrals represent the radial
part of the Coulomb interaction, which is mostly affected by
screening effects. Hence they are replaced by “screened Slater
integrals” {SI

0 ,SI
2 , . . . ,SI

2l}. These are the parameters of the
LSDA + U scheme. In practice, these screened Slater integrals
are usually reexpressed in terms of only two parameters:13 (1)
UI the screened averaged Coulomb on-site repulsion and (2)
J I the screened exchange interaction.

Note that the DC term in Eq. (A10) is already expressed in
terms of UI and J I . If the orbital quantum number l is two
or greater, additional conditions are needed to ensure a unique
map between {SI

0 ,SI
2 , . . . ,SI

2l} and {UI ,J I }.
For all transition metals (l = 2), the ratio of the atomic

Slater integral F I
4 /F I

2 is constant with good accuracy (for
all TMOs, the ratio is between 0.62 and 0.63).69 Screening
should affect F I

4 and F I
2 in equal measure, hence the ratio

SI
4 /SI

2 = 0.625 = 5/8 is used as the condition. The relations
between{SI

0 ,SI
2 ,SI

4 } and {UI ,J I } are

SI
0 = UI , (A14)

SI
2 = 112

13
J I , (A15)

SI
4 = 70

13
J I . (A16)

3. The choice of the parameters (U I ,J I )

At this point, it is worth discussing how the values for
the two parameters, UI and J I , are actually obtained. As was
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discussed in Sec. V B, a direct calculation of the parameters
with the Eqs. (A8) and (A9) and the unscreened Slater integrals
{F I

k } would lead to an overestimation of the Coulomb repulsion
(UI = 15–20 eV) and the exchange interaction, due to the lack
of screening. Hence a different approach must be used to obtain
these parameters. In practice, two main approaches exist. (1)
The first method is to chose the parameter in such a way
to reproduce as many experimental observables as possible.
This approach is frequently applied to large systems, where
calculation of UI and J I is difficult. (2) The second way is to
calculate the parameters UI and J I ab initio. This brings the
“first-principles” character back to the LSDA + U method.

For such a calculation two schemes are used: (1) originally
the value of UI was chosen based on a constrained LSDA
calculation,9 and (2) a newer method is the linear response
approach, which leads to smaller values of UI compared the
constrained LSDA.16

4. Analysis of the LSDA + U method

To get a more transparent physical interpretation of the
LSDA + U method, it is worth trying to reduce the complexity
of the current formalism. We consider a system with strongly
correlated d electrons. The simplification consists of neglect-
ing the higher screened Slater integrals SI

2 and SI
4 , which is

equivalent to setting J I to zero. Note that SI
2 and SI

4 are not
necessarily smaller than SI

0 . For instance, in the case of TMOs,
they are all of the same order. (See Eqs. (A14), (A15), and
(A16) with the value U/J ≈ 9 obtained by constraint LSDA.9)

However, to get an insight into the LSDA + U method, such
a simplified analysis is instructive. In this approximation, the
energy functional of Eq. (A1) simplifies to16

EU =
∑

I

∑
σ

∑
mm′

UI

2

[
δmm′nIσ

mm′ − nIσ
mm′n

Iσ
m′m

]
.

The potential acting on Kohn-Sham orbital ϕi reduces in this
simple approach to

∑
I

∑
mm′

[
UI

2

(
1 − 2nIα

mm′
)] 〈I,m′α|ϕi〉〈rα|I,mα〉. (A17)

The most important properties of the potential are as follows:
(1) because of the projector 〈I,m′α|ϕi〉 in Eq. (A17), Kohn-
Sham orbitals with mainly s or p character are unaffected.
To treat only d electrons with the EU term was one of the
main ideas behind the LSDA + U method. (2) Since there is
no Fermi function in the potential, unoccupied Kohn-Sham
orbitals are also affected. (3) Kohn-Sham orbitals with d

character are shifted away from the Fermi energy. Depending
on the occupation number, the orbitals are shifted either up
(nIα

mm < 1/2) or down (nIα
mm > 1/2) in energy with the size

of the shift proportional to UI . This leads to a gap opening.
(4) The potential is nonlocal like the HF potentials and diagonal
in spin space. (5) Besides the two parameters UI and J I , the
whole method depends also on the choice of an atomic basis
set (because the occupation numbers {nIσ

mm′ } refer to these basis
functions).
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