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Order in a spatially anisotropic triangular antiferromagnet
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The phase diagram of the spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice of weakly
coupled chains, a model relevant to Cs2CuCl4, is investigated using a renormalization group analysis, which
includes marginal couplings important for connecting to numerical studies of this model. In particular, the
relative stability of incommensurate spiral spin-density order and collinear antiferromagnetic order is studied.
While incommensurate spiral order is found to exist over most of the phase diagram in the presence of a
Dzyaloshinskii-Moriya (DM) interaction, at small interchain and extremely weak DM couplings, collinear
antiferromagnetic order can survive. Our results imply that Cs2CuCl4 is well within the part of the phase diagram
where spiral order is stable. The implications of the renormalization group analysis for numerical studies, many
of which have found spin-liquidlike behavior, are discussed.
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I. INTRODUCTION

Frustrated magnets are of considerable interest because of
their potential for exhibiting novel ground states in two or
higher dimensions.1 The spin-1/2 Heisenberg antiferromagnet
(HAF) on an anisotropic triangular lattice is a particularly
well studied model of frustrated magnetism and is relevant
to Cs2CuCl4, a material whose neutron spectrum has been
taken as evidence for close proximity to a two-dimensional
spin-liquid phase.2–4 Below 0.6 K, Cs2CuCl4 orders into an
incommensurate spiral spin-density state and is well described
by the spin-1/2 HAF on a triangular lattice, with interchain
diagonal exchange J ′ weaker than the intrachain exchange
J , although weak interlayer and Dzyaloshinskii-Moriya (DM)
interactions also play a role in stabilizing the ordered state.

The spiral phase with ordering wave vector qcl = π +
2 sin−1(J ′/2J ) is the classical ground state for the HAF on
a triangular lattice for all J ′ < 2J . It is well established that
the nearly isotropic (J ′ � J ) spin-1/2 HAF exhibits spiral
order that smoothly connects to the three sublattice Néel
order at J ′ = J . Several studies have proposed that, as
J ′ is further reduced, quantum fluctuations destroy this
order and stabilize a two-dimensional spin-liquid phase.4–10

Although this model is in proximity to a one-dimensional spin
liquid (J ′ = 0), it lacks the features typically associated with
possible spin-liquid order in higher than one dimension. That
is, it neither exhibits macroscopic degeneracy of the classical
ground state, as occurs for Kagome or pyrochlore lattices,
nor substantial ring exchange, as occurs near a metal-insulator
transition. Nevertheless, essentially all calculations show that
the quantum fluctuations are unusually large and the local
moment has been estimated to go to zero for J ′/J as large as
0.9.10–13

While it has typically been assumed that the loss of spiral
order signals the appearance of a quantum disordered state,
Starykh and Balents,14 using a renormalization group (RG)
approach, found a collinear antiferromagnetic (CAF) state
stabilized at small J ′/J .14,15 They identified quantum fluctua-
tions of order (J ′/J )4 that couple second nearest-neighbor (nn)
chains antiferromagnetically, leading to CAF order, whereas a
ferromagnetic second nn chain interaction would be compati-

ble with spiral order. This result is surprising, since, although
quantum fluctuations will typically select a specific state from
a degenerate manifold of classical ground states, it is unusual
for fluctuations to stabilize an ordered state of higher classical
energy.16 This order is rather subtle since it is only selected
at O(J ′/J )4, so numerical studies taken as evidence for
spin-liquid behavior may also be compatible with such order
as well as with spiral order, which is strongly renormalized
by quantum fluctuations. Exponentially weak spiral order has
been predicted within a random phase approximation,17 which
does not include the (J ′/J )4 antiferromagnetic fluctuations
identified in Ref. 14. Numerical studies on multileg ladders
find incommensurate spiral correlations with a wavelength that
is strongly renormalized from the classical value and smaller
than the finite system size for 0.5 � J ′/J < 1.18 This provides
evidence for an incommensurate spiral ground state in this
range of J ′, but one would need to study even larger systems
for smaller J ′ since the spiral wavelength, λ = 2π/(q − π ), is
expected to grow rapidly with decreasing J ′/J .

Calculations that directly compare the energies of the CAF
and spiral states, have given conflicting results. Pardini and
Singh,19 using linked cluster series expansions, found that the
spiral phase, with a variational ordering wave vector, appears
to have lower energy than the collinear state for J ′/J � 0.1.
They also found the ordered moment vanished rapidly with
decreasing J ′/J , as expected for either ordered state. By
contrast, a coupled cluster method yielded a lower energy
for the CAF state for J ′/J � 0.6, although this method was
unable to capture the vanishing moment.20,21 Neither method is
strictly variational, making direct comparisons of the energies
difficult to interpret, as discussed in Ref. 19. Nevertheless, both
methods show that the energy difference between these two
states at small J ′/J is significantly smaller than the energy
scale set by quantum fluctuations, i.e., than the O(J ′2/J )
difference between the classical and quantum energies.

Here, we reexamine the RG approach of Ref. 14, but rather
than starting by integrating out every second chain as was
done in Ref. 14, we adhere more strictly to the real-space
RG method and keep quantum fluctuations of O(J ′/J )2.
These are generated by marginal (and irrelevant) couplings
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and are not expected to order the system as J ′ → 0. However,
these fluctuations dominate the energy and are important for
interpreting numerical results as they extend over an unusually
large length scale (which diverges as J ′ → 0). Surprisingly,
these are of the opposite sign to the fluctuations responsible
for CAF ordering. Thus our RG analysis elucidates the
competition between spiral and CAF orders. We also present
numerical studies that show that ferromagnetic fluctuations
dominate at all J ′ < J , and consistent with the RG analysis,
these fluctuations only grow weakly with system size for small
systems.

The remainder of this paper is organized as follows. The
model and RG equations is presented in Sec. II and the
general RG flows and resulting ground states for varying initial
conditions are discussed in Sec. III. Section IV discusses the
specific initial conditions appropriate for the Heisenberg model
and the resulting RG analysis. The crossover from CAF to
spiral order with increasing J ′ is also discussed in Sec. IV.
Numerical studies of this system are presented in Sec. V and
compared to the RG results, while Sec. VI considers the effect
of a weak Dzyaloshinskii-Moriya interaction. A summary and
discussion of the results are given in Sec. VII. An approximate
analytic solution to the RG equations, used in the analysis of
the numerical studies, is given in Appendix.

II. MODEL AND RG EQUATIONS

Here, we derive the RG equations following an approach
similar to Ref. 14, but starting from short-length scales and
including marginal couplings and fluctuations of O(J ′/J )2

in order to connect to finite-size studies and to study the
relative stability of collinear, spiral, and dimer ordered states,
as summarized in Fig. 1. Our starting point is the Hamiltonian

H =
∑
n,y

{
JSn,y · Sn+1,y + J ′Sn,y · (

Sn− 1
2 ,y+1 + Sn+ 1

2 ,y+1

)
+ D · [Sn,y × (

Sn− 1
2 ,y+1 − Sn+ 1

2 ,y+1

)]}
, (1)

where n indexes sites on the horizontal chains, y is the chain
label, and J and J ′ are, respectively, intra- and interchain
couplings as shown in Fig. 1(a). The last term in Eq. (1) is the
interchain DM interaction, where D = Dẑ.11,15

gN

γtw

Collinear

AF

Spiral

Collinear

AF

Spiral

)b()a(

FIG. 1. (Color online) (a) Triangular lattice with anisotropic
exchanges J and J ′. Staggered magnetization operators, N, at sites
with the same color are accompanied with the same sign consistent
with the depicted choice of y axis. (b) Phase diagram projected onto
the plane of initial values of the relevant couplings, gN − γtw . Dimer
or other ordered states may be stable in the shaded region.

We first consider the case D = 0. The continuum approx-
imation is made for the horizontal chains, while the other
direction is kept discrete. The spin operators are written
in terms of the uniform and staggered magnetizations:22

Sn,y → My(x) + (−1)nNy(x), where the subscript y in-
dexes the chains, and we use the sign convention shown
in Fig. 1(a).

The Hamiltonian for each chain is the Wess-Zumino-
Novikov-Witten (WZNW) SU(2) model, which defines the
fixed point of decoupled chains, perturbed by intrachain
backscattering, with coupling γbs :23

Hintra =
∑

y

(
HWZNW

y + γbs

∫
dx JR,y · JL,y

)
. (2)

The interchain part of H in the continuum limit becomes

Hinter =
∑

y

∫
dx

[
γMMy · My+1 + γtw

(−1)y

2

× (
Ny · ∂xNy+1 − ∂xNy · Ny+1

) + · · ·
]
, (3)

where ellipses indicate irrelevant terms with more derivatives.
My is the sum of the left- and right-moving currents, JL,y

and JR,y , which have scaling dimension 1, so My · My+1 and
backscattering both have scaling dimension 2 and are marginal.
The scaling dimension of N is 1/2 and, therefore, that of the
twist term (with coupling γtw) is 2.

In addition to the above couplings, there are two relevant
and two marginal interactions that are not prohibited by any of
the symmetries of this model: gNNy · Ny+2 and gεεyεy+2 with
scaling dimension 1 and γε(−1)y(εy∂xεy+1 − ∂xεyεy+1)/2
and gMMy · My+2 with dimension 2. ε is the staggered
dimerization operator and has scaling dimension 1/2.24 Third
and further nn chain couplings can be ignored for small J ′/J
because of their much smaller initial values.

The theory is regularized by imposing a short distance
cutoff for how close to each other the operators that perturb
HWZNW can be. Real-space RG along x is then conveniently
performed using operator product expansions (OPE) of the
above interaction terms at separate space-time points and inte-
grating over short relative spatial and temporal separations.25,26

The OPEs of chiral currents can be directly derived from the
OPEs of chiral fermion fields, but the correct OPEs of N and
ε require bosonization.22 Neglecting terms of O(J ′/J )5 and
higher, the β functions for the relevant and marginal coupling
constants are27

∂lγbs = γ 2
bs − 6g2

N , ∂lγM = γ 2
M, (4)

∂lγtw = − 1
2γbsγtw + γMγtw − 3γtwgN − 1

2γMγε, (5)

∂lgN = gN − 1
2γbsgN + gMζN + 1

4γ 2
tw + gMgN, (6)

∂lgε = gε + 3
2γbsgε − 3

2gMζN + 1
4γ 2

ε − 3
2gMgN, (7)

∂lγε = 3
2γbsγε − 3

2γtwγM − 3
2γεgε , (8)

∂lgM = g2
M − 1

4π2 γbsζM, (9)

∂lζN = −ζN − 1
2γbsζN − γ 2

tw + gMζN, (10)

∂lζM = −2ζM − 8π2γ 2
M + γbsζM. (11)
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All couplings are scaled by 2πv = π2J and el = L/L0,
so that l(L0) = 0, where L is the physical length and L0

is the initial length scale, which has been set equal to one
in the above equations. Equations (9)–(11) are only brought
in because these couplings affect the initial values of more
relevant couplings. ζN is the coupling for the interaction
term ∂xNy · ∂xNy+2 and ζM is that of (My · My+2) (JL,y+1 ·
JR,y+1). Both of these are irrelevant couplings with scaling
dimensions 3 and 4. The β functions of γM and gM only
describe the renormalization of the interchain backscattering
part of My · My ′ (coupling between currents with opposite
chiralities), which also are the parts that enter in the other β

functions.
The β functions of Ref. 14 differ from Eqs. (4)–(8) in

that only the first three terms in the β functions for gN and
gε [in Eqs. (6) and (7)] were included in Ref. 14, and the
renormalization of marginal couplings other than γbs were
not considered. γtw, in particular, is needed to interpret the
numerical results and to study the relative stability of the spiral
and collinear AF states. As discussed below, the γ 2

tw term in
Eq. (6) is not expected to order the system, but describes the
dominant fluctuations at short and intermediate distances and is
important for interpreting numerical results on finite systems.
The key RG equations for our study are Eqs. (4)–(6).

III. GENERAL RG FLOWS

At the lattice scale, only couplings present in the
bare Hamiltonian, γtw = γM/2 = J ′/π2J , γbs = −0.23,28 are
nonzero. Integrating out short-wavelength fluctuations up to
the initial length scale L0 (larger than but comparable to the
lattice spacing) generates all couplings allowed by symmetry,
in particular, the two relevant couplings, gN (0) and gε(0). Once
generated, these couplings tend to grow exponentially in l (or
linearly in L), while the marginal and irrelevant couplings
grow at most logarithmically with L. It follows from Eqs. (6)
and (7) that, in the presence of negative backscattering, gN

grows faster than gε . Therefore, for small J ′/J , the value of
gN (0) largely determines the fate of the system, as it will reach
one (or J in unscaled units) at some length scale, l∗, while the
other couplings will remain much smaller.

If gN (0) is positive (i.e., antiferromagnetic), it follows from
Eq. (6) that gN (l) remains positive and flows to +1 at some
l∗. In this case, second nn chains will order antiferromag-
netically. This is the result found in Ref. 14, where every
second chain was integrated out to give gN (0) = −2gε(0)/3 =
Ax

0J
′4/π6J 4, where Ax

0 ≈ 0.13 is a normalization factor.
The CAF state is then stabilized for small J ′/J by the
order-from-disorder mechanism when one includes the effect
of γM (l∗) ∼ O(J ′/J ).14

However, numerics on finite systems show that second nn
chains are coupled ferromagnetically, not antiferromagneti-
cally as implied by gN (0) > 0. Figure 2 shows the interchain
Neel susceptibility where a small finite staggered magnetic
field is applied to one chain and the response of the second
neighbor chain is calculated using exact diagonalization (ED)
for three chains of length 12 sites or less, with open boundary
conditions. For a staggered field, h, along ẑ, the response
〈Sz

i 〉/h, where site i is one of the center sites on the
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FIG. 2. (Color online) The response to a small staggered magnetic
field, h, applied to one chain is studied using exact diagonalization
for three chains of lengths from L = 6 to L = 12. The response of a
central spin on the second-neighbor chain, 〈Sz

i 〉/hL, is shown along
with polynomial fits to the data. The sign of the response is found
to be such that 〈Sz

i 〉 always aligns ferromagnetically with the other
chain.

chain, is calculated. This response is the interchain Neel
susceptibility:

χs(L) = −i

L∑
n=1

(−1)n
∫

dtθ (t)
〈[
Sz

i,y(t),Sz
n,y+2(0)

]〉
. (12)

It is found that 〈	Si〉 aligns ferromagnetically with the second-
neighbor chain for all 0 < J ′ < 1 as well as for small J ′ < 0.
χs , which is discussed further in Sec. V below, is analytic
in the couplings and, for small J ′/J , is proportional to
gN (L) to leading order. Therefore it follows from these ED
results that gN (0) = a(J ′/J )2 + b(J ′/J )3 + c(J ′/J )4, where
a, b, and c are all ferromagnetic and, in fact, ferromagnetic
fluctuations dominate in these systems of up to 36 spins. χs

calculated for four chains with periodic boundary conditions
applied perpendicular to the chains (along y) yields exactly
the same quadratic and cubic terms and a larger ferromagnetic
quartic term. The difference in the quartic term is due to
the longer-range analog of γtw, which couples third-neighbor
chains and is not included in the above RG equations as it has
no qualitative effect on the running couplings.27

The calculated χs is sensitive to boundary conditions for
small systems. Periodic boundary conditions (PBC) along the
chains (along x) frustrate spiral correlations generated by
γtw, which we will see in the next section are connected to
ferromagnetism. Indeed, for the small systems studied with
PBC along x (up to 30 spins, not shown here), we found χs is
of order (J ′/J )4 and has the opposite sign to the data in Fig. 2.
However, the fact that spins 	Si,y and 	Si+x,y+2 for small s are
coupled ferromagnetically at order (J ′/J )2 and the higher one
is independent of the boundary condition and is seen even in
small systems with PBC along x. In particular, 〈	Si,y · 	Si,y+2〉
is always positive irrespective of the boundary condition. This
implies that gN (0) < 0. In fact, for open boundary conditions,
our ED studies find that (−1)x〈	Si,y · 	Si+x,y+2〉 is positive for
all x, all systems sizes, and J ′ values studied (J ′/J < 0.5).
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FIG. 3. (Color online) Flows of gN (l) and γtw(l) for several
initial values with ferromagnetic gN (0) = αγ 2

tw(0), gε = γε = 0, and
J ′ = 0.05. gN and γtw are in scaled units (divided by π 2J ), and α

is varied from −0.26 (CAF flow closest to vertical axis) to −0.30
(spiral flow closest to vertical axis). The inset zooms in on the shaded
rectangle. Flows emanating from initial values very close to gcrit

N

have flow lines substantially away from the γtw = 0 axes and grow
considerably slower than those close to the vertical axes. Note the
extreme sensitivity to initial values close to the critical value gcrit

N as
shown in the inset.

It follows from the RG equations that for gN (0) < 0, gN (l∗)
can be either negative or positive, depending on the precise
value of gN (0). In this case, the flow of gN is sensitive to
the magnitude of the initial value due to the competition
between gN (0) < 0 and terms in Eq. (6) that drive gN (l)
antiferromagnetic. This sensitivity to initial conditions can
be seen by numerically studying the RG flows for an initial
gN (0) = αγ 2

tw(0) as the constant α is varied. Here, we use bare
values (i.e., values at the lattice scale) for the initial values of
the other couplings. RG flows are shown in Fig. 3 for −0.30 �
α � −0.26. For α � −0.28, one finds that gN flows to 1
(strong antiferromagnetic coupling) and γtw remains small,
while for α � −0.28, gN flows to −1 (strong ferromagnetic
coupling) and γtw increases marginally. As discussed below,
gN → −1 signals spiral order, whereas gN → 1 signals CAF
order as studied by Starykh and Balents.14 However, as seen in
the inset of Fig. 3 for gN → 1, even in the case of CAF order,
the initial RG flows can display increasing ferromagnetic
coupling between second nn chains. In Sec. IV, it will be
shown that this is the case for the Heisenberg model. In a
narrow range for α ≈ −0.28 (which widens as J ′ is increased),
the growth of gN is hindered and γtw, γM , or gε reach unity first.
This crossover value, gcrit

N , depends on γbs and J ′. Depending
on initial conditions, columnar or staggered dimerizations or
more complicated incommensurate states can be stabilized
in this crossover region, as denoted by the shaded area
in Fig. 1(b).

In the ferromagnetic regime where gN grows exponentially
to negative values (gN < gcrit

N ), sites along the y direction
align, consistent with zero y component of the ordering wave
vector. In this regime, γtw, which stabilizes spiral order,
grows marginally. In the classical limit, the ordering wave
vector q ≡ (π + ε)x̂ is (π + J ′/J )x̂ for J ′ � J . The effect of
quantum fluctuations on q or ε can be determined from the RG

analysis. The most robust spiral state occurs if ferromagnetism
is selected at quadratic order in J ′. The length scale, l∗, at
which gN becomes comparable to J in magnitude is inversely
proportional to the initial value of gN which, in turn, is
∝J ′2 in this case. Since γbs changes logarithmically and
remains negative as gN grows, at this length scale, we expect
almost the same intrachain Hamiltonian but with a somewhat
renormalized γtw. This Hamiltonian describes interactions
between blocks of Neel-ordered spins of length l∗ and can be
treated classically. Thus the ground state has a spiral order
with ε ∝ (J ′/J )3. Since 1/ε  l∗ for small J ′, the pitch
of the spiral is much longer than the Neel blocks and this
treatment is justified. This is a significant renormalization of
the ordering wave vector toward the 1D limit of π , where spins
on neighboring antiferromagnetic chains are oriented at π/2
with respect to each other and requires that ferromagnetism is
selected at quadratic order.

Even more fragile spiral order is stabilized if g = gN (0) −
gcrit

N ≈ 0 and ferromagnetism is selected at cubic or quartic
order in J ′. Then ε ∝ (J ′/J )n, where n = 4 (or 5) for cubic
(or quartic) selection. The exponentially weak spiral order
ε ∼ e−a(J/J ′)2

found within a random phase approximation,17

also follows from the RG equations if one assumes that neither
gN nor gε can grow. To leading order in J ′/J , Eq. (5) describes
this exponentially weak spiral order, where a = 2.6 if the value
γbs ≈ −0.38 at a0 is used. However, since there is no symmetry
that prevents gN (or gε) from growing at all orders, one does
not expect an exponentially weak spiral order to be stable for
very small J ′/J .

As J ′ increases, even for initial conditions that favor
antiferromagnetism, g = gN (0) − gcrit

N < 0, the RG flows
move toward increasing γtw, i.e., toward the spiral state. This
is because γtw is boosted by both backscattering and γM .
The latter enhances the spiral incommensuration, ε, so it is
larger than e−a(J/J ′)2

. For the Heisenberg model, where γbs(0)
is sufficiently negative to suppress the growth of gε relative to
gN , the competition is predominantly between the CAF and
the spiral states. If a sufficiently strong frustrating second nn
interaction along the chains is added to the Hamiltonian, the
competition is then between the CAF and dimerized phases as
discussed in Ref. 14.

IV. INITIAL CONDITIONS AND RG RESULTS

It follows from the above discussion of the RG flows that it
is important to determine gN (0) accurately. Numerics on small
systems clearly show that gN (0) is ferromagnetic, whereas
Eq. (6) would naively predict that gN (0) ∼ +γ 2

tw. In fact, only
antiferromagnetism appears to enter the RG equation for gN

to all orders in J ′/J . This would imply not only that spins
on second neighbor chains are always antiferromagnetically
ordered, but that the dominant fluctuations at all length scales
are antiferromagnetic. Actually, one sees how second-neighbor
chains can be coupled ferromagnetically by considering the
effect of a twist in one chain on spins in neighboring chains.
Treating γtwNy±1 · ∂xNy as perturbations to the decoupled
1D chains, one finds in second order that fluctuations in the
yth chain generate a local ferromagnetic coupling, Heff ∼
−γ 2

tw〈|∂xNy |2〉Ny−1 · Ny+1. Although the static twist 〈∂xNy〉
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is small, the fluctuation can be O(1), mediating an interaction
of order J ′2.

The peculiar behavior where the sign of the quantum
correction for gN depends strongly on scale can also be seen
in the continuum theory, once the theory is regularized. The
OPE between two twist terms generates a term in the effective
action:

−γ 2
tw

∫
dzdz′[∂x∂x ′G(z − z′)]Ny−1(z) · Ny+1(z′). (13)

Here, z = i(vt − x), G(z − z′) = 〈Ny(z) · Ny(z′)〉 ∼
1/

√
(z − z′)2 + a2

c , and ac is larger than but comparable
to the lattice spacing. The integrand in Eq. (13) is positive for
0 < |z − z′| < ac, which generates the ferromagnetic initial
condition for gN , but becomes negative for |z − z′| > ac,
favoring antiferromagnetic correlation at longer lengths.

The presence of a ferromagnetic coupling at short distances
is very general and independent of the specific regularization
scheme; it simply follows from the fact that [∂x∂x ′G(z − z′)]
in Eq. (13) is a total derivative, which integrates to zero and is
negative at large distances. The presence of this total derivative
implies that this term does not contribute at q = 0 in a
gradient expansion and, consequently, is not expected to order
the system.29 For example, if one fully integrates out every
second chain to generate effective couplings between second
nn chains, as was done in Ref. 14, this term vanishes. This
implies that the initial value of gN at quadratic order must be
such as to cancel the effect of γ 2

tw in the β function in the q → 0
limit. This places constraints on the initial conditions that are
discussed below. In general, however, gN (0) = aJ ′2 + bJ ′3 +
cJ ′4, where a, b, and c are all negative (i.e., ferromagnetic).
The cubic and quartic contributions to the initial condition are
related to the quadratic and cubic contributions in the beta
function for γtw.

We note here that the γtw term in the β function for
gN is not the only term that contributes ferromagnetism at
short-length scales. For example, the longer-range analog
of γtw and irrelevant couplings such as ζN (or even higher
derivative terms) contribute to the β function for gN in a very
similar way to the γ 2

tw term, but with smaller coefficients.
While the inclusion of such irrelevant terms can have a
quantitative effect at short lengths, the qualitative behavior
of strong ferromagnetism, which persists to fairly long-length
scales, is captured by including the effects of the marginal
coupling, γtw, only and is unchanged by the inclusion of more
irrelevant couplings.

That gN should not grow exponentially due to the γ 2
tw term

is not only suggested by Eq. (13), but can be seen by expanding
the interchain susceptibility, χs , in powers of J ′ treating the
interchain interaction as a perturbation. One finds, using the
simple power counting suggested by scaling, that χs(L)/L
grows at most logarithmically in L at quadratic and cubic
orders, but there is a contribution at quartic order that grows
linearly in L. It follows from this perturbative expansion that
the γ 2

tw term causes no exponential growth in gN (l). The initial
condition that corresponds to “tuning” (no exponential growth)
is given in Eq. (A9) in Appendix, where the RG equations are
solved analytically to cubic order. For γbs = 0 and the initial
condition gN (0) = −J ′2/4, it follows from Eqs. (5) and (6)
that gN (l) remains constant at quadratic order. However, for

nonzero γbs , gN (l) flows even at quadratic order, and a larger
ferromagnetic initial condition is needed to ensure that gN

does not grow exponentially in l at quadratic order.
While there is a ferromagnetic quartic contribution to gN (0)

from the γ 2
tw term, there is also an antiferromagnetic contribu-

tion from the gMζN term in the β function. This term, generated
within the operator product expansion technique, is analogous
to the antiferromagnetic initial condition identified by Starykh
and Balents.14 gMζN is zero at the lattice scale, since these
couplings do not appear in the microscopic Hamiltonian, but
is nonzero in subsequent RG steps and provides an initial
condition equal to 8γbsJ

′4/π9J 4 = 0.06J ′4/π6J 4 at � = 0 if
one sets γM (0) = 2γtw(0) = 2J ′/π2J . This differs from the
Starykh and Balents initial condition gN (0) = Ax

0J
′4/π6J 4

by about a factor of two, but both calculations rely on the
continuum approximation, which is only approximate near
the lattice scale. Also, the two results are almost identical if
one uses the value of γbs extrapolated to the lattice scale.
An analysis of both calculations shows that they rely on
the same physics, which involves generation of a gradient
coupling between second-neighbor chains (ζN ) and requires
chiral symmetry breaking (i.e., nonzero γbs in the continuum
RG language).

The long-distance RG results of Ref. 14 are recovered
within our analysis for sufficiently small J ′ if the ferromag-
netic initial condition associated with γ 2

tw is equal to gcrit
N

to O(J ′/J )4. In this case, the quartic term, gMζN , provides
the essential contribution to the initial condition of gN that
drives the ordering. For this initial condition, the RG flow
for small J ′ corresponds to one of the flows shown in
Fig. 2 where gN is initially ferromagnetic, but passes through
zero at an intermediate length and then becomes large and
antiferromagnetic. For small J ′, the intermediate length where
gN crosses over from ferromagnetic to antiferromagnetic, is
proportional to (J/J ′)2, neglecting logarithmic corrections.
This follows from the fact that the quadratic contribution
to gN (0) grows at most logarithmically in L, while the
quartic antiferromagnetic contribution grows linearly in L.
Consequently, the second nn chains in finite systems with
chains of length L will be ferromagnetically correlated for
L < LFM = A(J/J ′)2. The coefficient A is estimated to be
20–40 lattice spacings, depending on which value is used for
the antiferromagnetic contribution to gN (0).

A direct transition from CAF to spiral order is expected to
be discontinuous, while the RG flows change continuously.
Nevertheless, one can extract some information about this
transition from the RG analysis. As J ′ increases, the RG
flows move toward larger γtw at l∗, which shows a tendency
of moving toward spiral order. From the numerical solution of
the β functions of Eqs. (4)–(8), it follows that J ′

c ∼ 0.3, where
J ′

c is defined as the value at which γtw(l∗) first reaches J

while |gN (l∗)| � J . For γbs(0) = −0.23, gε(l∗) remains small
compared to J at this J ′, so the RG predicts that there is no
intermediate dimer phase between the CAF and spiral ordered
phases. This estimate for J ′

c results from using the value
Ax

0J
′4/π6J 4 for the AF contribution to the initial condition14

and setting the ferromagnetic initial condition or tuning as
discussed at the end of Appendix.

Terms higher order than (J ′/J )4 and irrelevant couplings,
which are ignored, as well as exactly where one terminates the
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RG flows can all affect J ′
c, so J ′

c ∼ 0.3 is only a crude estimate.
The main reason for the somewhat small value of J ′

c is that the
CAF state is only selected at quartic order, while the competing
marginal coupling, γtw is linear in J ′ and boosted both by
backscattering and by γM , which is also linear in J ′. We note
that the estimate of J ′

c is compatible with the observation of
spiral correlations at J ′ = 0.5 in numerical studies of multileg
ladder systems.18

V. NUMERICAL RESULTS

The ED results shown in Fig. 2 show only ferromagnetism
at all J ′, but the system sizes are not large enough to determine
whether the strength of the ferromagnetism is changing with
increasing system size for small J ′. To address this, we turn to
a more detailed analysis of the numerical studies of the inter-
chain susceptibility, χs , using density matrix renormalization
(DMRG) to study larger systems. Specifically, we address the
question of what initial conditions are compatible with the
study of finite systems or, alternatively, are finite-size studies
compatible with the RG analysis. Using finite-size scaling,
the susceptibility χs(L,{gi(0)},L0) of the system with size
L = L0e

l with couplings {gi(0)} defined at scale L0 (l = 0)
can be related to the susceptibility of the system with size L0

as

χs(L,{gi(0)},L0) = L

L0
[1 − γbs(L0)l)]1/2χs(L0,{gi(l)},L0) ,

where the linear-L dependence in the prefactor is due to χs

having scaling dimension 1 in the absence of the backscatter-
ing, and the second factor is the contribution of the running
backscattering that modifies the scaling dimension of χs . For
small gN (0) (small J ′), χs(L0,{gi(l)},L0) is analytic in the
couplings and proportional to gN (l) to leading order, and
we have χs(L) ∝ (L/L0)[1 − γbs(L0)l)]1/2gN (l). There is no
further quantum correction to this relation to leading order
in J ′/J , since gN (l) is fully renormalized and includes all
quantum fluctuations.

Since three chains captures all contributions to gN and χs to
order (J ′/J )3 as well as the key (J ′/J )4 fluctuations that drive
CAF order, we confine our studies to three-chain systems.
The interchain susceptibility is studied using ED and DMRG
for the HAF on three chains with open boundary conditions
for 24 to 84 spins (L = 8 to 28); ED was used for up to
36 spins. Up to m = 2600, states were kept in the DMRG,
while typically keeping the precision ε � 10−8. The results are
shown in Fig. 4. For all values of 0 < J ′ < J , χs was found to
be ferromagnetic. As noted earlier, ED studies also found that
the correlation between second nn chains has quadratic, cubic,
quartic (and higher orders) in J ′ contributions, which are all
ferromagnetic for L � 12 (as expected from analyzing the γ 2

tw

term), and the additional quartic contribution from four chains
is also ferromagnetic. There is no sign in the data of a turnover
to negative values of χs expected for AF correlations. As J ′/J
increases, the length scale at which antiferromagnetism should
be observable if the CAF state is stable becomes shorter. For
example, at J ′/J = 0.5, the RG analysis predicts that one
should see a turnover in χs for L � 20, although we don’t
expect RG to be quantitatively accurate at such large J ′/J . As
J ′/J increases, higher-order fluctuations that are not included
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FIG. 4. (Color online) The staggered Neel susceptibility, χs , for
three chains as a function of chain length, L, at different J ′ values,
calculated by ED and DMRG. The sign of χs is such that second nn
chains are ferromagnetically coupled for all L and J ′ studied.

in the RG and that are not fully captured by studying three
chains, can either further stabilize or destabilize CAF order.

For L � 10 and |J ′| � 0.1J , the change in χs as a function
of L is fit to the predicted RG flow for gN , γtw, and γbs as
functions of initial conditions, treated as fitting parameters. γM

is incorporated approximately to capture the cubic behavior of
gN (l) as described in Appendix. The restriction to small J ′ is
to ensure that χs is proportional to gN and higher-order terms
can be neglected. Figure 5 shows χs scaled by (L/L0)[1 −
γbs(L0)l)]1/2, with the lines being the RG fits to the data. One
can see the different slopes of curves for positive and negative
values of J ′, which shows the effect of the cubic term. It is
also clear from these curves that gN is growing only weakly
with L.
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FIG. 5. (Color online) The scaled susceptibility, χ̃s = χs/[L(1 −
γbs(0)l)1/2], which is proportional to the relevant coupling, gN , for
small J ′, is shown for different values of J ′/J . Points represent
data from ED (for L � 12) and DMRG (L > 12) and lines are fits
to the RG equations where the initial conditions are used as fitting
parameters.
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The initial conditions at L = 10 extracted from the numer-
ical data are γtw = 0.416J ′ + 0.121J ′2, gN = −0.0450J ′2 −
0.0425J ′3, and γbs = −0.072, γM = 0.24J ′. While the ex-
tracted value of γbs(L0) is substantially closer to zero than
the value of −0.19 for periodic boundary conditions, this is
consistent with an independent calculation of χs for a single
chain. For short chains, open boundary conditions are known to
favor dimerization relative to periodic boundary conditions.30

The fact that the ratio of γtw(0)/γM (0) extracted from the
numerical data is noticeably larger than the ratio at the lattice
scale can be attributed to the effect of irrelevant couplings
that contribute ferromagnetism in an analogous way to the γ 2

tw

term.
Although the extracted initial conditions are such that

gN flows to a large ferromagnetic value, which would
seem to indicate spiral order, the deviation from tuning at
both quadratic and cubic orders is sufficiently small to be
compatible with finite-size effects. For the values of γbs(0),
γtw(0), and γM (0) extracted from the data, tuning corresponds
to gN (0) = −0.0447J ′2 − 0.0479J ′3 + O(J ′/J )4. Therefore
the quadratic (cubic) term deviates by 1% (12%) from the
value predicted from the RG equations for an order selected
at O(J ′/J )4. Given the uncertainty introduced by finite-size
effects for 10 < L < 30 and the approximations made in the
RG, the numerics for small J ′ are consistent with no order
being selected to cubic order, while the lack of any tendency
toward antiferromagnetism with increasing L for J ′/J � 0.5
suggests the CAF state is not stable for these larger values of
J ′. The numerics also confirm the RG prediction that not only
is there ferromagnetism at the lattice scale for all values of
J ′/J but this ferromagnetism continues to grow to fairly long
length scales. Ideally, one would like to study the quartic term
for small J ′ as a function of system size since the RG analysis
predicts that CAF order is selected by an initial condition for
gN that deviates from tuning by about 20% at quartic order.
However, this would require studying larger system sizes while
keeping more states in the DMRG calculations and is beyond
the scope of this study.

VI. DZYALOSHINSKII-MORIYA INTERACTION

It is also interesting to consider the effect of a nonzero
DM interaction in this RG picture, since it is known that
the interchain DM interaction further stabilizes spiral order
in this model.11,31 In the continuum limit, the interchain DM
interaction can be written as εabNa

y Nb
y+1 with the initial

condition gD(0) = 2‖D‖ = 2D/π2J . Note that this term
breaks the SU(2) symmetry of the original model and will
order the spins in a plane perpendicular to the direction of D.
Just like the gNNy · Ny+2 term, the DM interaction has scaling
dimension 1 and is relevant. It flows according to the following
β function:

∂lgD = gD − 1
2γbsgD − 4gNgD + 1

2γMgD . (14)

The DM interaction also introduces a −2g2
D term (for

components perpendicular to D) in the β function of gN ,
Eq. (6). In addition to getting some boost from the marginal
backscattering and γM , the DM interaction both is enhanced by
and promotes ferromagnetic gN . Consequently, it suppresses

DMax

J'c

D

J'

CAF

Spiral

FIG. 6. Suggested phase diagram where the critical interchain
Dzyaloshinskii-Moriya coupling, D, vanishes as J ′4/J 3 at small
interchain coupling J ′. The ordering wave vector of the spiral state
varies continuously and is q = (π,0) for J ′ = 0 and nonzero D.
The region of stability of the CAF state is very small since DMax is
estimated to be less than 10−4J.

CAF order relative to spiral order. In any region of the phase
diagram where spiral order is stable for D = 0, the DM
interaction will further stabilize this phase relative to CAF
order.

Since both gD and gN have the same exponential growth for
small J ′, a DM interaction with gD(0) greater than the untuned
(antiferromagnetic) part of gN (0) will overcome the CAF order
as gD will grow to be of O(1) first. The DM interaction favors
neighboring Neel chains to be aligned perpendicular to each
other, but in the presence of γtw (which grows marginally), a
spiral state will be stabilized. This suggests the phase diagram
shown in Fig. 6 with a transition between the CAF and spiral
states at D ∝ J ′4/J 3 for small J ′/J . This transition is expected
to be first order, so the RG crossover between these two states
is only approximate. However, because CAF order is only
weakly favored, at order (J ′/J )4, the maximum D for which
CAF order survives will also be very small and is estimated
from the RG analysis to be less than 10−4J if J ′

c � 0.3J .
Even if the interchain coupling for Cs2CuCl4 is such as to
stabilize CAF order in the absence of any DM interaction, the
estimated DM interaction for Cs2CuCl4, D ≈ 0.05J , is much
greater than what is required to stabilize spiral order.

One can also consider the effect of an intrachain DM
interaction with the Hamiltonian

∑
n,y D′ · (Sn,y × Sn+1,y).

This interaction can promote several different phases even
in a single spin-1/2 chain for interchain DM coupling, D′,
comparable to J .32 For D′ � J , it has little effect on the phase
diagram shown in Fig 6. One can show that the primary effect
of D′ is to renormalize the interchain DM coupling, D →
D − D′J ′/2J .33 For D = 0, this implies that D′ � O(J ′3/J 2)
will stabilize spiral order at small J ′/J . For nonzero D and
|D′| ∼ |D| or smaller, the intrachain DM coupling can slightly
tilt the ordering plane and/or slightly shift the phase boundary
between CAF and spiral, depending on the relative directions
of D and D′. This can be understood from the fact that, for
small J ′/J , the CAF and spiral states exhibit essentially the
same AF order along a chain and only differ significantly in
how the chains order with respect to each other.

VII. CONCLUSIONS AND DISCUSSION

In summary, the full RG equations for the HAF on an
anisotropic triangular lattice describe the intense competition
between CAF and incommensurate spiral orders. A tiny
perturbation of O(J ′/J )4 can tilt the balance between these
two states at small J ′/J , while a larger perturbation is
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needed to stabilize dimer order. As predicted by Starykh and
Balents,14 the CAF state is stable at sufficiently small J ′/J , but
either an interchain DM interaction or a ferromagnetic second
neighbor interchain interaction ofO(J ′/J )4 would stabilize an
incommensurate spiral state. By contrast, an O(J ) intrachain
interaction that pushes backscattering, γbs , toward zero or an
interchain dimer coupling, which is larger than O(J ′/J )4 is
needed to stabilize dimer order. The fact that such an extremely
weak interchain DM coupling is sufficient to stabilize spiral
order at all J ′/J , implies that Cs2CuCl4 with an estimated
D ≈ 0.05J , is well within the region of stability for spiral
order and is not close to a CAF instability.

For zero or extremely weak DM coupling, the RG analysis
suggests a direct transition from CAF to spiral order as J ′
increases, without an intermediate dimer phase. This transition
is estimated to occur at J ′

c � 0.3J and is compatible with
recent DMRG studies, which find evidence in favor of spiral
order for J ′ � 0.5J .18 On the other hand, this estimate would
seem to be in contradiction to other studies that have concluded
that spiral order is lost at significantly larger values of J ′/J ,
such as at J ′/J ∼ 0.9.6,12,13 However, numerics, which are
interpreted as loss of spiral order, could be compatible with
the weak spiral order expected in the presence of quantum
fluctuations. Furthermore, since the wavelength of the spiral
grows rapidly with decreasing J ′/J and its energy lies so
close to that of the CAF as well as to many disordered states,
it is important to use open boundary conditions in finite-size
studies.

The RG analysis connects directly to numerical studies on
finite systems where, for small J ′/J , second neighbor chains
couple ferromagnetically, the opposite to what one would ex-
pect for CAF order. For the infinite system, the static interchain
spin-spin correlation function, C2(x) = 〈(−1)x 	Si,y · 	Si+x,y+2〉,
is ferromagnetic and of order (J ′/J )2 at x = 0 even in the
CAF state. The RG analysis suggests that these ferromagnetic
correlations persist to quite large x since the ferromagnetic
coupling between chains grows with increasing system size up
to chain lengths that are smaller than, but comparable to LFM =
A(J/J ′)2. The ED and DMRG results are consistent with this
and suggest that the antiferromagnetism is hidden by larger
ferromagnetic fluctuations except at very long length scales.
One might be able to see these ferromagnetic correlations in
the CAF state using cluster or series expansion calculations
for the infinite system.

While our numerical studies are consistent with the RG
analysis, they do not provide any direct evidence of CAF
order. Given the long-length scales involved for J ′ < J ′

c,
it would be extremely challenging to identify this order
from finite-system-size studies. For small J ′/J , a large static
magnetic susceptibility has been observed at or very close to
qx = π ,6,13 but this feature is common to both CAF and spiral
fluctuations. The two states would be distinguished by the qy

dependence of the susceptibility and very long chain lengths
are required for these correlations to develop. The interchain
Neel susceptibility, χs , together with finite-size scaling may
provide one fruitful avenue for such studies. For example, one
could simply look for any indication of a sign change in χs

with increasing L for J ′/J < 0.5. Our numerical studies are
restricted to L < 30, because of the high precision required to

extract RG parameters, and give no evidence of a sign change.
However, to within the expected accuracy, the numerics are
consistent with the RG prediction that quadratic and cubic (in
J ′/J ) fluctuation effects do not select any order.
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APPENDIX: APPROXIMATE ANALYTIC SOLUTIONS

To better understand the flow of gN and γtw under the
RG, one may attempt solving a reduced subset of the given
β functions [Eqs. (4)–(8)] analytically. If one drops terms in
the β functions that contribute at quartic and higher orders
(in J ′/J ) to gN , partial analytic solutions can be obtained
that yield insight into the initial conditions corresponding to
“tuning,” i.e., to no exponential growth in gN . This leaves us
with the following reduced β functions:

∂lγbs = γ 2
bs, ∂lγM = γ 2

M, (A1)

∂lγtw = − 1
2γbsγtw + γMγtw, (A2)

∂lgN = gN − 1
2γbsgN + 1

4γ 2
tw , (A3)

which lead to the analytic expressions:

γbs(l) = γbs(0)

1 − γbs(0)l
, γM (l) = γM (0)

1 − γM (0)l
, (A4)

γtw(l) = γtw(0)

√
1 − γbs(0)l

1 − γM (0) l
, (A5)

gN (l) =
[
γ 2

tw(0)

4

∫ l

0

e−t
√

1 − γbs(0)t

(1 − γM (0)t)2 dt + gN (0)

]

× el
√

1 − γbs(0)l (A6)

For a nonzero γM (0), the integral in Eq. (A6) cannot
be expressed in terms of elementary functions. However,
assuming γM (0)l � 1, it is possible to expand 1/(1 − γMt)2

and find an expression for gN (l) as series of lower, incomplete
γ functions:

gN (l) =
[

γ 2
tw(0)

4
e
− 1

γbs (0)
√

−γbs(0)
∑

n

(n + 1)γ n
MFn(l)

+ gN (0)

]
el

√
1 − γbs(0) l, (A7)

where Fn(l) is given recursively by

Fn(l) =
[
�L

(
n + 3

2
,l − 1

γbs(0)

)
− �L

(
n + 3

2
, − 1

γbs(0)

)

−
n∑

m=1

(−1)mn!

γ m
bs (0)(n − m)!

Fn−m(l)

]
. (A8)
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Each term in Eq. (A7) is accompanied by a power of γM (0)
and also we have a γ 2

tw(0) factor that multiplies the sum.
Since the above analytic expressions for the couplings were
derived by neglecting quartic and higher-order contributions,
we dismiss all terms in the expansion except the first two
terms. Finally, using the above analytic expressions, the tuned
initial condition for the Neel-Neel coupling, gcrit

N (0), is found
[γbs(0) = −0.23]:

gcrit
N (0)=−[0.27620(J ′/J )2 + 1.20152(J ′/J )3+O(J ′/J )4].

(A9)

It is also possible to determine the coefficient of the quartic
term in the above expansion numerically, which gives 8.0.
Note that we have taken gcrit

N (0) as the initial value for

which gN (lfinal) = 0 [γtw(lfinal) = 1], which for any J ′ � 0.2
is not any different from other ways of defining tuning [e.g.,
gN (lfinal) = −1]. However, the estimated value, J ′

c/J , for the
transition from CAF to spiral, would be smaller if gN (lfinal) < 0
was used.

Finally, note that in the above calculation γbs(0) = −0.23
was used, which is the coupling of backscattering term at
4a0 rather than a0 where γM and γtw have their bare values.
Of course, nothing is special about a0 and one can repeat the
same analysis at any arbitrary length, knowing the values of the
couplings at that length scale. Thus what has been neglected
is the small growth in γM and γtw from a0 to 4a0. Taking into
account this growth of these couplings, the quadratic and cubic
parts of gcrit

N (0) become, respectively, 0.291374 and 1.31288.
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