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Accurate numerical results are derived for transport properties of Kondo impurity systems with potential
scattering and orbital degeneracy. Using the continuous-time quantum Monte Carlo (CT-QMC) method, static
and dynamic physical quantities are derived in a wide temperature range across the Kondo temperature TK.
With strong potential scattering, the resistivity tends to decrease with decreasing temperature, in contrast to the
ordinary Kondo effect. Correspondingly, the quasiparticle density of states obtains the antiresonance around the
Fermi level. Thermopower also shows characteristic deviation from the standard Kondo behavior, while magnetic
susceptibility follows the universal temperature dependence even with strong potential scattering. It is found that
the t-matrix in the presence of potential scattering is not a relevant quantity for the Friedel sum rule, for which
a proper limit of the f -electron Green’s function is introduced. The optical theorem is also discussed in the
context of Kondo impurity models with potential scattering. It is shown that optical theorem holds not only in
the Fermi-liquid range but also for large energies, and therefore is less restrictive than the Friedel sum rule.
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I. INTRODUCTION

A single magnetic impurity embedded into the sea of
conduction electrons shows Kondo effect. Although this
problem has been almost continuously studied during the last
40 years, dynamic and magnetic properties of the Kondo and
related models still attract great interest in condensed matter
physics. Much less attention is paid to anomalous decrease of
resistivity with lowering temperature since such decrease can
be caused by many different mechanisms. The first attention to
this problem is traced back to the 60s, when resistivity of dilute
Fe and Cu alloys in Rh matrix revealed a new type of anomaly
at low temperatures.1 Namely, it was observed that resistivity
decreases with decreasing temperature in these compounds.
Obviously a ferromagnetic exchange interaction of a localized
spin with conduction electrons is the first candidate. In fact,
later study on dilute Gd and Nd impurities in some La alloys
such as LaAl2,2 and LaSn3

3 explained the resistivity anomaly
in terms of the ferromagnetic exchange model,4 and was
referred to as the “reverse Kondo effect.”

In dilute Rh alloys, however, the measured susceptibility
indicates antiferromagnetic exchange interaction in these
materials in contrast with the behavior of the resistivity. As an
alternative interpretation, Fischer found that a strong potential
scattering can change the sign of the Kondo logarithmic term
in the resistivity.5 The treatment has been much extended and
deepened by Kondo,6 who uses the scattering phase shift δv

of conduction electrons at the Fermi surface. The strength
v of the potential scattering is related to the phase shift
by tan δv = −πvρc where ρc is the density of states at the
Fermi surface. The leading logarithmic term in the electric
resistivity changes sign when |δv| exceeds π/4, defining a
critical value for the potential scattering as vcr ≡ 1/(πρc).
The range |v| > vcr is called the reverse Kondo range. In this
range the resistivity decreases with decreasing temperature as
a consequence of the strong potential scattering. Regarding

thermodynamic properties, on the other hand, Kondo revealed
that they show universal behavior even in the reverse Kondo
range with strong potential scattering.

Since ordinary scattering events are always present in real
systems, the Kondo problem with strong potential scattering
might have relevance also in other compounds that show
the Kondo effect. For example, the question of relevance
of ordinary scattering in URu2Si2 arises, because (i) recent
STM experiments have found that the density of electronic
states shows Fano lineshape (i.e., antiresonance) in the normal
phase,7 and (ii) in the dilute system UxTh1−xRu2Si2 the
resistivity decreases with decreasing temperature.8

In this paper we study the effect of strong potential
scattering on physical properties of the Kondo impurity. In
order to deal with the Kondo effect beyond the weak coupling
regime, the continuous-time quantum Monte Carlo (CT-QMC)
method is employed.9–12 In the CT-QMC simulation it is most
convenient to take the N -component Coqblin-Schrieffer (CS)
model10,13 with potential scattering. The Hamiltonian is given
by

HCS[vCS]=
∑
km

εkc
†
kmckm +

∑
mm′

(Jf †
mfm′ + vCSδmm′ )c†m′cm,

(1)

where c
†
km and f

†
m are creation operators of conduction and

localized electrons, respectively, at the impurity site with
SU(N ) index m = 1, . . . ,N . The constraint

∑
m f

†
mfm = 1

is imposed, which removes the charge degrees of freedom.
The annihilation operator cm in the Wannier representation
is related to ckm by cm = N

−1/2
0

∑
k ckm with N0 being the

number of lattice sites. We observe the relation,∑
mm′

f †
mfm′c

†
m′cm =

∑
mm′

X̃mm′c
†
m′cm+ 1

N
nc ⇒

N=2
2Sf · sc+1

2
nc,

(2)
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FIG. 1. (Color online) (Left) Temperature dependence of the static susceptibility for the Kondo model (N = 2) with potential scattering.
Potential scattering v and exchange J are chosen as v = 0, − 0.85 (J = 0.3), and v = −0.48 (J = 0.44). (Right) Kondo temperature for
several values of potential scattering obtained in simulation. The theoretical result TK = Dexp[1/(2ρJ̃ )] is also shown as a dashed line.

where X̃mm′ ≡ f
†
mfm′ − δmm′/N are SU(N ) generators, and sc

and nc are spin and charge density operators of conduction
electrons at the impurity site. The SU(N ) Kondo Hamiltonian
HK[v] with potential scattering v is introduced by the relation,

HCS[vCS] = HK[v = vCS + J/N], (3)

in view of Eq. (2). Some typical cases of the model given by
Hamiltonian (1) are as follows:

(i) The conventional CS model with vCS = 0, or v = J/N ;
(ii) The SU(N ) Kondo model with v = 0, or vCS = −J/N ;

(iii) The reverse Kondo range with |v| > vcr = 1/(πρc).
On the basis of accurate numerical results for strong

potential scattering, we investigate the reverse Kondo range
in detail. Furthermore, properties are studied by changing the
orbital degeneracy N for the SU(N ) Kondo model. This paper
is organized as follows. In Sec. II numerical results for the
magnetic susceptibility are presented. The characteristics of
the impurity t-matrix are discussed in Sec. III. Furthermore,
numerical results are given for transport properties. Section IV
is devoted to discussion of quasiparticle properties including
the Friedel sum rule and optical theorem. The summary of this
paper will be given in Sec. V.

II. MAGNETIC SUSCEPTIBILITY AND UNIVERSALITY

The static susceptibility is obtained from the imaginary time
data by integration as

χ (T ) =
∫ β

0
dτχ (τ ) =

∫ β

0
dτ 〈TτM

H(τ )M〉, (4)

where the dipole moment M is given by M = ∑
α mαf †

αfα

with coefficients mα chosen as
∑

α mα = 0, and the superscript
H denotes the Heisenberg picture.10 We use a constant density
of states for the conduction electrons in the simulation as

ρc(ε) = ρ0
(D − |ε|), (5)

where ρ0 = 1/(2D) with D = 1 as a unit of energy. In the
numerical study, we determine the Kondo temperature from
the low-temperature static susceptibility as

T −1
K = χ (T → 0)/CN, (6)

where CN is the Curie constant. The critical strength vcr is
given by vcr = 1/(πρ0) = 0.637.

From now on until Sec. IIIB we confine ourselves to the
case of orbital degeneracy N = 2, which corresponds to the
original Kondo model. The left part of Fig. 1 shows χ (T )
of the Kondo model with several values of the potential
scattering v. We observe in Fig. 1 that the susceptibility
shows universal behavior as a function of T/TK independent
of the value of the potential scattering. Note that the data
with v = −0.85 as shown by blue symbols are in the reverse
Kondo range with δv being larger than π/4. Even in this case,
the temperature evolution of the magnetic susceptibility shows
the universal behavior.

In order to understand the behavior of the magnetic
susceptibility shown in Fig. 1, we recall the result obtained
by Kondo.6 He showed in Ref. 6 that the effect of ordinary
scattering is entirely absorbed into an effective exchange
interaction J̃ = J cos2 δv which remains antiferromagnetic for
all values of the potential scattering. Therefore, thermody-
namic quantities behave universally even for large values of v.
Correspondingly, the low-temperature energy scale is charac-
terized by temperature TK = Dexp[1/(2ρcJ̃ )] associated with
the effective exchange interaction J̃ . The right part of Fig. 1
shows the Kondo temperature TK for different values of v.
The result TK = Dexp[1/(2ρcJ̃ )] obtained by Kondo6 is also
shown for comparison.

III. TRANSPORT COEFFICIENTS

A. t-matrix and Fano lineshape

We have already shown in Eq. (2) that the Kondo and CS
Hamiltonians are related to each other through a potential
scattering term. In the simulation for the CS model, instead of
the bare Green’s function g, another Green’s function gCS is
used that absorbs the potential scattering vCS:

gCS = g/(1 − vCSg), (7)

where g(z) = ∑
k(z − εk)−1. Then the simulation gives the

renormalized Green’s function G of conduction electrons. We
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introduce a quantity tCS by the relation,

G = gCS + gCStCSgCS. (8)

On the other hand, the t-matrix t of conduction electrons is
defined by the relation,

G = g + gtg. (9)

By comparing Eqs. (8) and (9), we obtain t from tCS by the
relation,

t = vCS/(1 − vCSg) + tCS/(1 − vCSg)2. (10)

In the special case of v = vCS + J/2 = 0, we recover Eq. (33)
in Ref. 10.

In the CT-QMC simulation, the t-matrix is derived in the
imaginary-time domain. In order to obtain properties in the real
energy domain, analytic continuation of the numerical data is
done by using Padé approximation.14 The data obtained by
CT-QMC are so accurate that the Padé approximation works
well to perform the analytic continuation. In the approximation
we construct the rational function that provides approximate
values at an arbitrary real energy point up to degree ∼103.
We checked the accuracy of the t-matrix obtained in the real
energy domain by comparing the lines derived for the different
channels (e.g., for spin up and down when N = 2). We note
that analytic continuation may cause a problem in CT-QMC
when the spectrum is complicated since the extrapolation does
not work well in this case.

Figure 2 shows the energy dependence of the impurity
t-matrix for three different values of the potential scattering
at various temperatures. To simplify the notation, we take the
convention in this paper that energy including an infinitesimal
imaginary part, ε + iδ, is simply written as ε. The left panel
of Fig. 2 with the value v = 0.15 corresponds to the CS
model, the center panel with v = 0 to the ordinary single-
channel Kondo model, while the right panel corresponds to
a strong potential scattering |v| > vcr = 0.637. In the case
of the ordinary single-channel Kondo model the spectrum
is symmetric with respect to the Fermi energy, because the
model has particle-hole symmetry in this limit. Increasing the
value of the potential scattering, the Kondo peak first moves to
higher frequencies above the Fermi energy. Finally, for strong

potential scattering the spectrum becomes highly asymmetric
showing an antiresonance around the Fermi level.

Interpretation of the asymmetric spectrum with large |v| can
be provided in terms of the Anderson model, which reproduces
the Kondo model in the limit of deep local electron level εf and
large Coulomb repulsion U as compared with hybridization
V . Namely we take the limits (εf → −∞, εf + U → ∞,
and V 2 → ∞, keeping the ratio J = −2V 2/εf finite), which
we call the Schrieffer-Wolff limit. Now we construct the f -
electron Green’s function Gf v of the Anderson model in the
presence of potential scattering. Let us first consider the pure
case v = 0. Introducing the irreducible part F (z), we obtain
the Green’s function,

Gf (z) = F (z)[1 + V 2g(z)Gf (z)]. (11)

In the presence of potential scattering, the f -electron Green’s
function Gf v(z) satisfies the following relation:

Gf v(z) = Fv(z)[1 + V 2gv(z)Gf v(z)], (12)

where gv(z) = g(z)/[1 − vg(z)].
The t-matrix for the Kondo model is given by

t(z) = v + V 2Fv(z)

1 − g(z)[v + V 2Fv(z)]
= tv(z) + V 2Gf v(z)

[1 − vg(z)]2
,

(13)

where tv = v/(1 − vg). It is clear from Eq. (13) that the t-
matrix reduces to

t(z) → V 2Gf (z), (14)

in the limit of v = 0 as we expect. We derive from Eq. (13),

V 2Gf v = (1 − vg)2(t − tv), (15)

which remains finite in the Schrieffer-Wolff limit.
As the simplest case, let us consider the noninteracting

Anderson model with U = 0. Then we obtain F (ε) = 1/(ε +
iδ − εf ) ≡ 1/ξ , which is not affected by potential scattering.
The imaginary part of the f -electron Green’s function is given
by

−Im Gf v(ε) = 1

V 2
· πρ0(v + V 2/ξ )2

1 + π2ρ2
0 (v + V 2/ξ )2

. (16)
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FIG. 2. (Color online) Energy dependence of −Im t(ε) for the Kondo model (N = 2) with potential scattering with J = 0.3. Potential
scattering terms are chosen as v = 0.15 (left), v = 0 (center), and v = −0.85 (right). Values v = 0.15 and v = 0 correspond to the CS and
ordinary Kondo models, respectively.
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Under the transformation v → −v, the imaginary part of the
Green’s function given in Eq. (16) remains the same if we put
ε − εf → εf − ε. Physically it means that the antiresonance
is reflected with respect to the energy εf when v changes
sign. Expression (16) can be put into the standard form of the
Fano lineshape.15 Introducing the dimensionless parameter q

by 1/q ≡ πvρ0, we rearrange the terms as follows:

−V 2

v
Im Gf v(ε) = 1

q + 1/q
· (x + q)2

x2 + 1
, (17)

where x is the dimensionless energy defined by

x = v

V 2

(
q + 1

q

)
ξ + 1

q
. (18)

The degree of asymmetry is determined by the parameter q

that is independent of hybridization.
Expression (16) describes the characteristics of the simula-

tion results for t(ε) shown in Fig. 2, provided we put εf ∼ 0.
We note that V 2Gf v(z) is not the same as the t-matrix t(z)
of the Kondo model as shown in Eq. (13). However, the
characteristic lineshape comes almost from V 2Gf v(z) since
tv(z) and 1 − vg(z) do not have strong dependence on z.
The asymmetric spectrum for strong potential scattering has
interesting consequences with respect to transport properties
such as the resistivity or thermopower. This problem is
discussed in the next subsection.

B. Relaxation time and transport coefficients

We rely on the Boltzmann equation approach16 to derive
transport coefficients. Then the relaxation time τ (ε) is related
to the t-matrix as17

τ (ε)−1 = −2Im t(ε). (19)

Let us introduce the integrals:18

Ln =
∫ ∞

−∞
dε

(
−∂f (ε)

∂ε

)
τ (ε)εn, (20)

in terms of which the conductivity σ , thermopower S, and
thermal conductivity κ are expressed as

σ (T ) = L0, (21)

S(T ) = − 1

T

L1

L0
, (22)

κ(T ) = 1

T

(
L2 − L2

1

L0

)
. (23)

The integrals in Eq. (20) are evaluated numerically with the
CT-QMC data for the t-matrix.

Although many theoretical attempts were made to derive
the transport properties for the Kondo problem analytically
in the whole temperature range, none of these attempts was
successful. However, there are correct results in limiting
cases such as Hamman’s formula19 for T 
 TK, Fermi-liquid
results20 for T � TK, or expressions for large values of the
orbital degeneracy N .21 In the local Fermi-liquid range at
low temperatures, the resistivity R(T ) shows the following
temperature dependence:

R(T )/R(0) = 1 − α (T/TK)2 , (24)

where we have used the relation R(T )/R(0) = σ (0)/σ (T ),
and α is a numerical coefficient. For large values of the orbital
degeneracy N , the 1/N expansion gives the coefficient α in
Eq. (24) as21

α = π2

(
1 − 8

3N

)
. (25)

This limiting result gives checkpoint of our numerical calcu-
lations.

C. Behavior under varying potential scattering

Figure 3 shows the temperature dependence of the nor-
malized electric resistivity for the Kondo model (N = 2)
across the Kondo temperature. For |v| < vcr = 0.637, the
resistivity follows universal behavior as a function of T/TK.
As the potential scattering increases beyond the critical
value, the resistivity still follows the universal behavior
in the Fermi-liquid range T � TK. As temperature increases,
the resistivity starts to deviate from the universal curve
around the Kondo temperature T ∼ TK, and shows increasing
behavior as the temperature is further increased. In the
temperature range T 
 TK, we find that the resistivity for
strong potential scattering can be described well with Kondo’s
formula6 shown by the dashed line in Fig. 3. However, Kondo’s
formula cannot describe the properties for T � TK. Based on
the numerical results for T � TK, the coefficient α in Eq. (24)
appears to be independent of v.

The left panel of Fig. 4 shows the temperature dependence
of normalized thermal conductivity for the Kondo model
(N = 2) under varying the potential scattering. The thermal
conductivity also follows the universal behavior even for large
values of the potential scattering in the temperature range
T � TK. Namely we obtain

κ(T )

T

/ (
κ(T )

T

)
0

= 1 + γ

(
T

TK

)2

, (26)
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FIG. 3. (Color online) Temperature dependence of the nor-
malized resistivity for the Kondo model (N = 2) with potential
scattering. Potential scattering v and exchange J are chosen as
v = 0,−0.85 (J = 0.3), and v = 0.78,−0.48,−0.78 (J = 0.44). The
dashed line corresponds to Kondo’s result for the resistivity given in
Ref. 6.
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FIG. 4. (Color online) Temperature dependence of normalized thermal conductivity (left) and thermopower (right) for the Kondo model
(N = 2) with potential scattering. Potential scattering v and exchange J are chosen as v = 0 (J = 0.3), and v = 0.78,−0.48,−0.78 (J = 0.44).
The dashed line in the right panel corresponds to the Fermi-liquid behavior S(T ) ∼ T .

with γ being a numerical constant independent of v. Increasing
further the temperature, thermal conductivity with large po-
tential scattering highly deviates from the universal behavior.
Namely, it decreases with increasing temperature for T 
 TK.

The right panel of Fig. 4 shows the temperature dependence
of thermopower for the Kondo model (N = 2) under varying
potential scattering. The asymmetry of the impurity t-matrix
is most reflected in the behavior of thermopower. This is clear
if we regard explicitly the expression for the integral L1 given
in Eq. (20):

L1 = 1

2

∫ ∞

−∞
dε

f ′(ε) ε

Im t(ε)
. (27)

Because of the factor ε in the numerator, the thermopower
measures the asymmetry in the energy dependence of Im t(ε).
Since the spectra is completely symmetric in the case of the
ordinary Kondo model (v = 0), the thermopower vanishes
in this case as we obtain in the simulation (see Fig. 4). On
the other hand, the thermopower acquires strong temperature
dependence when the potential scattering term is increased
from v = 0. The thermopower in the simulation shows Fermi-
liquid property,

S(T ) = β

(
T

TK

)
, (28)

for T � TK. The coefficient β is negative for v < 0, while it
is positive for v > 0. The different sign of β can be simply
understood if we recall that the asymmetry in the lineshape
of Im t(ε) around the Fermi level is reversed against the sign
change v → −v. Thus, the integrals given in Eq. (20) have
the properties L0(L2) → L0(L2) and L1 → −L1 under the
sign change. Namely, the electric resistivity R(T ) and thermal
conductivity κ(T ) remain the same under v → −v, while the
thermopower changes sign as S(T ) → −S(T ). We have indeed
obtained these behaviors in the simulation as it can be seen in
Figs. 3 and 4.

D. Behavior under varying orbital degeneracy N

Let us now study the effect of orbital degeneracy. The left
panel of Fig. 5 shows the temperature dependence of the
normalized electric resistivity for large values of the orbital
degeneracy for the SU(N ) Kondo model with the condition
v = J/N , which corresponds to the case of the CS model,
across the Kondo temperature. We observe again the universal
behavior for a given value of the orbital degeneracy N .
In contrast to the behavior of the magnetic susceptibility,
the resistivity decreases monotonically as the temperature is
increased even for large N . In order to understand this feature,
we assume that the t-matrix at low temperature is determined
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FIG. 5. (Color online) (Left) Temperature dependence of the normalized resistivity for the SU(N ) Kondo model with the condition v = J/N

for orbital degeneracies N = 8 with J = 0.075, 0.1 and N = 50 with J = 0.0115. (Right) Orbital degeneracy N dependence of the coefficient
α of the T 2 term in the low-temperature resistivity defined in Eq. (24). The inset shows the scaling behavior of the resistivity for different
orbital degeneracies including α.
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by the quasiparticle density of states, which is approximately
given by the effective Anderson model. Namely we assume

t(z) = V 2Gf (z), (29)

where V is the effective hybridization and Gf is the Green’s
function of the local electron in the effective Anderson model.
Then the Sommerfeld expansion of the conductivity leads to

σ (T ) ∼
∫ ∞

−∞

1

ρf (ε)

(
−∂f (ε)

∂ε

)
dε = 1

ρf (0)

(
1 + π2

6
(kBT )2

×
[

2

(
ρ ′

f (0)

ρf (0)

)2

− ρ ′′
f (0)

ρf (0)

]
+ O(T 4)

)
, (30)

where

ρf (ε) = −π−1ImGf (ε). (31)

We obtain the resistivity R(T ) = σ (T )−1 from Eq. (30).
Using the quasiparticle density of states for the noninteracting
Anderson model with v = 0, we obtain

R(T ) ∼ ρf (0)

[
1 − π2

3
(kBT )2 1

(η2 + �2)
+ O(T 4)

]
, (32)

where η and � are the shift and the width of the resonance
peak appearing in ρf (ε) at low temperatures. Irrespective of
the magnitude of parameters η and �, the coefficient of the T 2

term in the low-T resistivity is always negative. Hence R(T )
given by Eq. (32) decreases as temperature increases for any
value of N . Namely, the quasiparticle picture is consistent with
the monotonous change obtained in the simulation.

The resistivity obtained numerically has T 2 temperature
dependence at low temperatures, which is expressed generally
in Eq. (24). The right panel of Fig. 5 shows the coefficient
α of the T 2 term for several values of the orbital degeneracy
N obtained in the simulation. The result of 1/N expansion21

given in Eq. (25) is also shown in the figure. We find that
the numerical data coincide with the 1/N expansion result
for large values of the degeneracy N . Thus, our CT-QMC
simulation has produced accurate numerical results for large
values of orbital degeneracies N → ∞, which might be
difficult in the case of other numerical techniques. For small
values of degeneracy N , the coefficient α shows linear-N
dependence in our simulation.

Now we fit the simulated N dependence of α by a
rational function as α(N ) = F

(l)
1 (N )/F (m)

2 (N ), where F
(l)
k =

ck0 + ck1N + · · · cklN
l . We find that the minimal function

which can give a good fit to the numerical data has the form,

α(N ) = c10 + c11N + c12N
2

1 + c21N + c22N2
. (33)

The limiting cases N → 0 and N → ∞ are obtained from the
formula (33) as

α(N → 0) ∼ c10 + (c11 − c10c21)N, (34)

and

α(N → ∞) ∼ c12

c22

[
1 − 1

N

(
c11

c12
− c21

c22

)]
. (35)

Choosing the coefficients in Eq. (33) as c10 = 0.3; c11 = 0.53;
c12 = 0.17; c21 = 0.1; c22 = 0.0173, the numerical data can be
fitted well (see Fig. 5). The result of 1/N expansion21 given in
Eq. (25) is also reproduced in the large-N range. In the inset
of the right part of Fig. 5 we plot the normalized resistivity
for different values of orbital degeneracy N as a function of
α(N )1/2T/TK. The results show the scaling behavior of the
resistivity in the Fermi-liquid range. For T � TK, the scaling
property breaks down.

In Fig. 6, thermal conductivity κ and thermopower S are
shown for the SU(N ) Kondo model with orbital degeneracy
N = 8. The low-T behaviors of κ(T ) and S(T ) are consistent
with the Fermi-liquid result given in Eqs. (26) and (28). As the
temperature is further increased, the thermopower S(T ) has
a peak, while the thermal conductivity κ(T ) monotonously
increases. Both quantities show universal behavior as a
function of T/TK.

Note that the coefficient β for S(T ) has a positive sign for
large N . This behavior is explained as follows. In a manner
similar to Eq. (30), L1 is given by

L1(T ) =
∫ ∞

−∞

ε

ρf (ε)

(
−∂f

∂ε

)
= −2π3

3�
ηT 2. (36)

Using the result for L0 given by Eq. (32), we obtain S(T ) in
the lowest order of T as

S(T ) = 2π2

3

η

η2 + �2
T = βT . (37)
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FIG. 6. Temperature dependence of normalized thermal conductivity (left) and thermopower (right) for the SU(N ) Kondo model with the
condition v = J/N for orbital degeneracy N = 8. Potential scattering terms are chosen as v = 0.009 (J = 0.075) and v = 0.0125 (J = 0.1).
The dashed line corresponds to the Fermi-liquid behavior given in Eqs. (28) and (26).
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Since η ∼ TK > 0 for large N , we obtain β > 0. On the other
hand, we obtain η = 0 for the symmetric Anderson model with
N = 2. In this case, the sign of β depends on the sign of v as
it can be observed in Fig. 4.

IV. QUASIPARTICLE PROPERTIES

A. Friedel sum rule

At temperatures T � TK, the conduction electrons screen
the magnetic impurity and they together form a local singlet. In
this range the ground state is a local Fermi liquid. The Friedel
sum rule (FSR) relates the phase shift for scattering of the
conduction electrons by the impurity to its charge. In the case
of the Kondo model, the f -electron Green’s function cannot be
defined because there is no charge degree of freedom in this
localized model since it is eliminated. Instead, the impurity
t-matrix is used to describe the effect of exchange and potential
scatterings. In Sec. III, we have related the t-matrix to the
Green’s function Gf v(z) of localized electrons with potential
scattering v. It is the quantity Gf v(z) that is expected to keep
the FRS in the presence of v.

The FSR reads17

V 2Gf (0) = − i

πρ0
sin2

( π

N

)
, (38)

since the occupation number is unity in the Kondo model.
Figure 7 shows the Green’s function Gf v(0) obtained

by simulation at finite temperatures. For small potential
scattering the simulation results show good agreement with the
expectation given in Eq. (38). As the value of v is increased,
Re V 2Gf v(0) is still close to zero, but −Im V 2Gf v(0) highly
deviates from the theoretical result. The reason for this
deviation is the following. The theoretical result given in
Eq. (38) is realized at T = 0, which is almost realized for T �
TK in the simulation. As the value of the potential scattering
is increased, however, the corresponding Kondo temperature
TK = De1/(2ρJ̃ ) rapidly decreases since the effective coupling
J̃ decreases rapidly.6 Therefore, we have to go to lower and
lower temperatures in the simulation to achieve the condition
T � TK, which is not fulfilled in Fig. 7 for large values of
v since the results are obtained for a fixed temperature value

 0
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FIG. 7. (Color online) Imaginary and real parts of the Green’s
function Gf v expressed in Eq. (15) at the Fermi level as a function
of potential scattering v together with the analytical result for
−Im V 2Gf v(0) obtained from the FSR (dashed line). The figure also
shows the inelastic scattering cross section σinel as blue triangles. The
numerical data are obtained at temperature β = 1/T = 1000.

β = 1/T = 1000. In principle it is possible to go to lower
temperatures in the simulation, but it becomes computationally
harder.

B. Optical theorem

The optical theorem is less restrictive than the FSR since
the former does not require the Fermi-liquid ground state.
Optical theorem is related to the unitarity of the S matrix,22

and it follows when the scattering of the conduction electrons
from the impurity is totally elastic at the Fermi level. Optical
theorem was originally formulated for problems of scattering
of a single particle. When the scattering event happens without
energy loss (i.e., it is totally elastic), there is a relation between
the square and the imaginary part of the t-matrix. To express
this relation, the S matrix is decomposed as23

S = 1 + iT , (39)

where we write the matrix element of the t-matrix T as
〈n|T |n′〉 = 2πδ(εn − εn′ )〈n|t |n′〉. Here, a state |n〉 represents
a single-particle state with momentum k and spin σ as
|n〉 = |kσ 〉. After some manipulations we obtain from relation
(39) that

〈k|SS†|k〉 − 1 = 2π

[
2π

∑
n

δ(εk − εn)|〈n|t |k〉|2

+ 2Im 〈k|t |k〉
]
. (40)

The first term of Eq. (40) in the right-hand side is related to
the elastic scattering cross section σel, while the second term
to the total scattering cross section σtotal as23,24

σel = −2π
∑

n

δ(εk − εn)|〈n|t |k〉|2, (41)

σtotal = 2Im 〈k|t |k〉. (42)

The inelastic scattering cross section σinel is the difference of
σtotal and σel as

σinel = σtotal − σel. (43)

For scattering only in the s channel and assuming spin
conservation, the inelastic cross section is expressed as24

σinel(ω) = (|s(ω)|2 − 1)/(2π ) = 2Im t(ω) + 2πρ0|t(ω)|2

= 2πρ0

[
1

πρ0
Im t(ω) + |t(ω)|2

]
, (44)

where s and t are eigenvalues of the S matrix and t-matrix,
respectively.

The eigenvalues s of the S matrix lie within the complex
unit circle. The scattering is completely elastic (i.e., σinel = 0)
when the unitary condition S S† = 1 is satisfied, which means
|s|2 = 1. In this case we have the relation,

|t |2 = − 1

πρ0
Im t, (45)

from Eq. (44).
The problem is formulated so far for single-particle

scattering, but it is more general and can be applied for
many-particle problems as well such as the single-channel
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Kondo model. It is the most easily understood in the limit of
ε → ∞, when the magnetic impurity is completely decoupled
from the conduction electrons. In this case the conduction
electrons scatter without energy loss, and the optical theorem
is held. Although the t-matrix is complicated and contains
many scattering events at low temperatures, strictly in the limit
of ε → 0 the optical theorem holds again. If we express the
t-matrix as

t = |t |eiθ , (46)

where θ is the phase of the t-matrix t . Equation (45) gives

−Im t(ε) = sin2 θ

πρ0
(47)

for the Kondo model with energy not only ε = 0 but also
ε → ∞. Namely, relation (47) is satisfied in the case when
the scattering is totally elastic. In the case of the ordinary
single-channel Kondo model (v = 0), θ = −π/2 at the Fermi
energy, so from Eq. (47) we recover the FSR,

−Im t(0) = 1

πρ0
. (48)

Let us discuss the optical theorem in the context of our
numerical data. Figure 7 shows the obtained inelastic scattering
cross section σinel as a function of potential scattering. Note
that σinel shows nonmonotonous behavior as a function of v.
Namely, σinel is almost zero for small values of the potential
scattering, but becomes nonzero as |v| is increased. With
further increase of |v|, however, σinel approaches to zero again.
Since TK decreases as the potential scattering increases, in the
large-v range the condition T 
 TK is satisfied at T = 10−3

used in the simulation. On the other hand, in the small-v range
we have the condition T � TK with the same value: T = 10−3.
It is confirmed in the simulation that the optical theorem
holds both at T � TK and T 
 TK, but not for T ∼ TK. This
happens because the ranges T � TK and T 
 TK correspond
to the limits ε/TK � 1 and ε/TK 
 1, respectively, where
expression (47) is satisfied as explained above.

V. SUMMARY

In this paper we have studied Kondo impurity models
with potential scattering and orbital degeneracy by using
the CT-QMC numerical technique. We have derived accurate
numerical results for the impurity t-matrix, thermal, and
transport properties in a wide temperature range across the
Kondo temperature TK. Properties in the reverse Kondo range
have been investigated in detail. The results shown in this
paper are numerically exact since CT-QMC does not use
any approximation. We have explicitly demonstrated that the
CT-QMC simulation technique gives numerically exact results
for large values of the orbital degeneracy N , which might be
difficult to achieve in the case of other numerical techniques.

For large values of the potential scattering, nontrivial
physics appears even in the impurity problem. Namely,
the resistivity shows an anomalous increase with increasing
temperature in contrast to the ordinary Kondo effect. This
unusual behavior is caused by an antiresonance developing
around the Fermi energy in the quasiparticle density of states
as the value of the potential scattering is increased. This

antiresonance does not influence the universal behavior of
the magnetic susceptibility. However, the sign of the Kondo
logarithmic term changes in the resistivity when the potential
scattering exceeds a critical value (i.e., in the reverse Kondo
range), which causes the resistivity decrease with decreasing
temperature.

We have studied the effect of strong potential scattering
on thermal and transport properties of the Kondo impurity,
and obtained that (i) the magnetic susceptibility follows the
universal temperature dependence even with strong potential
scattering; (ii) the resistivity also follows the universal temper-
ature dependence for small values of the potential scattering;
(iii) when the potential scattering exceeds a critical value, the
resistivity still shows universal behavior in the Fermi-liquid
range, but starts to deviate from the universal curve around
the Kondo temperature, and increases as the temperature is
further increased; (iv) the obtained temperature dependence of
the resistivity for T 
 TK in the reverse Kondo range agrees
quantitatively with Kondo’s theoretical result; (v) the thermal
conductivity also shows universal behavior in the Fermi-liquid
range, but highly deviates from the universal curve for T 

TK in the reverse Kondo range; (vi) the asymmetry of the
t-matrix developing with increasing value of the potential
scattering is most reflected in the temperature dependence
of the thermopower; and (vii) the sign of the thermopower
depends on the sign of the potential scattering.

In addition to the study of thermal and transport properties,
we have discussed the Friedel sum rule and optical theorem as
well. We have shown that the t-matrix of the Kondo model
in the presence of potential scattering is not the relevant
quantity for the Friedel sum rule. Instead, the Friedel sum
rule is satisfied with a proper limit of the f -electron Green’s
function. We have demonstrated that the optical theorem is
less restrictive than the Friedel sum rule, because the former
holds not only in the Fermi-liquid range, but for large energies
as well.

Finally we mention an interesting question of whether the
behavior found for strong potential scattering has relevance in
real systems. Note that recent STM experiments on URu2Si2
have found that the density of states shows Fano lineshape in
the normal phase, and in the dilute system UxTh1−xRu2Si2
the resistivity decreases with decreasing temperature. Since
some important aspect of the U ion with the non-Kramers
configuration 5f 2 may not be described by a localized spin
with S = 1/2, account of the strong potential scattering in
more realistic models is desirable. We hope that our results in
this paper will stimulate further study concerning the Fano
lineshape and other aspects, which reflect interplay of the
Kondo effect and potential scattering.
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