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Effects of many-electron jumps in the relaxation and conductivity of Coulomb glasses
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A numerical study of the energy relaxation and conductivity of the Coulomb glass is presented. The role
of many-electron transitions is studied by two complementary methods: a kinetic Monte Carlo algorithm and
a master equation in configuration space. A calculation of the transition rate for two-electron transitions is
presented, and the proper extension of this to multielectron transitions is discussed. It is shown that the inclusion
of two-electron transitions does not affect appreciably the conductivity in variable-range hopping in the regime
accessible by Monte Carlo simulations. Two- and three-electron transitions are important in bypassing energy
barriers which effectively block sequential one-electron transitions. Energy relaxation is much faster when they
are included.
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I. INTRODUCTION

At low temperatures, disordered systems with localized
electrons (e.g., on dopants of compensated doped semicon-
ductors or Anderson localized states in disordered samples)
conduct by phonon-assisted hopping. The theory of this
process goes back to Mott1 who invented the concept of
variable range hopping. In particular he derived the Mott law
for the temperature dependence of the conductance:

σ ∼ e−(T0/T )1/(d+1)
, (1)

where d is the dimensionality of the sample. If Coulomb
interactions are important one describes the system as a
Coulomb glass due to the slow dynamics at low temperatures.
As is well known (See Ref. 2 and references therein), the
single-particle density of states develops a soft gap at the Fermi
level, the so-called Coulomb gap. While this understanding
of the density of states is generally accepted, the situation
is less clear when it comes to describing dynamics in the
interacting case. Using the Coulomb gap density of states,
which is a result of interactions, in the variable range hopping
argument, assuming that it can be used in the same way as the
noninteracting density of states, yields the Efros-Shklovskii
law for conductance:

σ ∼ e−(T0/T )1/2
. (2)

This has been observed experimentally in many different types
of materials, like doped semiconductors,3–7 granular metals,8

or two-dimensional systems.9,10 However, on many occasions
it is difficult to reconcile the experimental value of T0 with the
theoretical predictions (see, for example, Ref. 11), and other
exponents, different from 1/2, have also been observed.12

A full theoretical understanding of the Efros-Shklovskii
law is still missing, in particular, the role of correlated jumps
of two or more electrons. At low temperatures, the system
can be trapped in metastable configurations, from which it
can be difficult to escape by single-electron transitions. By
a two-electron transition the system can jump out of this
metastable state even when the temperature is so low that the
probability of making the same transition sequentially is very

small because it passes through an activated intermediate state
with higher energy. Thus, one would expect the importance
of many-electron jumps to increase as the temperature is
decreased. This was also the conclusion of some works13,14

which used a method which identifies the full set of low-energy
states of the system and studies the possible transitions
between them. Because the number of accessible states grows
rapidly with increasing temperature and system size, this
method is restricted to small systems and low temperatures.

The importance of many-electron jumps was disputed by
Tsigankov and Efros,15 who used a kinetic Monte Carlo
method to study the dynamics of the Coulomb glass. Us-
ing only one-electron transitions, they confirm the Efros-
Shklovskii law both regarding the value 1

2 in the exponent
and also the value of T0 predicted by percolation theory.2

Including two-electron transitions, they find that the two-
electron jumps contribute about 2 orders of magnitude less to
the current than the one-electron jumps. Furthermore, they find
that the relative contribution of two-electron jumps decreases
with decreasing temperature. They conclude that two-electron
jumps are not important for the conductance of the Coulomb
glass, contradicting the previous works.13,14

Tsigankov and Efros15 explain their contradiction with the
previous works13,14 as coming from two sources: First, in
Ref. 14 the rates of two-electron transitions were overesti-
mated because they were assumed to be independent of the
distance between the two electrons involved in the transition.
This assumption is not reasonable, since it is the Coulomb
interaction which allows the remote electrons to exchange
energy, and the probability of a double jump should decrease
with distance. Second, the method of identifying the full set
of low-energy states used in Refs. 13 and 14 is numerically
costly and therefore limited to very small samples and low
temperatures (where only the states with the very lowest
energies are thermally excited). Therefore the conclusions
of Refs. 13 and 14 may be the result of small sizes and
may not be valid for larger systems. An attempt to answer
the second criticism was made in Ref. 16 where the size
dependence was studied and a scheme for extrapolation to
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infinite size was suggested. Using the same percolation method
in configuration space as in Ref. 14 (including the same
expression for the many-electron transition rate which was
questioned in Ref. 15) it was still found that many-electron
jumps become important at low temperatures. The difference
with the results of Ref. 15 is explained by the fact that
the method they used, studying all transitions between an
extensive set of low-energy states and involving up to six
electrons moving together, was more suited to identify the
crucial many-electron transitions. These could enhance the
conductance even if they happen only very rarely since they
could facilitate subsequent one-electron transitions. Since the
Monte Carlo method15 becomes impracticably slow at low
temperatures while the percolation in configuration space14,16

only can be applied for small systems and low temperatures,
several questions remained unanswered: Is the difference in the
expression for the many-electron transition rate the reason for
the difference in results? Were the conclusions of Refs. 13 and
14 wrong because the systems were too small or because they
did not use a sufficient number of states? At what temperatures
are the many-electron transitions important?

In this work we try to answer these questions by performing
a Monte Carlo simulation with the proper transition rates for
two-electron jumps. Our main conclusion is that in the regime
of T that can be explored by this method, two-electron jumps
slightly increase the conductance of the system at low T , but
not enough to change the one-electron behavior.

Previous works have focused on the influence of multielec-
tron transitions on conductance since this is the commonly
measured quantity. However, at low temperatures it can be
difficult to numerically find the conductance for two reasons:
First, the system should be equilibrated which is a slow process
at low temperatures. Second, to be in the linear response
regime one must use a small potential difference across the
sample, and the resulting current is so weak that one needs
a long sampling time to get accurate values. Therefore we
have chosen to study the relaxation of energy instead, this
being a quantity easily accessible in simulations. It is also well
known that experimentally17,18 the conductance is also slowly
relaxing, so that relaxation may be as important and relevant as
equilibrium conductance (although one should keep in mind
that the experiments of Ref. 18 are on granular aluminum
films, and it may be that this system is more complex than
the model discussed here accounts for). This allows us to
go to lower temperatures using the Monte Carlo method and
thereby bridge the gap to the configuration space method.
Here we report on the following: We give a direct calculation
of the transition rate for two-electron jumps, to replace the
unphysical one used in Refs. 14 and 16 and the approximate
one suggested in Ref. 15. A preliminary report of this part of
our work was already presented in Ref. 19. We also discuss the
extension of this result to many-electron transitions (Sec. II).
We have numerically studied the relaxation of the total energy
of the system, comparing the evolution when only allowing
one-electron jumps with the one where two- and three-
electron jumps are included. We have used both the Monte
Carlo algorithm suggested by Tsigankov and Efros15 and the
configuration space method of Refs. 14 and 16, but instead
of using the percolation method we have studied the master
equation on the set of low-energy states, thereby eliminating

any doubt about the accuracy of the percolation method. The
details of the models used and the numerical procedures are
given in Sec. III. The results on energy relaxation are presented
in Sec. IV and some results on conductance are presented in
Sec. V.

II. MANY-ELECTRON TRANSITION RATES

We start from the standard Coulomb gap Hamiltonian with
a perturbation term due to tunneling,

H0 =
∑

i

φic
†
i ci +

∑
i<j

Vij c
†
i cic

†
j cj +

∑
i<j

tij c
†
i cj + H.c., (3)

describing localized electrons interacting through Coulomb
forces. c

†
i and ci are operators creating and annihilating

an electron on site i, φi is the intrinsic energy of site
i, which we assume to be a random variable uniformly
distributed in the interval [−W/2,W/2], and Vij = e2/rij is
the Coulomb energy. The tunneling amplitude tij = I0e

−2rij /a

depends exponentially on the distance rij , a is the localization
radius, and the prefactor is I0 = e2/κa, with κ being the
dielectric constant.

We consider phonon-assisted tunneling due to the electron-
phonon interaction:

He-ph =
∑

q

∑
i

c
†
i ci(e

−iqri γqbq + H.c.), (4)

where bq is the phonon annihilation operator and γq is a
numerical factor depending on the exact phonon interaction.

The one-electron transition rate from site i to site j is well
known (see, for example, Ref. 2):

�ij ∝ |γq |2N (�E)e−2rij /a, (5)

where rij is the distance between the sites and �E is the
change in energy. N (E) = 1/(eE/T − 1) is the equilibrium
phonon density; for emission processes this has to be replaced
by N (E) + 1. We set kB = 1 so that temperatures and energies
are measured in the same units. In this work, following Ref. 13
we use the formula

�ij = τ0
−1e−2rij /a min(e−�E/T ,1), (6)

where τ0 contains material-dependent factors and energy-
dependent factors, which we approximate by their average
value; we consider it as constant and its value, of the order of
10−12 s, is chosen as our unit of time (note that in Ref. 15
a different formula was used, we do not believe that the
difference is of great significance, although it may change
numerical values).

A. Two-electron transition rates

In the Appendix we have calculated the transition rate for
a two-electron hop. The method obtains first the many-body
wave functions including disorder and interaction exactly and
transfer integrals up to second order in perturbation theory.
The electron-phonon matrix elements are calculated between
these wave functions. Using Fermi’s golden rule we arrive at
the expression for the transition rate, Eq. (A15),

�a→f = τ−1
0

I 2
0 V 2

13,24

(W/2)4
e−2(r13+r24)/a min(e−�E/T ,1), (7)
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where τ0 is the same unit of time as for one-electron transitions.
Here a is the initial state, where sites 1 and 2 are occupied, and
f is the final state, where sites 3 and 4 are occupied. We assume
that the minimum total hopping distance corresponds to a jump
from 1 to 3 and the other from 2 to 4. If this is not the case,
indexes 3 and 4 have to be interchanged. When we consider
a lattice model, often the two possible total hopping distances
are equal and one has to keep both terms and the interference
term. I0 is the Coulomb energy at the localization length
and V13,24 = V12 + V34 − V14 − V23 diminishes the hopping
probability when the two jumps are far away from each other.

B. Three and more electron transition rates

In this case one has to assume that the interaction is
weak and do perturbation theory in both the interaction
and the hopping term. As for two-electron jumps, it is an
excellent approximation for sites at random to consider only
the transitions with the minimum total hopping distance
RI,J . There are many of them, differing in the order of the
one-electron moves and on the jump directly excited by the
phonon. The final expression for the transition rate is very
complex, but its most important factor is easy to get.20 It is
the probability of finding a phonon of energy �E times the
product of the overlap integrals of the hops of all electrons
involved in the transition. The many-electron transition rate
can then be approximated by

�I,J = τ−1
0 γ n−1e−2RI,J /a min(e−�E/T ,1), (8)

where γ is a measure of the importance of the interaction
energy compared to the disorder energy and n is the number
of electrons participating in the process.

The use of Eq. (8) for the transition rates in numerical
simulations may overestimate the importance of correlated
hops since it double counts the effects of excitations well sep-
arated one from each other. Although one-electron excitations
should dominate in this case, since many-electron excitations
should only be important when single excitations have positive
energies, while the combined excitation has negative energy,
it is convenient to get rid of this problem. We can do that by
substituting the constant γ by a prefactor similar to the one
obtained for two-electron transitions, Eq. (7). It is difficult to
get a closed expression for this prefactor, and we propose an
empirical approach that is practical for numerical purposes
and that we think incorporates the relevant physics of the
problem. A requirement for this prefactor is that it should
vanish when one of the transitions is very far from the others.
A suggestion satisfying this requirement is the sum of all
the products of n − 1 different interaction energies between
any pair of single-electron transitions, like V13,24 in Eq. (A14).
Each of these terms must be divided by a factor proportional to
the disorder energy as in the two-electron case. This proposal
corresponds to exciting one of the hops by the phonon and
the rest by the dipole-dipole interaction in all the possible
ways. For three-electron transitions we take the following as
the preexponential in Eq. (8):

I 2
0

τ0(W/2)6

(
V 2

14,25V
2

25,36 + V 2
25,36V

2
14,36 + V 2

14,25V
2

14,36

)
. (9)

III. MODEL FOR NUMERICAL SIMULATIONS

We use the standard tight-binding Coulomb glass
Hamiltonian:2

H =
∑

i

εini +
∑
i<j

(ni − K)(nj − K)

rij

, (10)

with K being the compensation. We take the number of
electrons to be half the number of sites. The sites are arranged
in two dimensions both on a lattice and at random, but in the
latter case with a minimum separation between them, which
we choose to be 0.05r , where r2 = L2/N . We implement
cyclic boundary conditions in both directions. We take e2/r

as our unit of energy and r as our unit of distance.

A. Monte Carlo algorithm for lattice systems

For the two-electron transition rate we use Eq. (A15)
for sites at random and the extension that includes the two
jumping possibilities when sites are on a lattice. As for one-
electron transitions, the rate is split in one energy-dependent
(or activation) term, �A, and one distance-dependent (or
tunneling) term, �T . This means that we can use the hybrid
algorithm of Tsigankov and Efros.15

The program first calculates and stores the distance-
dependent part of the rates. For the one-electron jumps,
the tunneling parts of the rate for all jumps in the square
|�x|, |�y| � L1 (where L1 is some maximal jump length,
taken equal to 10 lattice units) are calculated. The sum
�Total

T ,1 = ∑
�T,1 is also stored. For the two-electron jumps,

all coordinates are relative to the initial position of the first
electron. The following algorithm is used.

(1) The final position of the first electron is selected in the
square |�x|, |�y| � L2, where the size L2 can be reasonably
chosen to be about half of L1 since the distances each electron
jumps are added together to find the rate (In the numerics
L2 = 3 lattice units).

(2) The initial position of the second electron is selected
in the square |x2|, |y2| � D2 (In the numerics D2 = 5 lattice
units). The initial position of the second electron cannot be
either the initial or the final position of the first electron.

(3) The final position of the second electron is selected in
the square |�x2|, |�y2| � L2. The final position of the second
electron cannot be the initial or the final position of the first
electron.

(4) The tunneling part of the rate for this transition is
calculated according to the formula

�T,2 = E2
1V

2
13,24 + E2

2V
2

14,23 + E1E2V13,24V14,23,

where

E1 = e−2(r13+r24)/a, E2 = e−2(r14+r23)/a.

(5) The rates for all these transitions are stored, and the sum
of all �Total

T ,2 = ∑
�T,2 is calculated.

When the Monte Carlo algorithm is running, it will do the
following steps in order to select which transition to make.

(1) It is decided whether to attempt a one-electron tran-
sition [probability �Total

T ,1 /(�Total
T ,1 + �Total

T ,2 )] or a two-electron
transition [probability �Total

T ,2 /(�Total
T ,1 + �Total

T ,2 )].
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(2) If it is a one-electron transition we follow the usual
procedure of Tsigankov and Efros.15 One occupied site is
selected randomly. Then the final site is selected at random
but with weights given by the probability �T,1/�Total

T ,1 . If the
final site is occupied, the transition is rejected. If it is empty it
is accepted with the probability min(1,e−�E/T ).

(3) If it is a two-electron transition an occupied site is
selected at random. Then a certain two-electron jump is
selected weighted by the probability �T,2/�Total

T ,2 . If the final
site of the first electron is occupied, the initial site of the second
electron is empty, or the final site of the second electron is
occupied, the transition is rejected. If not, the transition is
accepted with the probability min(1,e−�E/T ).

During the simulations we recorded all two-electron jumps
which were accepted. We then checked that for all these the
distance between the two initial sites and the jumping lengths
were considerably smaller than the imposed limitations D2

and L2. We take this as confirming that the limitations are not
restricting the dynamics to any large extent and that increasing
the bounds (which would slow down the simulation) would
not give appreciably different results.

B. Master equation method for sites at random

We used a numerical algorithm to obtain the ground state
and ≈105 lowest-energy many-particle configurations of the
system. The algorithm is an improved version of the algorithm
in Ref. 16 and it is described in detail in Ref. 21. It consists
of the following two stages. In the first stage, we repeatedly
start from states chosen at random and relax each sample by
means of a local search procedure. In an iterative process, we
look for neighbors of lower energies and always accept the
first such state found. The procedure stops when no lower-
energy neighboring states exist, which ensures stability with
respect to all one-electron jumps and compact two-electron
jumps. We then consider a set of metastable states found by
the process just described and look for the sites which present
the same occupation in all of them. These sites are assumed to
be frozen; i.e., they are not allowed to change occupation, and
the relaxation algorithm is now applied to the unfrozen sites.
The whole procedure is repeated until no new frozen sites are
found with the set of metastable states considered.

In the second stage, we complete the set of low-energy
configurations by generating all the states that differ by one-
or two-electron transitions from any configuration stored. In
order to speed up this process, which is very CPU time-
consuming, we again assume frozen and unfrozen sites and in
the first place look for neighboring configurations by changing
the occupation of unfrozen sites only. We later relax this
restriction in the final stage.

We consider 20 different realizations of a system with 500
sites. We obtain the 200 000 lowest-energy configurations
for each realization. We then obtain all one-, two-, and
three-electron transitions between all these configurations,
establishing a dynamical matrix that evolves the system in time
according to this master equation. We choose for the initial
state the mixture of all configurations with weights equal to
the Boltzmann factor for a temperature 40 times larger than
the real one.

We have developed a renormalization procedure to prop-
agate in time efficiently. It takes advantage of the fact that
the distribution of relaxation times is exponentially broad and
at large times the short time processes must have already
equilibrated some sets of configurations. At a given time,
we calculate the current through each transition and if it is
very small, relative to the transition rate and the occupation
probability, we assume that the two configurations involved
are in thermal equilibrium and can consider them as part of
a cluster. We recalculate the transition rates between this new
cluster and the rest of the system. The time step used in the
numerical propagation is calculated dynamically and increases
drastically as we form more clusters or larger clusters.

IV. RESULTS ON ENERGY RELAXATION

A. Relaxation using Monte Carlo on the lattice model

To see the effect of two-electron transitions on relaxation
we did the following. For one sample of size 100 × 100 and
W = 2 we ran relaxation from an initial random state at three
different temperatures, T = 0.01, 0.005, and 0.001. For each
temperature we ran from the same initial state ten (20 for T =
0.001) different time evolutions (different random seeds for the
Monte Carlo evolution). For each case we ran the simulation
both allowing only one-electron transitions and including one-
and two-electron transitions.

The results are shown in Fig. 1. It is clear that, as the
temperature decreases, the difference between the relaxation
rates in the one- and two-electron cases increases. To confirm
that the results are general and the sample sufficiently large
we did one set of ten time evolutions on the same sample but
starting from a different initial state and one set on a different
sample. The same behavior was seen in all cases. When starting
from different initial states on the same sample, the fluctuations
were of the same order as the run-to-run fluctuations indicated
by the error bars in Fig. 1. The variation in energy between
different samples is larger because the ground state is at a
different energy for each sample.

To see more clearly the importance of the two-electron
jumps we can look at one particular relaxation graph and mark
the points where two-electron jumps occur [Fig. 2, the two
graphs, Figs. 2(a) and 2(b) correspond to two different Monte
Carlo evolutions of the same sample and initial state].

In Fig. 2 the curve is the energy, while the points mark
the time when a two-electron jump was performed. The red
points represent the final energy after the transition, while the
green points represent the energy of the intermediate state
if this jump was to be replaced by sequential one-electron
jumps. The temperature was T = 0.001, and as we can see
the increase in energy to the intermediate state is sometimes
more than 2 orders of magnitude larger that this. This means
that the probability of this process occurring sequentially is
extremely small. As can be seen from the figure, there are
clear correlations between the occurrence of two-electron
jumps and steps in the relaxation graph. This means that the
two-electron jumps are essential in overcoming barriers in
the relaxation path and give a contribution to the relaxation
rate even if the number of two-electron jumps can be a
small fraction of the total number of jumps. Sometimes [at
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FIG. 1. (Color online) Energy relaxation as function of time at (a) T = 0.001, (b) T = 0.005, and (c) T = 0.01. Averages are shown for
one- and two-electron transitions, and error bars are the standard deviation of the mean of ten runs from the same initial state on the same
sample.

long times in Fig. 2(b)] there can occur soft two-electron
excitations which are then jumping back and forth between
the two configurations like soft dipoles in the one-electron
case. These give large contributions if we try to count the
number of two-electron transitions, but are not important for
relaxation.

To better measure the importance of the two-electron jumps
on the relaxation, we do the following. For each decade in time
we see how much the energy was reduced in the two-electron
jumps and compare this to the total relaxation of energy during
this time. Often it will be the case that a two-electron jump will
allow a number of one-electron jumps to happen which were
blocked before the two-electron jump occurred. We therefore
include in the energy relaxed by a two-electron jump also all
energy relaxed by subsequent one-electron jumps as long as the
energy is decreasing. Only when the first jump which increases
the energy occurs do we consider the effect of the two-electron
jump to finish. We then get Fig. 3, and as we can see, the
two-electron jumps increase in their importance for relaxation,
and at the later times in the simulation, they are responsible
for most of the relaxation. At long times the fraction slightly
exceeds 1, which is due to the fact that the energy of the
system was not stored after each jump so the energy reduction
in a two-electron jump can be slightly overestimated if it was
preceded by one-electron jumps which increased the energy.

B. Relaxation using master equation on the random sites model

We have calculated the average energy, with respect to
the ground state energy, as a function of time. In Fig. 4 we
plot the results for one-electron and two-electron relaxations
at a temperature T = 0.002 for a system with 500 sites.
We consider this small size in order to have configurations
extending over a relatively large energy range. The dotted line
is the result when only one-electron relaxation is considered.
The continuous and the dashed curves correspond to relaxation
by one- and two-electron jumps. In the dashed case we have
not included any prefactor in the expression for the transition
rates, while in the continuous curve we use Eq. (A15). We
first note how relaxation by one-electron jumps alone is far
from complete. The system gets easily stuck in metastable
states even for the relatively small system size considered. The
inclusion of two-electron jumps is almost negligible at short

times, where one can always lower the energy by one-electron
jumps. But at larger times, two-electron transitions are really
needed to overcome the energy barriers.

We also note that if we do not include the right prefactor
in the two-electron rate we are overestimating their effects,
especially at short relaxation times, because we are double
counting some excitations. We have checked that the results
for two-electron contributions do not change if we only include
those transitions with negative interaction energy. This result
in an important reduction in the number of many-electron
excitations to include in the simulations. In future calculations
of many-electron effects it will be convenient to take advantage
of this result and to explore more drastic reductions in the
number of relevant excitations.

At a time of roughly 107τ0 we have already practically
reached the thermal equilibrium when up to two-electron
transitions are considered. We expect this time to increase
drastically with system size. In Fig. 5 we have represented
energy relaxation by one-electron jumps (dotted curve), by
up to two-electron hops (dashed curve), and by up to three-
electron jumps (continuous curve). For three-electron jumps
we have used for the prefactor the sum of all the different
products of dipole-dipole contributions. We note that the
inclusion of three-electron jumps does not affect much the
results for the size considered. We expect that their effects will
be more important for larger sizes, which will contain larger
energy barriers and a more complex energy landscape. As
we include transitions of more particles, the energy relaxation
curve seems to approach a logarithmic behavior.

V. RESULTS ON CONDUCTIVITY

We also studied conductivity, comparing the cases with and
without two-electron jumps. At temperatures T � 0.04 we ran
four different samples of size 100×100. For T � 0.04 we used
four samples of size 200×200 (this because we know that at
low temperatures we see finite size effects in the conductance
up to L = 100). The electric field was T/10, which should be
in the ohmic regime. In each case we ran the simulation for 107

accepted jumps and checked that this was sufficient to obtain
a straight line of transferred charge as a function of time. The
conductance is then given by the slope of this line. The results
are shown in Fig. 6.
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J. BERGLI, A. M. SOMOZA, AND M. ORTUÑO PHYSICAL REVIEW B 84, 174201 (2011)

10
6

10
7

10
8

−0.3607

−0.3606

−0.3605

−0.3604

−0.3603

t

E
ne

rg
y/

si
te

(a)

10
5

10
6

10
7

−0.3607

−0.3606

−0.3605

−0.3604

t

E
ne

rg
y/

si
te

(b)

FIG. 2. (Color online) The correlation between the points where
two-electron jumps occur and steps in the energy relaxation graph.
The blue curve (continuous curve) is the total energy of the system.
The red points (+) are the final energies after two-electron jumps
and the green points (*) are the energy of the intermediate state
if this jump was to be replaced by sequential one-electron jumps.
T = 0.001. The two graphs, (a) and (b), correspond to two different
Monte Carlo evolutions of the same sample and the initial state.

We see that we reproduce the Efros-Shklovskii law for
the conductivity and that there is no significant difference
when including two-electron transitions. Thus, we confirm the
conclusions of Ref. 15. In fact, we provide firmer evidence for
this conclusion since they only presented the contribution of
two-electron jumps to the current. Since two-electron jumps
can be crucial in facilitating transport through one-electron
jumps, even if their actual number is much less than the number
of one-electron jumps, it is not fully convincing just to look at
the current carried by the two-electron jumps. What should be
compared is the conductance when only allowing one-electron
jumps with the conductance when two-electron jumps are also
included as shown in Fig. 6.
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FIG. 3. (Color online) The fraction of relaxation due to two-
electron transitions. The figure is an average over six different Monte
Carlo evolutions on one sample at T = 0.001.

VI. DISCUSSION

Comparing our results with those of the previous
works,14–16 it seems that all fall into the same coherent
picture. By focusing on relaxation, we were able to apply
the Monte Carlo method to temperatures comparable to the
ones where the master equation approach could be used. Then
we see similar behavior in both the cases. The energy relaxes
faster when two-electron transitions are included. A more
direct comparison of the two methods is difficult since the
models differ in several respects. In the Monte Carlo method
we prefer to use a lattice since it reduces the computational
effort, while in the master equation we are restricted to small
samples and prefer a random site model since we believe that
lattice effects are more severe for small systems. Also, the
initial states are different in the two cases, since in the master
equation approach we need to take as the initial state some
combination of the states in the low-energy set we are working
on. These are already very-low-energy states and are different
in structure from the random states used in the Monte Carlo

FIG. 4. (Color online) Energy relaxation as a function of time for
one-electron jumps (black dotted curve) and one- and two-electron
jumps without any prefactor (green dashed curve) and with the
prefactor of Eq. (A15) (blue continuous curve).
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FIG. 5. (Color online) Energy relaxation as a function of time for
one-electron jumps (black dotted curve), one- and two-electron jumps
(blue dashed curve), and up to three-electron jumps (red continuous
curve).

method. However, we find that our results convincingly show
that both methods give similar results at low temperatures and
that there are no systematic errors which affect one or the other
method. Furthermore, if we look at Fig. 4 and compare the two
graphs including two-electron transitions, with and without
the prefactor in Eq. (A15), we find that, although the omission
of the prefactor overestimates the importance of two-electron
jumps, the results remain qualitatively the same. Thus, the
concern of Tsigankov and Efros15 that this overestimation
changes the results qualitatively seems unfounded. We may
then still believe the results of Ref. 16, at least on the
qualitative level. Comparing our Fig. 6 with Fig. 2 of Ref. 15,
both calculations of the conductivity using the same Monte
Carlo method, we find that the two agree closely (a detailed
comparison shows a small shift in the values but the slope

3 4 5 6 7 8
−20

−18

−16

−14

−12

−10

−8

−6

1/
√

T

lo
g

(σ
 T

)

One electron
Two electron

FIG. 6. (Color online) Conductance as a function of temperature
showing the Efros-Shklovskii law. Blue points (*) are with one-
electron jumps, red points (+) include also two-electron jumps. Four
samples are shown for each temperature, the spread indicates the
uncertainty. The lines are the averages.

of the line remains the same). Figure 4 of Ref. 16 gives the
corresponding results using the configuration space approach.
We see that although the configuration space method finds
a difference in the conductivity when including two-electron
jumps, this difference is small, at the level of the statistical
error, for 1/

√
T � 8, which is where we have results using

the Monte Carlo method. If we compare with our Fig. 1, we
see that at these temperatures we cannot see any significant
effect of two-electron jumps on relaxation either. We therefore
conclude that two-electron jumps will only be important at
lower temperatures, and we believe that we would also see
this in Monte Carlo simulations if these could be performed at
a sufficiently low temperature.

VII. CONCLUSIONS

In our study of energy relaxation we found that the inclusion
of the prefactor in the two-electron jump transition rate is
important in order not to overestimate their effects. The
inclusion of two-electron jumps produces a relaxation much
faster than that produced by only single-electron hops. The
effects of three-electron jumps, in the relatively small sizes
considered, is quite small.

As regards variable-range hopping, we show that the
contribution of two-electron jumps helps to increase the
conductivity slightly, not changing appreciably the results of
one-electron jumps in the temperature regime studied.
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APPENDIX: TWO-ELECTRON TRANSITION RATES

We are going to deduce the phonon-induced transition rate
for a two-electron process. The procedure was outlined in
Ref. 19. We consider the Coulomb gap Hamiltonian, Eq. (3),
including the tunneling term which is taken as a perturbation.
The interaction is included exactly, not perturbatively. We
first obtain the many-body wave functions in the presence of
disorder and interaction and include hopping perturbatively.
We then we use these wave functions to calculate the matrix
elements of the electron-phonon Hamiltonian.

We study transitions of two-electrons on four sites and
restrict ourselves to the four sites involved in the transition.
We include the Coulomb interaction of these four sites with
the rest of the system in the site energy φi . The zero-order (in
the tunneling perturbation) configurations of two electrons on
four sites are described by the states

|a〉 ≡ |•
◦

•
◦〉, |b〉 ≡ |•

•
◦
◦〉, |c〉 ≡ |•

◦
◦
•〉,

(A1)
|d〉 ≡ |◦

•
•
◦〉, |e〉 ≡ |◦

◦
•
•〉, |f 〉 ≡ |◦

•
◦
•〉,

where solid circles represent sites with electrons and empty
circles represent empty sites. The sites are numbered as | 1

3
2
4〉.
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We calculate the initial and the final states to second order
in the tunneling, and we denote them by |̃a〉 to |f̃ 〉. The initial
state is to second order in the tunneling

|ã〉 = |a〉 + t23

Ea − Eb

|b〉 + t24

Ea − Ec

|c〉 + t13

Ea − Ed

|d〉

+ t14

Ea − Ee

|e〉 + 1

Ea − Ef

×
[

t23t14

Ea − Eb

+ t13t24

Ea − Ec

+ t13t24

Ea − Ed

+ t23t14

Ea − Ee

]
|f 〉.
(A2)

Here we have kept only terms which contribute to the phonon-
assisted transitions, additional second-order terms which only
would give higher-order terms in the transition rate have been
dropped. Eα refers to the energy of configuration |α〉. This
energy for configuration |a〉, for example, is

Ea = φ1 + φ2 + V12, (A3)

if we do not take into account compensation, or

Ea = φ1 + φ2 + V12 − V13 − V14 − V23 − V24 + V34, (A4)

when we assume half filling and a compensating charge of + 1
2

on each site [and Vij = 1/(4rij ) in this case]. An expression
similar to Eq. (A2) holds for the final state.

We consider phonon-assisted tunneling from the initial
perturbed state |̃a〉 to the final state |f̃ 〉. The calculation
is as follows. The matrix element of the electron-phonon
Hamiltonian, Eq. (4), between the initial and the final state,
is proportional to

Mq = 〈ã|
∑

i

e−iqri c+
i ci |f̃ 〉

= 1

Ef − Ea

{
t13t24

[
1

Ef − Ec

+ 1

Ef − Ed

]

+ t23t14

[
1

Ef − Eb

+ 1

Ef − Ee

]}
Ra

+ t23t14

(Ea − Eb)(Ef − Eb)
Rb + t13t24

(Ea − Ec)(Ef − Ec)
Rc

+ t13t24

(Ea − Ed )(Ef − Ed )
Rd + t23t14

(Ea − Ee)(Ef − Ee)
Re

+ 1

Ea − Ef

{
t13t24

[
1

Ea − Ec

+ 1

Ea − Ed

]

+ t23t14

[
1

Ea − Eb

+ 1

Ea − Ee

]}
Rf , (A5)

where

Ra = 〈a|
∑

i

e−iqri c+
i ci |a〉 = 〈1|e−iqr1 |1〉 + 〈2|e−iqr2 |2〉,

(A6)

and similar expressions for other sites. Let us for the moment
consider only the matrix elements between sites 1 and 3, t13,
and between sites 2 and 4, t24. After some algebra we arrive at

Mq = t13t24
Ef − Ed + Ea − Ec

Ef − Ea

[ 〈1|e−iqr1 |1〉 − 〈3|e−iqr3 |3〉
(Ea − Ec)(Ef − Ed )

+ 〈2|e−iqr2 |2〉 − 〈4|e−iqr4 |4〉
(Ea − Ed )(Ef − Ec)

]
. (A7)

Since the sites have identical wave functions we have

〈2|e−iqr2 |2〉 = e−iqr12〈1|e−iqr1 |1〉, r12 = r2 − r1, (A8)

and similar expressions for other sites. For hydrogenlike
impurities we have

〈1|e−iqr1 |1〉 =
[

1 +
(qa

2

)2
]−2

. (A9)

We assume qa < 1 and replace the previous expression by 1.
Squaring the matrix element we get

|Mq|2 = 2|t13t24|2
(

Ef − Ed + Ea − Ec

Ef − Ea

)2

×
[

1 − cos qr13

(Ea−Ec)2(Ef −Ed )2
+ 1 − cos qr24

(Ea−Ed )2(Ef −Ec)2

+ cos qr12 − cos qr23 − cos qr14 + cos qr34

(Ea − Ec)(Ef − Ed )(Ea − Ed )(Ef − Ec)

]
.

(A10)

This expression corresponds to electrons jumping from site
1 to 3 and site 2 to 4. We have to add a similar expression
involving the jump from site 1 to 4 and from site 2 to 3. If the
sites are at random positions, the jump with the minimum total
hopping distance will dominate and we can neglect the other
jumping possibilities, but if the sites are on a lattice we have
to keep all the terms (and their cross terms) in the calculation
of |Mq|2.

The full squared matrix element of the electron-phonon
Hamiltonian is

|〈ã|He-ph|f̃ 〉|2 =
∑

q

γqNq|Mq|2δ(Ef − Ea − sq), (A11)

where Nq is the number of phonons with momentum q (for
emission this factor should be replaced by Nq + 1) and s is
the speed of sound. We further assume that qrij � 1, which
allows us to replace factors of the form cos qrij , appearing in
matrix elements of wave functions of different sites, by 0 when
integrating over the directions of q. Thus we find

|〈ã|He-ph|f̃ 〉|2

= 8π

s3
γ (�E)N (�E)|t13t24|2(Ef − Ed + Ea − Ec)2

×
[

1

(Ea − Ec)2(Ef − Ed )2
+ 1

(Ea − Ed )2(Ef − Ec)2

]
,

(A12)

where �E = Ef − Ea and

N (�E) = 1

e�E/T − 1
(A13)

is the equilibrium phonon density. �E is the total energy
difference and will be equal to the energy of the phonon that is
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emitted or absorbed which then determines the phonon wave
vector. Let us concentrate on the other energy factors appearing
in Eq. (A12). We first note that

Ef − Ed + Ea − Ec = V12 + V34 − V14 − V23 ≡ V13,24

(A14)

is independent of the site energies. It only depends on the
geometrical disposition of the jumps and if the separation
between sites of different jumps is much larger than both
jumping distances it corresponds to the dipole-dipole inter-
action. The energy denominators in Eq. (A12) involve the
intermediate states, and it is very CPU time-consuming to
calculate these terms in numerical simulations. The divergence

of these terms at certain points reflect the limitation of the
perturbation theory rather than any physical effect. The energy
differences are of the order of the disorder W and since they
are temperature independent we propose to set these terms
equal to a constant, which we set equal to 2/W . We believe
that this is of no physical consequence and will not affect the
results qualitatively. Taking into account these approximations
and using Fermi’s golden rule we arrive at the expression for
the transition rate:

�a→f = τ−1
0

I 2
0 V 2

13,24

(W/2)4
e−2(r13+r24)/a min(e−�E/T ,1), (A15)

where τ0 is the same unit of time as for one-electron transitions.
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