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Stress and temperature dependence of screw dislocation mobility in «-Fe by molecular dynamics
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The low-temperature plastic yield of «-Fe single crystals is known to display a strong temperature dependence
and to be controlled by the thermally activated motion of screw dislocations. In this paper, we present molecular
dynamics simulations of %(1 11){112} screw dislocation motion as a function of temperature and stress in order
to extract mobility relations that describe the general dynamic behavior of screw dislocations in pure -Fe. We
find two dynamic regimes in the stress-velocity space governed by different mechanisms of motion. Consistent
with experimental evidence, at low stresses and temperatures, the dislocations move by thermally activated
nucleation and propagation of kink pairs. Then, at a critical stress, a temperature-dependent transition to a
viscous linear regime is observed. Critical output from the simulations, such as threshold stresses and the stress
dependence of the kink activation energy, are compared to experimental data and other atomistic works with
generally very good agreement. Contrary to some experimental interpretations, we find that glide on {112} planes
is only apparent, as slip always occurs by elementary kink-pair nucleation/propagation events on {110} planes.
Additionally, a dislocation core transformation from compact to dissociated has been identified above room
temperature, although its impact on the general mobility is seen to be limited. This and other observations expose
the limitations of inferring or presuming dynamic behavior on the basis of only static calculations. We discuss
the relevance and applicability of our results and provide a closed-form functional mobility law suitable for

mesoscale computational techniques.
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I. INTRODUCTION

The low-temperature yield behavior of o-Fe single crystals
has been well characterized over the years in numerous
experimental works.'~* Tensile tests in high-purity specimens
reveal a strong temperature dependence of the strain rate and
flow stress behavior.>® This is known to be a consequence
of the thermally activated nature of %(1 11)screw dislocation
motion in body-centered-cubic (bcc) metals. Because lattice
friction in such crystals is typically quite high, at moderate
to low stresses, plastic flow can be reduced to the individual
motion of screw dislocations, which are known to display
much lower mobilities than nonscrew segments. Consequently,
by studying single screw dislocation properties and mobilities,
many useful insights can be gained into the plastic behavior of
Fe and other bcc crystals.

However, experimental measurements concerning single
dislocation properties are exceedingly difficult, and only
recently have experimental techniques reached a level of res-
olution capable of isolating individual dislocation behavior,”*
such as in bec Fe.” Consequently, a wealth of atomistic
simulation studies have been performed over the last decade
or so in an attempt to shed light on dislocation structure and
core properties and energetics.!"'* In particular, the stress
dependence of the kink-pair (KP) nucleation enthalpy has
been the subject of much study.'>™'® Nevertheless, despite
these and other significant advances in our understanding of
% (111)screw dislocation properties at the atomistic level, their
true impact on plasticity on a more global scale can only be
assessed by way of models operating at the mesoscale, e.g., dis-
location dynamics or phase fields. Indeed, screw-dislocation-
controlled plasticity in o-Fe has been the subject of several
dislocation dynamics (DD) works.'*?° The fundamental input
to DD simulations is the so-called mobility function,?'~??
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which couples forces acting on dislocation segments to their
velocity response. On a more simplistic level, the mobility
function relates applied stresses to dislocation velocities, and
may be a function of several factors, including temperature,
pressure, dislocation character, and internal microstructure.

When measuring dislocation velocities directly from exper-
imental observations, it is typically very difficult to subtract
out the effect of the surrounding dislocation environment
(impurities, “forest” dislocations, pile-ups, etc.), although
notable exceptions exist.” Conversely, if used carefully, atom-
istic simulations can be invaluable in providing dislocation
mobility behavior under well-controlled conditions.*?3 In
this paper, we present a molecular dynamics (MD) study
of %(lll)screw dislocation motion in bcc Fe as a function
of stress and temperature. We then use the MD results
to fit analytical functions that describe single dislocation
mobility within mesoscale techniques. The main goal of
this work is thus to produce MD-fitted mobility laws that
can be used to study plastic behavior on longer time and
space scales by utilizing methods that transcend the atomistic
limit.

At low temperatures and strain rates, screw dislocations
are known to move as straight lines, which suggests that only
one KP exists at a given time. This is the basis of the so-
called smooth glide identified in Ref. 26. Such a regime is
then governed by KP nucleation, as kink motion proceeds at
comparatively high speeds. As the temperature and/or strain
rate increase, kink nucleation and propagation can be of the
same order of magnitude, leading to rough dislocation lines
and, under certain conditions, production of debris. This rough
behavior is also observed as the stress approaches the Peierls
stress, and is the prelude to the famed phonon drag regime that
sets in when kink nucleation is no longer the rate-limiting step.
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This paper is organized as follows. First, we optimize
the supercell geometry on the basis of the physical process
governing each dimension. Second, we perform MD simula-
tions of screw dislocation motion as a function of stress and
temperature, and provide the theoretical framework to justify
the fitting functions used to produce analytical mobility laws.
This is followed by an analysis of the proposed mobilities
and the implications for crystal plasticity. Our calculations
were performed with the parallel MD code LAMMPS? using
the EAM potential for Fe developed by Mendelev et al.”®
The literature on screw dislocation core properties,!3!42%30
Peierls energy and stress,'*3! and kink structure and formation
energies,!”!83031 to name but a few, using this potential is quite
abundant, and here we simply note that this potential yields
the symmetric core structure (at 0 K) predicted by electronic
structure calculations. 31432

II. METHODOLOGY

Dislocation mobility calculations require long simulation
times to allow for a steady state to be reached under each set of
conditions. This means that setups such as those employed by
Domain and Monnet!? or Chaussidon ef al.,>° which result in
finite dimensions along the glide direction (referred to by the
authors as “free boundaries”), cannot be used here. Instead,
we use periodic boundary conditions along the dislocation
line and glide directions, and traction boundaries along the
glide-plane normal direction. This imposes certain restrictions
on the computational box dimensions L, (glide direction), L,
(line direction), and L, (plane normal direction), with each
one governed by a specific physical process. Next, we discuss
the criteria chosen for the design of each dimension of the
supercell on the basis of the relevant physical phenomena.

A. Line direction L,

Atlow temperatures and stresses, % (111)screw dislocations

move by nucleation/propagation of kink pairs. These KPs
display a stress- and temperature-dependent characteristic
separation length that must be contained entirely within the
dislocation line. Marian et al.?® showed that short dislocation
segments result in two-dimensional (2D) dynamics, which are
not representative of dislocation motion at low 7. In addition,
recent work by Ventelon ef al.'” suggests that single kinks in
Fe have widths of the order of wx = 20b in the (111) direction
at 0 K. Despite the fact that the calculations by Ventelon
et al. concern only single, isolated kinks, and thus neglect the
interaction between the two kinks of a KP, here we use a lower

bound length of 40b for our screw dislocation lines, where

b= a073 ~ 0.25 nm is the Burgers vector and ap = 0.27 nm

is the lattice parameter for bcc Fe. An upper bound is obtained
by striving for the conditions under which the KP mechanism
results in linear, smooth glide as defined in Ref. 26 (also termed
the “single kink-pair” regime by Chaussidon et al.).*

As shown there, when the dislocation line is too long, the
simulation limitations inherent to MD result in multiple kinks
on multiple glide planes, leading to cross kinks. This so-called
rough regime results in self-pinning and is not representative
of plasticity at moderate to low stresses and temperatures.
Following the arguments provided by Marian et al.,2° ensuring
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that only one KP occurs simultaneously requires that the
dislocation line length be of the same order as the kink mean
free path. An upper limit for L, is then

Ly%2w1< + sk + X,

where sk is the stable kink span (calculated, e.g., by Ngan and
Wen ),33 and X is the kink free path. The most restrictive
scenario is that at low stresses (and temperatures), where
sk is highest. On the basis of the work by Ngan and Wen,
we take sx &~ 20b. Regarding X, the theory relating it to
stress and temperature is well known (cf. Sec. III C), and
could be used to calculate it explicitly. However, we have
performed preliminary tests in the temperature and stress
ranges of interest in this work and have obtained values of
X =~ 20b to be satisfactory for our purposes. Hence, we fix
L, = 80b ~ 19.8 nm as our dislocation line length in all the
simulations.

B. Plane normal direction L,

In the conventional picture of «-Fe plasticity, supported by
numerous experimental studies (cf. Sec. I), slip takes place on
{110} planes when they are the most highly stressed planes,
regardless of temperature. However, for the potential employed
here, this maximum-resolved shear stress (MRSS) plane is also
the glide plane only in a narrow range of (low) temperature
and stress. Indeed, Domain and Monnet!? and Chaussidon
et al *° have shown that consistent {110} slip is only attainable
under dynamic conditions when free boundaries are used along
the glide direction. As pointed out above, these boundary
conditions are not suitable for the type of dislocation mobility
calculations that we are concerned with here. As the applied
stress and simulation temperature increase, screw dislocations
are seen to deviate from {110} planes and rotate to glide
planes that approach {112}. MD simulations have confirmed
that despite gliding on effective {112} planes, slip proceeds
as a succession of elementary kink nucleation episodes on
non-MRSS {110} planes.?®3"

Therefore, here we have chosen to study dislocation motion
on {112} planes, with stress applied to a skin layer consisting of
three atomic planes at the top and bottom of the simulation box.
These layers are made rigid with respect to the displacement
introduced by a screw dislocation, i.e., along the y direction.
In this fashion, repulsive forces are generated,’* resulting
in stable glide conditions. Temperature control is also only
applied to atoms in the skin region via a Langevin thermostat.
Once the dislocated crystallites have been equilibrated at
the desired temperature, stress-controlled simulations are
performed without any kind of temperature control.

The length of the (112) direction is obtained on the basis
of the following arguments:

(i) When stress is initially applied, a shear-stress wave
traveling at the speed of sound is generated at each of the
skin layers. These waves reach the dislocation and accelerate it
before continuing their propagation through the computational
box. When they reach the sample limits, they reflect off of
the opposite boundaries with inverted sign, which cancels the
effect of fresh stress waves coming from the surface. This
makes the dislocation stop until these elastic waves reverberate
again at the original boundary and restore their sign. This
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process repeats itself until the waves are suppressed by viscous
damping and scattering (there are ways to mitigated this, e.g.,
by introducing a stress ramp, rather than a step). As we shall see
(e.g., cf. Fig. 3), this results in a transient period during which
dislocation mobility is highly scale dependent. With L, too
large, the period of the wave reflections lengthens, extending
this transient in time longer than desirable, which could then
cause the movement of dislocations to be too intermittent for a
steady state to be reached within reasonable MD time scales.

(ii) As we have indicated above, the rigid boundaries where
the stress is applied create repulsive forces on the dislocation
that stabilize it on the glide plane corresponding to the center
of the box. However, because the presumed mechanism of
motion on MRSS {112} glide planes is still by complementary
KP nucleations on the {110} planes bordering at +30°, the
image forces must be sufficiently small to not interfere with
this natural mechanism. This suggests a z dimension as large
as possible.

On the basis of these considerations, a reasonable size
was found to be L. = 84+/6ay = 58.7 nm. Stress was always
applied so as to create a Peach-Kohler force in the twinning
sense.

C. Glide direction L,

The physical consideration to keep in mind when designing
the dimension L, along the periodic glide direction (110)
is local heating after each dislocation passage. Fast-moving
dislocations leave a “hot” trail in their wake in the regime
governed by viscous drag. In contrast to dislocations moving
in an effective infinite medium, which see only a “fresh” crystal
ahead, in MD simulations the dislocation reenters the box
after each passage (we emphasize again that single-passage
simulations are not acceptable for our dynamic mobility
simulations). The residual heat remaining locally on the glide
plane dissipates at a given rate that depends on temperature
and dissipation direction. If the dislocation encounters a hot
glide plane after each passage, the resulting velocity would
not be representative of the simulation temperature, and,
thus, the computational box must be sufficiently large in the
glide direction to ensure that the dislocation travels through a
thermalized glide plane during every passage.

To obtain a first-order estimate of L,, we set up a small
10 x 10 x 10ay box with a skin region kept at a constant
temperature of 100 K and a central region of atoms initialized
at temperatures greater than that value. We then calculate the
temperature-decay profile of the central region and fit it to the
inverse exponential solution to Newton’s law of cooling:

T (1) = Too + boexp(=b11),

where, in the simulations, T, is the final target temperature,
and by and b, are fitting constants that represent, respectively,
the initial temperature difference between the central atoms
and the skin region at 7°°, and the decay constant. We are
particularly interested in the latter, as it gives an idea of
the heat-evacuation rate from atoms that are not subjected
to temperature control. For the tests performed in Fig. 1 with
T> =100 K, we obtain an average value of b; &~ 0.55 ps’l,
corresponding to a time constant of 1.8 ps. As the figure shows,
att ~ 7 ps, all of the curves have decayed to the temperature of
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FIG. 1. (Color online) Evolution of the initial temperature in a
computational cell after connecting the skin region to a heat reservoir
at 100 K. For all the initial temperatures, a decay time constant of
~7 ps is found.

the heat bath. Then, assuming a maximum dislocation velocity
equal to the shear wave velocity of 23400 m s~! in Fe,?® the
minimum box size along the glide direction is approximately
24 nm. Therefore, we choose a box with L, = 60«/§a0 =
24.3 nm. Before performing dislocation mobility simulations
under applied stress, the box is equilibrated at the desired
temperature during 20 ps using a Langevin thermostat. After
applying stress, the total box temperature was never seen to
increase more than 10% above the temperature of the heat
bath.

Thus, to summarize this section, we have designed an or-
thogonal computational box with axes z = [1 121,y = %[1 11],
and x = [110], corresponding to the line, plane normal, and
glide directions, respectively, with dimensions L, = 19.9 nm
(80b), L, =24.3 nm, and L, = 58.7 nm. This configuration
contains in excess of 2.4 million atoms, which results in
nominal strain rates of 1.7 x 10%~7 s~! for velocities between
10 and 100 m s~!. Figure 2 shows a schematic diagram of the
computational box employed.

The simulations were run on massively parallel platforms
(>500 processors) at Virginia Tech and Lawrence Livermore
National Laboratory. The approximate computational cost of
the simulations was 3.5 x 107> seconds per time step per atom.

III. RESULTS
A. Raw MD data

The simulations are run for sufficiently long times to
overcome the transients discussed previously and develop
statistically meaningful behavior. Configuration data were
extracted every picosecond, regardless of the applied stress and
the temperature. For each configuration, the dislocation core
was identified using the centrosymmetry deviation parameter
analysis employed in many other studies. From the position
of the core, velocities are extracted as the derivative of the
displacement-time curves for each case. The processed output
of the simulations at 300 K is shown in Fig. 3. Results for all
of the other temperatures are qualitatively identical. At each
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FIG. 2. (Color online) The simulation setup used to measure the
velocity response of a %(1 11) screw dislocation to applied stress at
finite temperature. The red line represents the dislocation; the shaded
plane corresponds to the dislocation glide plane.

temperature, the stress is applied in roughly 50 MPa intervals
from zero to the point of “shear melting.” This phenomenon
occurs when the screw dislocation moves too fast for the local
heat generated on the glide plane to dissipate (despite our
efforts). Under such conditions, successive reentries through
the periodic boundary heat the atomic layers around the glide
plane above the melting point of the crystal. This causes
the material to literally flow along the glide plane, locally
removing any notion of crystallinity and dislocation structure.
This is the case for the black curve in Fig. 3, corresponding to
an applied stress of 1150 MPa. In addition, the threshold stress
for dislocation motion within MD time scales, which we term
09, is measured (194 MPa in Fig. 3 for the 300 K case). oy
is defined as the stress at which the dislocation moves within
the first 100 ps, and is therefore an upper bound on the true
threshold stress, imposed by the short MD time scales.

The velocities are measured from the slope of linear fits
to the displacement-time curves at each (7,0) condition.
As mentioned earlier, the fits are only carried out after the
finite-size reflections have subsided and the dislocations move
in a continuous manner. By way of example, in Fig. 3 we
show the fit for the simulation at 630 MPa, which yields a
velocity of 244 m s~!. The velocities obtained in this fashion
are plotted in Fig. 4 for the four temperatures considered in
this study: 100, 200, 300, and 500 K. From here onwards,

350
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100

Displacement (nm)
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FIG. 3. (Color online) Dislocation displacement vs time at 300 K
for all stresses considered here. The curves display an initial serrated
behavior, followed by a steady state characterized by smooth glide.
A linear fit to the smooth section of the curve for 630 MPa is shown,

yielding a velocity of 244 m s™!.

we refer to the applied stress generically as o, noting that the
actual stress that the dislocations suffer after the steady state
has been reached typically oscillates at ~+10% owing to the
the finite-size effects described in Sec. II B.

Two regimes can be visually identified in Fig. 4, more
ostensibly at lower temperatures. Initially, at low applied
stresses, an exponential regime is clearly recognized, while
at higher stresses, the behavior is clearly linear. The dynamic
transition is sharp at 100 and 200 K, but becomes considerably
more blurred at 300 K and, especially, 500 K. The inset to
the figure shows the same data points on a logarithmic scale
in an attempt to facilitate the identification of the dynamic
transition, which is seen to occur at decreasing stresses with
increasing temperature. These transition stresses are denoted
by o *. Mathematically, o * is computed as the inflection stress,
i.e., that at which the v(o) function transitions from convex to
concave (in other words, when the local derivative of the v-o

100K
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g ]
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] 10 | E
200 At
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0 AA'HAHAHEEEE 102 L 103
0 500 1000 1500 2000

Applied stress (MPa)

FIG. 4. (Color online) Dislocation velocities against applied
stresses for all the temperatures considered here. The inset shows
the same data on a logarithmic scale, which allows for a better
identification of the dynamic transition.
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TABLE [. Calculated values of all temperature-dependent
coefficients.

Temperature (K) 100 200 300 500

Threshold stress (MPa) op 650 400 194 104
Transition stress (MPa) o* 797 770 633 312
Friction coefficient (x 10~* Pa s) B 2.7 2.3 2.6 2.9
Transition velocity (m s~') v* 419 515 324 167

curve starts to decrease). At 500 K, this occurs over a stress
range more than at a specific value, and thus here we have
chosen o *(500 K) as the first value in that stress range. The
values of oy and o* are given in Table I and plotted in Fig. 5
as a function of temperature.

The exponential regime corresponds to a thermally ac-
tivated mechanism of motion governed by KP nucleation,
whereas the linear regime is the manifestation of some type
of viscous motion. It is unclear if the latter corresponds to
the classic phonon drag mechanism, as its onset occurs at
stresses <op, although, due to the displayed linearity, the
same theoretical treatment will be applied. In this context,
o *(T) has the meaning of a temperature-dependent transition
stress, above which the free-energy landscape is flat and the
dislocation does not need to overcome any effective energy
barrier. These transition stresses deserve special attention.
The o* signal the transition from thermally activated motion
to viscous damping at each temperature. Evidently, at 0 K,
0*(0) = op, but as the temperature increases, the required
stress for KP nucleation decreases. As we shall see, it is
foreseeable to reach a temperature at which thermally activated
KP formation is no longer needed to attain dislocation motion,
even at zero stress. This can be qualitatively appreciated in the
shape of the curves in Fig. 4, which gradually adopt a more
“linearlike” shape as T increases. We shall come back to these
issues in Sec. IV.

*

N o 5
. fit: 6*=0,(1-0.0017) --- - -

1200 &, So 1
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800 | e 1

600 | TN 1
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400 | N . 1

200 | RN
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FIG. 5. (Color online) Evolution of the transition and threshold
stresses with temperature. Also shown is the fit for o* based on
the assumed existence of an equivalence between the KP formation
enthalpy H and kT . The fit provides a reasonable agreement with the
MD data, and predicts a temperature of 1000 K for o* = 0.
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B. Mechanism of motion

Next, we describe some aspects of the mechanism of motion
for 0 < o*. We emphasize that this is the stress regime in
which the dislocation truly moves by a thermally activated
mechanism. Several workers have demonstrated the kink-
pair mechanism in 3D dynamic simulations of %(1 11)screw
dislocation motion for the Mendelev potential,“"30 and we do
not discuss it further here. Rather, we focus on the relationship
between KP nucleation and glide plane.

As pointed out earlier, in the conditions where a {112}
plane is the MRSS plane, the two {110} planes bordering
it at +30° are equally stressed with a RSS factor of +/3/2.
At the same time, the elastic energy of a KP can be shown
to be proportional to the kink’s height 4.33¢ In the bcc
crystal structure, 2110/ p1112} = 1/./3  and for this potential,
op1% ~ o112} When coupled with the repulsive image
forces discussed in Sec. II B, this picture favors alternating
jumps between both {110} planes in our simulation setup.
Indeed, we have analyzed the dislocation motion at 100 and
500 K at stresses below the corresponding o *, and we have
confirmed this mechanism. Figure 6 shows the average path of
the dislocation core on the [111] plane during a time interval
where an equal number of steps on the two bordering planes
was observed. The figure clearly shows a serrated profile
consistent with kink nucleation on {110} planes.

As a consequence, at low stress and temperature, {112}
glide is only effective, i.e., the overall glide plane observed
from length scales far above the atomistic one is {112}, while it
actually occurs by a succession of {110} slip events observable
only at the atomic level. For this reason, for op, we use the
value of 1200 MPa calculated by Chaussidon et al.*>° for {110}
planes, since these are the planes where kinks form even if
the MRSS plane is of the {112} type. At higher temperatures
and stresses, one could expect significant deviations from
this alternating slip mechanism as thermal fluctuations smear

500K —
100K

[112]

A

[110]

FIG. 6. (Color online) Average trajectory of the dislocation core
at 100 and 500 K in the thermally activated motion regime. Two
triangles of the (111) zone are shown to scale. The dislocation is
clearly seen to move on alternating {110} planes. Not shown are
parts of the trajectory where the dislocation concatenated two or
more consecutive displacements on the same {110} plane (therefore
moving off-plane).
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FIG. 7. Screw dislocation core structure at finite temperature
illustrated using differential displacement maps (Ref. 37). The core
suffers a transformation from compact to dissociated between 350
and 400 K. Core configurations have been obtained by averaging the
atomic positions over 1 ps.

the (repulsive) effect of the traction boundaries. However,
in analyzing the dislocation core carefully, we have seen
that it undergoes a structural transformation from compact
to dissociated between 350 and 400 K, as clearly illustrated in
Fig. 7. Dissociated cores are known to have a more limited set
of transition pathways compared to compact cores, leading to
a mechanism of motion akin to the so-called pencil glide'®
(although they also typically have lower Peierls stresses).
Interestingly, however, the analysis at 500 K shown in Fig. 6
resulted in no appreciable differences with respect to that
obtained at 100 K.

Some workers have suggested that under certain conditions,
slip takes place by KP production on {112} planes.>3® If this
is interpreted as meaning that KP are created directly on {112}
planes, i.e., with height equal to 2{!'?}, then our observations
are in disagreement with that interpretation. However, if the
elementary slip step on {112} planes is understood as being
composed of two correlated, as opposed to independent, KP
events on two {110} planes, then we do not have enough
evidence to establish whether that is what our simulations
are showing. Detailed time-resolved information, with more
resolution than provided in this paper, should help shed light
on the issue.

C. Mobility functions
1. Thermally activated regime

In the following, we use the theory of Dorn and Rajnak®
to extract a functional form for the dislocation velocity as a
function of stress and temperature in the thermally activated
regime. According to their work, the forward velocity of a
dislocation moving by a kink-pair mechanism is

vy, = hJy, (H

where, as above, & is the kink height and J; is the kink-pair
nucleation rate. Equation (1) assumes that the kink velocity
vy is large compared to the rate of nucleation. J; is directly
proportional to the available length X for a kink pair to
propagate before it annihilates with kinks of opposite sign
(kink mean free path):

J —Mexp _ Fxe(o)
k Sk kT ’

(@)
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where s; is again the separation between kinks in a KP, vy
is an attempt frequency, and Fxp is the stress-dependent free
energy of a KP. As Dorn and Rajnak noted, at low strain rates,
X may be equal to the total dislocation length L, i.e., only
one KP exists on the dislocation line at a given time. In such
conditions, the frequency with which a nucleated KP glides out
of L,i.e., v, = 2v;/L, is much greater than J, i.e., v, > Ji.
However, at high strain rates, like those attained during MD
simulations, X may be sufficiently small for v, and J; to be
comparable. Then,

X

’

I)QX FKP(O') ka
Jy=—exp|— =
Sk kT

from which

_ 2sgue exp |:FKP((7):| . 3)

X* =
Vo kT
By combining Eqgs. (1)—(3), we arrive at the general expression

for the velocity of a dislocation moving by a thermally
activated mechanism,

“

Uthzh

2 v Fxp(o)
exp | —— |-

Sk

The kink velocity is assumed to be limited by phonon drag
according, e.g., to Liebfried’s theory,*

_ bo _ 10 ¢,b%c
" By 3 kT

where By is a friction coefficient, and ¢, is a limiting shear
wave velocity. Equation (4) reduces to

20 ¢;b3vyo Fxp(o)
—p [ZE7NT | IR 6
=3 kT eXp[ UT ©)

With regard to Fkp, experimental studies have shown that
the kink-pair entropy Skp is a negligible fraction of the total
free energy,*’ and thus it is discarded here. This is substantiated
by recent atomistic calculations of the vibrational entropy of
finite screw dislocation segments.‘” Therefore, we substitute
Fxp for the formation enthalpy Hgp of a kink pair. Next, instead
of using the expressions for Hgp derived by Dorn and Rajnak
using isotropic linear elasticity, we choose to fit our MD results
to the phenomenological expression due to Kocks, Argon, and

Ashby,*
p4
Hyp(o) = Hy [1 - (;) } : )

where Hj is the KP formation enthalpy at zero temperature
and stress, and o, is a normalizing stress taken to represent
the stress at which the KP formation enthalpy vanishes. This
stress is typically taken to be the Peierls stress op under
static conditions. However, at finite temperature, o, must
be interpreted as the stress at which the KP free energy
of formation vanishes, which, as shown in Sec. III A, is
temperature dependent. This is precisely the definition of o*,
which we thus use as the normalizing stress in Eq. (7). For
the adjustable parameters p and g, one can use the values
predicted by linear elasticity for a sinusoidal potential, p = 0.5
and g = 1.25. However, in a periodic box, the activated state
becomes distorted by the periodic image interactions (in the

; &)

Uk
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low-stress limit) or by kink spreading (in the limit of stress
approaching Peierls threshold). Therefore, we leave p and g
as fitting parameters to be obtained from the MD data.

Equations (6) and (7) form a closed functional mobility law
for screw dislocations for thermally activated motion. Next,
the objective is to devise a global fitting procedure that retains
only the stress and temperature dependence, i.e., a universal
mobility function that can be used in the entire 7 and o range.
To this end, we first reduce the explicit stress dependence in
Egs. (6) and (7) for numerical convenience to a nondimen-
sional form described by s(T') = o/o*(T'). Additionally, we
condense all the physical parameters in Eq. (6) into a single
fitting constant A. The reduced expression is

oy = A\/; exp [—?(1 - sfﬂ , ®)

where we have used Hy = 0.65 eV, which is the value
obtained by molecular statics for the potential employed
here.!” This is in reasonable agreement with experimental
estimates for H, from stress-relaxation measurements in Fe,
which range between 0.8 and 1.0 eV.#46

Using Eq. (8) and the transition stresses in Table I, we
perform a global least-squares fit to the data in Fig. 4
and obtain values of A =3710(£146) m s~! K2, p =
0.51(%£0.16), and g = 1.07(£0.11). As Fig. 8 shows, the
resulting mobility function provides a very good fit for the
velocities corresponding to the thermally activated regime,
with the exception of perhaps 500 K. The overall fitting error is
approximately 5%. Interestingly, the computed values of p and
q almost coincide with those chosen by Naamane et al Y who
used a thermally activated mobility law which does account for
both forward and backward jumps. After rounding down the
obtained fitting parameters, the mobility function in numerical
form becomes

s 3772
v (s, T) =~ 3710 Fexp —T(l -9 1.

The value of A can be useful to extract parameters related
to the prefactor in Eq. (6). For example, one can calculate the
value of B; at different temperatures. In our case, between
100 and 500 K, B; takes values of the order of 5 to 10 x
10~* Pa s, which is approximately two to four times larger
than the friction coefficient of a rigid screw dislocation, as we
shall see.

To fully close the mobility law, one must provide the
temperature dependence of o* through some suitable ana-
lytical law. Following Ngan and Wen,>* and Domain and
Monnet,'? we assume that there exists an equivalence between
the activation energy and the temperature at a constant strain
rate. For example, at a strain rate of 1.7 x 10~* s~!, a ratio of
H/kT = 27 was proposed experimentally.*® It is unclear what
this equivalence is at the specific strain rates attained here, but,
following the same argument, one can use the fitted Eq. (7)
and assume that

[o*
TO(HKP:H()(I_ _)a
op

or, in terms of o*,

o =0p(1=CT)>, )
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FIG. 8. (Color online) Comparison between the fitted mobility
laws and the MD data at each temperature. We note that the mobility
is not continuous at o*, and that an appropriate “stitching” between
the mobilities in each regime must be performed prior to their use
in DD simulations. The orange lines represent the individual fits
according to Eq. (12).

where C is a proportionality constant. Fitting the o*-T data
points in Table I to Eq. (9) with op = 1200 MPa yields C =
1073 (£10~%) K~!. The fitted Eq. (9) is also shown in Fig. 5.
Incidentally, the above expression predicts a value of ~1000 K
as the temperature at which the transition stress vanishes. The
final mobility function in the thermally activated regime is
then
o

©1200(1 — 0.0017)?
3772
vin(s,T) = 3710\/;@(13 [—T(l - «/5)} ,

which gives the screw dislocation velocity for each (o, T') pair.

(10)

2. Linear regime

At shear stresses above o *, the dislocations clearly transi-
tion into a linear velocity regime governed by viscous damping.
In principle, one could use a universal fitting function of the

type
v(T)=d(s —1)+e, an

where d and e are also temperature-dependent constants, and
the independent variable is scaled to reflect validity only for
o > o*. d is inversely proportional to the friction coefficient
B and, in principle, should scale with temperature as ~T-1
[cf. Eq. (5)]. For its part, e should be related to the velocity
corresponding to 0¥, i.e., the transition velocity v*. However,
because we have no a priori information about the temperature
dependence of these constants, we first fit each linear mobility
data set in Fig. 4 individually using the standard viscous law
w= 22 L (12)
"B '
In this fashion, we compute B and v* for each T to gain
insight into their temperature dependence. The results of
the fit are shown in Fig. 8 as orange lines. The values
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FIG. 9. (Color online) Dependence of the transition velocity v*
with o* and T. The temperature axis has been produced from the
o*-T relationship given in Eq. (9).

for B and v* are given in Table 1. As the data show, B
displays virtually no temperature dependence, while that of
the transition velocities is not clear at first glance. In searching
for a suitable temperature dependence for v*, we note that v*
must be zero both when ¢* = 0 and when o* = op. This is
because those are the two instances when there is no longer a
need for thermally activated KP nucleation to attain dislocation
motion. In terms of temperature, these two limits correspond,
respectively, to the temperature at which the activation free
energy vanishes [estimated from Eq. (9) at approximately
1000 K], and 0 K. v* is plotted as a function of ¢* and T
in Fig. 9, where the temperature scale follows Eq. (9). To
ensure v*(c* = 0) = 0, we fit the data shown in the figure to
a third-degree polynomial of the type

v = 0*(c20™? + 10" + ¢p),

which results in ¢y = —4.4 x 1072, ¢; =2.2 x 1073, and
¢y = —1.8 x 107® (we omit the units of the fitting constants

3710,/% exp [ 2Z2(1 — /s)]  for
v(s,T) =

N
where s = 57000027 -

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have carried out simulations of
%(1 11)(112) screw dislocation motion as a function of stress
and temperature in order to fit functional mobility laws to be
used in mesoscale methods. Below we discuss several aspects
related to the validity of our approach and the applicability of
the mobility functions proposed.

PHYSICAL REVIEW B 84, 174103 (2011)

for clarity). The fitted polynomial is also shown in Fig. 9.
The dependence with temperature is trivially obtained by
substituting o* = 1200(1 — 0.0017)? into the fitted polyno-
mial and eliminating the independent term to force v* =0
atT =0:
vi(T)=6.1T —2.8 x 1072T? +4.9 x 107°1°
—43x 10787 +1.9 x 10777
—3.1x1077°. (13)
By using Egs. (12) and (13), we can now expand Eq. (11)
into a mobility law for the linear regime as
v(s,T) =d(s—1)+ 61T — 2.8 x 1072T?4+4.9 x 10773
—43x 10787 4+1.9 x 107" 75-3.1 x 107157°,

where d is related to the average friction coefficient
B =2.6x10"* Pa s~' (from Table I) via the relation
d = bo*/B'. This relation implicitly introduces a temper-
ature dependence for d by way of o*(T) from Eq. (9),
ie.,

borp(1—0.001T2
_ %mm—z.m 4114 x 10772,

(14)

d

The final mobility function in the linear regime is, therefore,

vi(s,T) = (s — 1)(1140 — 2.287 + 1.14 x 1073T?)
+6.17 —2.8 x 1072T? +4.9 x 107°73
—43x10787*+1.9x 107177
—3.1x107178, (15)

which gives the velocity in m s~' when T is given in K. The

results of this fit are also shown in Fig. 8.

Thus, a closed-form mobility function for %(1 11)screw
dislocations in «-Fe gliding on {112} planes in the twinning
sense as a function of stress and temperature is proposed based
on MD simulations:

s < 1,
11405 — 2.285T + 1.14 x 10735T2 — 1140 + 8.4T — 0.03T% —4.9 x 10T (ms~") (16)
+43x 107874 —1.9x 107175 +3.1 x 107°7T% for

s> 1,

Let us start by discussing the validity of MD simulations for
this task, vis a vis the high attendant strain rates. Dislocation
motion simulations can be run prescribing the strain rate'’
or, alternatively, the applied stress.”®3° If one chooses the
former, the velocity of the dislocation is also prescribed,
and the corresponding stress is extracted as the output of
the simulations. Because the strain rates, for dislocations to
have a noticeable motion within MD time scales, have to be
exceedingly high, it is difficult to argue against the statement
that MD strain rates are often excessively above realistic
experimental ones. However, if one performs stress-controlled
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simulations, it is the velocity that is the output, not the strain
rate. Velocities are related to the strain rate through Orowan’s
equation (¢ = pyvb, where p, is the dislocation density).
However, for a fixed dislocation line length, one can obtain
converged mobilities above a certain box size. This means
that the measured velocity does not change even if the box
dimensions (except the line length) are increased arbitrarily,
i.e., pg is decreased arbitrarily. Then, the o -v relation becomes
an upper bound of the mobility, independently of the strain rate.

Next, we discuss the suitability of the fitting functions given
in Eq. (16). Equation (8) describes the relation between v and
o and T in the thermally activated regime. The functional
form for Hgp given by Eq. (7), although phenomenological
in nature, is known to provide a good linkage between H
and zero as a function of the applied shear stress, and has
been widely used in the literature.'*3!-3? The exponents p and
q obtained here are in very good agreement with the values
predicted by (isotropic) linear elasticity and those used in DD
calculations.!”*’ This is an interesting result in light of the
fact that w-Fe is a highly anisotropic and nonlinear elastic
solid. It is important to emphasize that in Eq. (7), we have
used o*, rather than op, as the normalizing stress. This is
because the o* are the limiting stresses after which thermally
activated motion is no longer needed at each temperature.
Therefore, the transition stresses act as the finite-temperature
counterparts of the Peierls stress at 0 K. This, of course, does
not change the definition of op, which emanates from the
static-energy landscape and is independent of temperature.
Simply put, the free-energy barrier decreases (softens) with
increasing temperature, thereby necessitating a lower stress to
be overcome. Because of this, the definitions of o* and op
coincide at zero temperature, so that, in a way, the transition
stress may be considered a finite-temperature generalization
of the concept of Peierls stress.

With regard to the linear regime of motion, there are some
considerations to bear in mind. First, we have assumed a
polynomial form for the variation of the transition velocity
v* with temperature. This was done purely for numerical
convenience, as this form manages to provide a reasonable
fit to the data given in Fig. 9. However, even though there
is no physical basis behind this choice, we have imposed
the temperatures (stresses) at which v* should vanish, which
do have a physical justification. Second, independent linear
fits to the MD values at each temperature reveal almost no
temperature dependence of the viscous drag coefficient 1.
This lack of a temperature dependence for 5 precludes us
from defining this regime as the phonon drag regime. However,
we speculate that this could well be a scale-dependent effect,
where elastic waves emitted by the dislocation as well as
lattice phonons do not have time to fully equilibrate, resulting
in a seemingly athermal behavior when, in reality, it is just
a consequence of small-scale dynamics. In any case, as a
word of caution, we do not claim to be realistically capturing
the physics of this regime, and this should be kept in mind
when using these dislocation mobilities in other higher-level
methods.

Next, let us analyze the issues associated with {112} glide.
As was stated in Sec. I, slip in bce materials is known to
proceed principally on {110} planes. However, while at low
temperatures and stresses, the potential used in this work

PHYSICAL REVIEW B 84, 174103 (2011)

predicts screw dislocation glide on {110} planes, above room
temperature, the effective glide plane is seen torotate toa {112}
conﬁguration.30 Incidentally, we have shown that above 350 K,
the dislocation core loses its compact structure and adopts a
more extended structure. Whether this effective plane rotation
is related to the core transformation is not clear, although,
as Fig. 6 shows, the dissociated core configuration is seen
to have little or no effect on the glide dynamics at 500 K.
Indeed, we have shown that slip proceeds always by way of
elementary {110} episodes of KP formation, regardless of what
the effective glide plane is seen to be. Direct evidence for this
mechanism had heretofore been lacking, although, using the
nudged elastic band method, Duesbery had shown that the
activated state between two equivalent core configurations on
a {112} plane was in fact the same as on a {110} plane.*’
Because of the above arguments, the critical and transition
stresses measured here actually pertain to KP formation on
{110} planes and can thus be compared directly with other
calculations and experimental data associated with {110} slip.
To remove the dependence on the quantitative differences
between experiments and atomistics regarding the Peierls
stress, we compare the temperature dependence of the ratio
o0p/op obtained here with results from several sources in
Fig. 10. The calculations by Domain and Monnet'® and the
static results of Wen and Ngan (using a different interatomic
potential),'® normalized to the corresponding Peierls stress,
are included in the figure. In addition, the experimental data
from Kuramoto et al.’ and Brunner and Diehl® are also shown.
Both of these experiments were carried out under conditions
that favor glide on {110} planes at strain rates < 10™* s,
As the figure demonstrates, despite the differences in the
attendant strain rates, the agreement for 7 < 300 K between
our data and both experimental and atomistic calculations is
excellent. However, at higher temperatures, the MD calcu-
lations deviate from the static values in that they appear to
saturate or decline more slowly to their zero value. Future

1.0 ' ' This work: 6
g Domain and Monnet (2005) - A
08 1 Wen and Ngan (2000) ]
. Brunner and Diehl (1992)
Kuramoto et al. (1979) L]
o 06 1
L
° 04} : ]
A... A,
Cedein, B
02 [ . Ao, ., A )
0.0 ! ! ! - ! !
0 100 200 300 400 500 600
T (K)

FIG. 10. (Color online) Comparison of the normalized threshold
stress obtained in this work to atomistic results (Refs. 13 and 16)
and the experimental values of the flow stress in pure single Fe
crystals measured by Kuramoto et al. (Ref. 5) and Brunner and Diehl
(Ref. 6). The normalization factors for the experimental data were
363 (Ref. 47) and 380 MPa, respectively.
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FIG. 11. (Color online) Comparison between the theoretical
activation volume, as given by Eq. (17), and the experimental data
for Fe by Conrad (Ref. 50).

studies will determine the temperature at which the threshold
stress vanishes for the Mendelev potential.

Further, as noted by Dorn and Rajnak,35 the most reliable
verification of the Peierls mechanism is to compare experi-
mentally and theoretically deduced activation volumes. From
Eq. (7), assuming p = % and g = 1, the expression for the
activation volume can be obtained as V, = dH /do:

oH Hy 1

‘T 90 2 op Ao’
which is compared in Fig. 11 with the data for bcc Fe compiled
by Conrad.”® As is the case in other theoretical studies, V,
underestimates the experimental datainthe 0 < ¢ < 100 MPa
interval. This has been attributed to a strong dislocation
density dependence with stress in that range. For o = op,
the theoretical activation volume takes a value of 2.8 b°.

As a final remark, we emphasize that the ultimate objective
of works such as the present one is to generate mobility
laws that can be elevated to higher temporal and spatial
scales by being integrated into models of higher statistical
level, e.g., dislocation dynamics, phase field, etc. In this
sense, we note that our work, which provides mobilities for
a given slip system, is only one step in such a direction, and
that more calculations on other slip systems, perhaps using
other interatomic models, must be carried out before a full

a7
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mobility law can be produced. In any case, our simulations
provide nonlinear laws that represent an improvement over
uniform, character-independent variants (known as “BCC0”)
used in several studies.’! Other workers have used nonlinear
expressions similar to Eq. (6) that are typically fitted to
experimental data or molecular statics calculations, %2047 j e,
not obtained in a self-consistent fashion as in this paper.
Additionally, a unified mobility function, apt for use in DD,
must be continuous and differentiable in the entire stress
and temperature ranges. Thus, the numerical usefulness of
Eq. (16) for dislocation dynamics calculations hinges on an
appropriate “stitching” of the thermal and linear mobilities
presented here. This can be achieved using suitable splines or
via harmonic averaging.’” The bivariate polynomial form of
the linear velocity regime, which appears as a consequence of
the temperature dependence of o * and v*, may be challenging
to implement, and suitable simplifications may be in order.
However, all of these issues belong to the realm of functional
analysis and they are not elaborated on further. With regard
to the range of applicability of Eq. (16), the very definition of
s imposes a limit of 7 = 1000 K for our mobility function.
Evidently we stand by our explored temperature interval of
100 < T < 500 K, but it is unclear if the functions supplied
here are valid beyond it. It is important to emphasize that v; in
Eq. (16) is only meaningful for s > 1.
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