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Generalized Gilbert equation including inertial damping: Derivation from an extended breathing
Fermi surface model
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In a recent paper [M.-C. Ciornei et al., Phys. Rev. B 83, 020410(R) (2011)], it has been shown by mesoscopic
nonequilibrium thermodynamics that, for relatively fast magnetization dynamics, Gilbert’s equation of motion
for the magnetization has to be supplemented by an “inertial” damping term that contains the second derivative
of the magnetization with respect to time. In the present Brief Report, it is shown that such an additional damping
term can be derived and evaluated very naturally also within a slightly extended breathing Fermi surface model
for magnetization damping.
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In past years, there has been extensive research activity on
dissipative magnetization dynamics. Thereby, the phenomena
have been subdivided into fast and ultrafast magnetization
dynamics. In the fast magnetization dynamics, the slow
magnetic degrees of freedom are investigated on a time scale
that is larger than the inverse of the frequencies ν of typical
long-wavelength spin waves and hence much larger than the
electronic intersite hopping time of about 10−15 s. For that time
scale, the processes are close to the adiabatic limit for which
the electronic system is always in its ground state with respect
to the momentary magnetization configuration. Examples are
the field- or spin-polarized-current-induced switching of the
magnetization direction in films of several nm thickness or
the switching of the polarization of a magnetic vortex core
in a small platelet.1 Ultrafast processes occur on shorter time
scales, e.g., the quenching of ferromagnetic order in about
100 fs after exposing a thin film of Fe, Co, or Ni to an intense
sub-100-fs pulse of laser light.2

On a phenomenological level, the fast near-adiabatic
magnetization dynamics is often described by Gilbert’s phe-
nomenological equation3 for the magnetization M(r,t),

dM(r,t)
dt

= −γ [ M(r,t) × Heff(r,t) ]

+ 1

|M(r,t)|
(

M(r,t) × α
dM(r,t)

dt

)
. (1)

Here the first term on the right-hand side (γ is the gyromagnetic
ratio) describes the precession of the magnetization around
the micromagnetic effective field Heff, which is composed
of the external field, the magnetic anisotropy field, and the
demagnetization field. The second term is the damping term
(with the damping number α), which drives the magnetization
toward the direction of Heff, whereby angular momentum
is transferred to nonmagnetic degrees of freedom (direct
damping).

Equation (1) is the simplest conceivable equation to
describe near-adiabatic magnetization dynamics. The question
is whether it is general enough to characterize the fast
magnetization dynamics in all situations. It has been shown
(see Refs. 4 and 5 and references therein) that even in the strict
near-adiabatic regime the constant Gilbert damping number α

in general has to be replaced by a nonlocal damping matrix

α
R,R′ that depends on the momentary orientations eR of the

atomic magnetic moments MR = |MR|eR at all sites R,

deR

dt
= −γ eR × Heff,R ({eR′′ })

+ eR ×
(∑

R′
α

R,R′ ({eR′′ }) · deR′

dt

)
. (2)

The magnetization M(r,t) from Eq. (1) may be obtained from
the atomic moments MR,

M(r,t) = 1

V (r)

∑
R∈V (r)

MR(t), (3)

where V (r) is the volume of a mesoscopic part of the
sample around r. Please note that, because of the replacement
of α by the matrix α

R,R′ , the quantity α
R,R′ · (deR′/dt) in

general is not parallel to deR/dt on the left-hand side of
Eq. (2). Other important consequences of the generalization
of Gilbert’s equation according to Eq. (2) are discussed in
Ref. 4. The equation of motion (2) has been derived4,5 by a
combination of the effective-field theory (see below) of the
breathing Fermi surface model6 with a variant of the ab initio
density functional electron theory based on the magnetic force
theorem. The damping matrix α

R,R′ could be represented in
the form α

R,R′ = τf
R,R′

, where τ is a relaxation time (see

below) that covers in a lump sum all the electronic scattering
processes that mediate the transfer of angular momentum from
the spin system to the lattice and where f

R,R′
depends only on

the electronic structure and can be calculated by the ab initio
density functional electron theory.

In past years, important experimental advances have been
achieved, e.g., to speed up the above magnetization switching
and to observe these processes with improved resolution in
space and time (see, e.g., Ref. 7). The question arises how
the equation of motion for the dynamics of M(r,t) has to
be modified when leaving the strict near-adiabatic regime of
the magnetization dynamics, i.e., when we want to describe
the magnetization dynamics on the time scale of several ps or
even a bit below (but not yet in the fs regime). In a recent paper
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by Ciornei et al.,8 this was investigated phenomenologically
within the framework of mesoscopic nonequilibrium thermo-
dynamics theory. Thereby a homogeneous magnetization M
was considered, and the phase space of the ferromagnetic
degrees of freedom was enlarged by the angular momentum of
M. Within this theory, a characteristic time τ1 was introduced
as a phenomenological parameter, and the behavior of the
magnetization dynamics was separated in two regimes: the
diffusion regime or the long time scale limit t � τ1, and the
inertial regime t ≈ τ1. In the diffusive regime, the equation
of motion for M(t) has the form of Gilbert’s equation with
an inertial correction performed on the gyromagnetic ratio.
For sufficiently short times t ≈ τ1, however, the equation of
motion [formulated with the constants γ and α of Gilbert’s
equation (1)] reads

dM
dt

=−γ (M × Heff) + 1

|M|M × α
dM
dt

+ ατ1

|M|M × d2M
dt2

,

(4)

with a new “inertial”damping term determined by d2M/dt2.
It could be shown that this term generates a nutation loop
superimposed to the usual Larmor-precession trajectory of M
in a magnetic field.

It should be noted that this additional inertial damping term
has been derived (among others) already by the theory of Suhl,9

where the direct damping is described on a phenomenological
level via the magnetoelastic coupling between the magnetiza-
tion and the lattice distortions.

In the present Brief Report, we show that an additional
damping term, which contains second time derivatives of M,
can be derived (among other additional terms) also within the
framework of the above-mentioned effective-field theory of
the breathing Fermi surface model. This derivation is very
natural; it does not require the introduction of a new concept
(like the angular momentum of M) and it does not introduce
a new parameter in addition to the one (the relaxation time τ )
that determines α.

In the following, we consider also only the simple situation
of a homogeneous magnetization. We define as strictly
adiabatic situation the one for which the scattering processes of
electrons are so fast and frequent that the electronic system is
always in its ground state with respect to the orientation e(t) of
the magnetization M(t) = M(t)e(t). The orientation e(t) is the
adiabatically slow magnetic degree of freedom4,5,10 and plays
the role of an external parameter for the electronic system.
We then can define equilibrium single electron energies
εjk [e(t)], the corresponding single electron wave functions
ψjk [e(t)], the Fermi-Dirac occupation numbers fjk [e(t)], and
the equilibrium Fermi surfaces S [e(t)]. In a system with
spin-orbit coupling, all these quantities change with e(t) in
time, and as a result the Fermi surface breathes.

For a realistic, not strictly adiabatic but near-adiabatic
situation, the electronic scattering processes are not able to
produce at each moment an adiabatic equilibrium situation
for the electronic system. If we knew the many-electron
wave function �(t), we could calculate the homogeneous
magnetization M(t) and hence its momentary orientation e(t).
Knowing e(t), we could also calculate the adiabatic single-
electron wave functions ψjk [e(t)], and we could represent

�(t) by the antisymmetrized product of the ψjk [e(t)]. How-
ever, the occupation numbers njk(t) = 〈�(t)|̂a+

jkâjk|�(t)〉
will be different from the fjk [e(t)], where â+

jkâjk is the particle
number operator for the ψjk [e(t)]. The scattering processes
will try to drive the njk(t) toward fjk [e(t)], but they will lag
behind the fjk [e(t)].

It has been shown4,5,10,11 that for a near-adiabatic situation
the equation of motion for the orientation e(t) can be written
in the form

de
dt

= −γ e(t) × H̃eff(t), (5)

with the dissipative effective field,

H̃eff(t) = − 1

M(t)

δE

δe(t)
= − 1

M(t)

∑
jk

njk(t)
∂εjk [e(t)]

∂e(t)
, (6)

where E is the total electronic energy. For the calculation of
njk(t), a relaxation time ansatz is used (see also Ref. 6),

dnjk

dt
= − 1

τjk
{ njk(t) − fjk[e(t)] }. (7)

A final approximation is to use just one relaxation time,
τjk = τ .

If njk at the arbitrary initial time t0 is denoted as njk(t0),
then the formal solution of Eq. (7) can be written as

njk(t) =
∫ t

t0

1

τ
fjk(t ′) exp

(
− t − t ′

τ

)
dt ′

+ njk(t0) exp

(
− t − t0

τ

)
. (8)

We now consider a dynamics for which fjk [e(t)] changes only
slightly on the time scale τ , which determines the exponential
decay terms, then it can be evaluated into a Taylor series around
t . Neglecting transient solutions, i.e., for (t − t0) → ∞, this
yields

njk(t) = fjk [e(t)] − τ
dfjk

dt

∣∣∣∣
τ=0

+ τ 2 d2fjk

dt2

∣∣∣∣
τ=0

+ · · · .
(9)

The terms of higher order in τ are small corrections to
the respectively preceding terms if the time scale te for the
dynamics of e(t) and hence of εjk[e(t)] is much larger than
τ , te/τ � 1. In previous papers4,5,10,11 on the near-adiabatic
dynamics, the Taylor series (9) was terminated after the
term linear in τ . We now consider a situation for which
te/τ is smaller, and we then take into account in Eq. (9)
also the term quadratic in τ . Terms of the order τ 3 in
Eq. (9) would yield additional damping terms, e.g., terms
∝ d3e/dt3, in analogy to third-order damping terms discussed
by Suhl.9

To calculate the time derivatives of fjk, we must take into
account that the Fermi-Dirac occupation numbers depend on
the differences ωjk[e(t)] = εjk[e(t)] − μ[e(t)] between the
single-electron energies εjk[e(t)] and the chemical potential
μ[e(t)], which is the Fermi energy εF [e(t)] for the case
of zero temperature, i.e., fjk[e(t)] = fjk{ ωjk[e(t)]}; please
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see the notes given in Ref. 12. With the chain rule, we
then get

dfjk

dt
= ∂fjk

∂ωjk

(
∂ωjk

∂e
· de
dt

)
, (10)

d2fjk

dt2
= ∂2fjk

∂ω2
jk

(
∂ωjk

∂e
· de
dt

)2

+ ∂fjk

∂ωjk

(
∂2ωjk

∂e2
· de
dt

)
· de
dt

+ ∂fjk

∂ωjk

(
∂ωjk

∂e
· d2e
dt2

)
. (11)

In the second term on the right-hand side of Eq. (11), there
is the product between the matrix ∂2ωjk/∂e2 and the vector
de/dt , and then the dot product of the resulting vector with
the vector de/dt . Inserting Eqs. (10) and (11) into Eq. (9)
and then Eq. (9) into Eqs. (5) and (6) yields an equation
of motion for e(t) with a damping term which is linear in
dei/dt [from Eq. (10)] and which has been reported already
in Refs. 4, 5, and 10, and with additional damping terms [from
Eq. (11)], one which is determined by d2ei/dt2 [from the
last term of Eq. (11)], and others which contain products of
(dei/dt) · (dej/dt) [from the first two terms of Eq. (11)]. ei

and ej denote components of e. Probably all three terms in
Eq. (11) are relevant for the magnetization dynamics, but
for the moment we consider only the last term of Eq. (11),
arriving at

de
dt

= −γ e × Heff + e ×
(

α · de
dt

)
+ e ×

(
ατ · d2e

dt2

)
,

(12)

with the microscopic expression for,

Heff = − 1

M

∑
jk

fjk
∂εjk

∂e
, (13)

and with.

1

τ
αm,n = − γ

M

∑
jk

∂fjk

∂ωjk

∂ωjk

∂en

∂εjk

∂em

. (14)

Note that α is not symmetric in m and n, in contrast to the

former definition4,5,10,11 of α where ∂ωjk/∂en was replaced
by ∂εjk/∂en; see Ref. 12. For a symmetric α, one could

replace in Eq. (12) α by α = 1
2 · Tr(α) if the instantaneous

e is parallel to a threefold or fourfold symmetry axis of
the system.10 All terms on the right-hand side of Eq. (12)
are transverse to the instantaneous e. This is a consequence

of the fact that in the breathing-Fermi-surface model only
e(t) is considered as an independent variable, whereas for
M(t) the value is used which corresponds to the equilibrium
value for a system with fixed orientation e(t), i.e., M(t) is
slaved by e(t). Longitudinal terms (as in the Bloch equation)
could only arise if the theory allowed for independent fluctu-
ations of M(t), i.e., for independent longitudinal fluctuations
of M(t).

It should be noted that the damping terms in Eq. (12)
are the consequence of a memory effect occurring for
the time dependence of the magnetization in real systems.
Such memory effects should occur in all real systems. The
reason is that damping results from interactions of the spin
degrees of freedom with other degrees of freedom, and from
the time-dependent quantum-mechanical perturbation theory
it becomes obvious that these interactions do not happen
instantaneously but require time. On a phenomenological
level, this has been emphasized already by Suhl.9 In our
microscopic theory, the memory effect appears in Eq. (8)
for the occupation numbers njk. We are convinced that each
type of theory that takes into account memory effects will
yield such damping terms. The value of our theory is that it
allows one to represent these damping terms explicitly via
the properties of the single-electron energies, which may be
obtained from ab initio calculations. Thereby the theory is
very general as long as time scales for M(t) are considered
for which independent longitudinal fluctuations of M(t) can
be neglected (see above). Then all possible interactions and
electron scattering mechanisms are allowed that may be
described by the use of just one relaxation time τ (for a critical
discussion of this, see Ref. 13).

Equation (12) has the same basic form as Eq. (4), however,
with the scalar quantity α replaced by the damping matrix
α. In the theory of Ref. 8, there are two parameters, α and τ1,
whereas in our theory there is just one parameter, the relaxation
time τ . The complete right-hand side of Eq. (14) is given by
the electronic structure of the system and can be calculated
by the ab initio density functional electron theory. In Ref. 8,
the parameter τ1 has been introduced in a phenomenological
manner to separate the diffusive part of the magnetization
dynamics from the inertial part, but no microscopic meaning
of τ1 has been given. In our theory, the relaxation time τ has
a well-defined microscopic meaning defined by Eq. (7). For
their simulation of the precession-nutation behavior according
to Eq. (4), the authors of Ref. 8 inserted τ1 = 2 ps and α =
5 × 10−2. In Ref. 11, Fig. 2, the effective damping parameters
αeff for a basically circular precession of the magnetization are
discussed as functions of τ−1. For Ni and for the range of τ−1

values where the breathing Fermi surface damping dominates,
values of αeff between 0.2 and 0.01 are found for τ−1 ranging
between 3 × 1012 s−1 and 1014 s−1, i.e., the typical values
of τ are smaller than τ1 = 2 ps used in Ref. 8. It would be
interesting to repeat the simulation for a pair of values typical
for Ni, e.g., α = 5 × 10−2 and τ1 = 0.1 ps, in order to see how
fast the Larmor precession must be in order that the nutation
becomes remarkable.

The authors are indebted to M. D. Stiles and S. Subkow for
helpful discussions.
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J. Phys., Sect. B 26, 1366 (1976).

13I. Garate and A. MacDonald, Phys. Rev. B 79, 064403 (2009).

172403-4

http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1038/nature05240
http://dx.doi.org/10.1088/0022-3727/41/16/164014
http://dx.doi.org/10.1088/0022-3727/41/16/164014
http://dx.doi.org/10.1103/PhysRevB.78.020410
http://dx.doi.org/10.1103/PhysRevB.78.020410
http://dx.doi.org/10.1139/p70-361
http://dx.doi.org/10.1038/ncomms1277
http://dx.doi.org/10.1038/ncomms1277
http://dx.doi.org/10.1103/PhysRevB.83.020410
http://dx.doi.org/10.1103/PhysRevB.83.020410
http://dx.doi.org/10.1109/20.706720
http://dx.doi.org/10.1103/PhysRevB.72.064450
http://dx.doi.org/10.1103/PhysRevB.81.174414
http://dx.doi.org/10.1103/PhysRevB.81.174414
http://dx.doi.org/10.1063/1.2832348
http://dx.doi.org/10.1103/PhysRevB.79.064403

