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Electronic screening strongly renormalizes the linear bands that occur near the Dirac crossing in graphene.
The single bare Dirac crossing is split into two individual Dirac-like points, which are separated in energy but
still at zero momentum relative to the K point. A diamond-like structure occurs in between as a result of the
formation of plasmarons. In this work, we explore the combined effect of electron-electron and electron-phonon
couplings on the renormalized energy dispersion, the spectral function, and the electronic density of states. We
find that distinct signatures of the plasmaron structure are observable in the density of states with the split Dirac
points presenting themselves as minima with quadratic dependence on energy about such points. By examining
the slopes of both the density of states and the renormalized dispersion near the Fermi level, we illustrate how
one can separate k- and ω-dependent renormalizations and suggest how this might allow for the isolation of the
renormalization due to the electron-phonon interaction from that of the electron-electron interaction.
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I. INTRODUCTION

Graphene, a monolayer of carbon atoms, has been studied
extensively since it was isolated in 2004.1 Discoveries such
as a giant Faraday rotation2 and large strain fields, which are
mathematically equivalent to electrons under 300-T magnetic
fields,3 identify graphene as a playground for studying fun-
damental physics. Not least among these discoveries is the
recent observation of plasmaronic peaks in the experimental
angle-resolved photoemission spectroscopy (ARPES) data of
Bostwick et al.4 for graphene epitaxially grown on H-SiC.
Plasmarons5,6 are generally long-lived quasiparticles arising
from the coupling of the particle-hole continuum to charge
density oscillations (plasmons).7 They had not previously
been observed in ARPES, but had been seen through other
techniques in massive electron systems such as GaAs thin
films and single-crystal bismuth.8,9

In the most recent ARPES work on graphene, the system is
doped by the addition of potassium giving rise to a diamond-
shaped feature characterized by three energies labeled E0, E1,
and E2 (see Fig. 1), which, for positive doping, we take as
being implicitly negative as measured from the Fermi level.
These structures were shown to be described by calculations
of electron-electron interactions (EEI) in graphene via a
dynamically screened10 random phase approximation (G0W-
RPA).11,12 Indeed the G0W-RPA results show good agreement
with experiment with the exception of a disagreement at high
binding energies where G0W-RPA predicts two separate bands,
while the experiment shows these bands merging. A discussion
of plasmarons in bilayer graphene is given in Ref. 13.

Of course there are other possible interactions that could
affect the electronic structure of graphene. Perhaps the most
obvious is the electron-phonon interaction (EPI), which has
been calculated from first principles, and is found to be
dominated by optical phonons which occur near 200 meV.14

In Fig. 1, we illustrate schematically the primary modulations

of the Dirac cone surface due to various renormalizations
discussed in this paper, in order to introduce the characteristic
energy scales and essential change in the Dirac cone structure.
The renormalization feature of a phonon at energy ωE

and also the renormalization expected from a G0W-RPA
calculation of the screened Coulomb interaction are shown.
Here, rather than a simple renormalization, which would
modify the effective Fermi velocity in the case of the EPI, the
plasmaronic side bands (not fully shown) create a dominant
diamond-shaped feature that signifies new band crossings.
The inclusion of both interactions has a subtle influence on
the observable plasmaronic structures. The EPI results in
(1 + λ) renormalizations, including one causing a chemical
potential shift, where λ is the electron-phonon renormalization
parameter.15,16 While for an ordinary metal, this (1 + λ) factor
modifies the effective mass, in graphene, the apparent result
is a modification of the velocity of charge carriers, directly
seen as a change in slope of the dispersion at the Fermi
level. Electron-phonon effects provide other signatures beyond
(1 + λ) renormalization factors. For coupling to an Einstein
phonon of energy ωE , there are structures in the density of
states and kinks (illustrated in Fig. 1) in the renormalized
dispersion curves corresponding to this energy.15,16 There is
also a background in the optical conductivity with sharp onset
at ωE due to phonon-assisted absorption, separately revealed
when twice the chemical potential is larger than ωE .16 This
is quite distinct from other possible effects such as band
structure changes due to, for example, bilayers17 or from
Landau quantization under an external magnetic field.18 In
this last case, the phonon peaks in the density of states become
further modified.19

While it is straightforward to identify features of individual
interactions, it is often not clear, even to the lowest order,
what joint impact they have on the system. Experimental
examination of the electronic structure of graphene provides
information as to the overall renormalizations but there is

165448-11098-0121/2011/84(16)/165448(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.165448


J. P. F. LEBLANC, J. P. CARBOTTE, AND E. J. NICOL PHYSICAL REVIEW B 84, 165448 (2011)

FIG. 1. (Color online) Schematic illustra-
tion of the renormalizations of the Dirac cone
by the electron-phonon, electron-electron, and
the combined electron-phonon and electron-
electron interactions. The EPI creates a feature
at ωE . The screened EEI produces two crossing
features at E0 and E2 with a plasmaron ring
between at E1. Here, ωd is the energy of the
Dirac point and εF is the Fermi level.

generally no method to disentangle the impact of different
interactions. The issue becomes what “knobs” exist in the
system that can be controlled to distinguish these interactions.
In the case of the EEI, the coupling strength (denoted by α,
analogous to the fine structure constant of quantum electro-
dynamics) is directly dependent on the substrate dielectric
material. Also, the self-energy itself scales with doping. The
EPI instead has a fixed energy scale (an Einstein frequency
ωE) resulting in distinct features when the chemical potential
is tuned above or below ωE . Here, we show additional ways
of extracting information on the EPI and EEI in graphene.

In the following, we relegate to the Appendix the pre-
sentation of the details of the G0W-RPA theory,10,11,20–22

which sums the polarization bubble to obtain the EEI self-
energy. There, we also present the self-energy for an electron
interacting with a 200-meV phonon within a simple model.14

In Sec. II, we apply these self-energies and show both
the renormalized energy dispersion as well as the spectral
function for a variety of EEI and EPI coupling strengths. In
the absence of the phonon interaction, for strong α values,
the G0W-RPA theory shows a strongly displaced band as
compared to the bare band at high binding energies (ω < E2).
At energies above the crossing at E1 (ω > E1), the band shows
much more modest changes. As α is reduced, the strongly
displaced band at high energies moves rapidly toward its
noninteracting value. Further, we find that the dispersion and
spectral function are modified substantially by the addition
of the phonon self-energy. In particular, the phonon coupling
appears to restore weight to the bare band at high binding
energies due to the fact that its self-energy has the opposite sign
to that of the EEI in this region, which is more in agreement
with what is seen in experiment.

In Sec. III, we calculate the electronic density of states
(DOS) with a focus on signatures of the plasmaronic diamond
structure in this quantity. We find that the Dirac-like crossings
produce parabolic features similar to those expected for a Dirac
point when damping is included in the calculations.15,16 These
features shrink in amplitude for decreasing bare chemical
potential, μ0, and are subject to broadening due to the EPI
for |μ0| > |ωE|. Thus there is a narrow region of doping in
which one might hope to see features of the renormalized
Dirac crossings in DOS-based measurements.

In Sec. IV, we identify that the value of the density of
states at the Fermi level is renormalized from its bare value
due to the k dependence of the electron-electron self-energy.
The renormalized dispersion and DOS have slopes near the
Fermi level with dependence on both k and ω derivatives
of the self-energy. We show that there is a factor difference
between these two slopes, which allows for the separation

of k and ω dependencies of these renormalizations given
one has information about both the DOS and renormalized
dispersion near the Fermi level. It also allows us to separate,
approximately, these two renormalization effects. It should
be noted that, in this work, we restrict our discussion of
renormalizations to the screened Coulomb interaction (which
has both k and ω dependencies) and the phonon interaction
(which is taken to have only ω dependence).

II. PLASMARON FEATURES IN A(k,ω) AND
RENORMALIZED DISPERSIONS

ARPES allows one to probe the charge-carrier spectral
density A(k,ω) for a given momentum k and energy ω. The
total spectral function in graphene can be defined as the sum of
two components: one for the upper band, s = +1, and one for
the lower band, s = −1. We denote these contributions as A+
and A−, respectively. This results in a total spectral function
about a K point:

A(k,ω) =
∑
s=±

As(k,ω)

=
∑
s=±

1

π

−Im�s(k,ω)[
ω − Re�s(k,ω) − εs

k

]2 + [Im�s(k,ω)]2

(1)

where �s(k,ω) is the self-energy of cone s [we absorb the
shift in chemical potential due to renormalization into the
Re�s(k,ω)], εs

k = svF k − μ0 is the bare dispersion and μ0

is the bare chemical potential. Note that we have taken h̄ = 1.
Also, we have removed the explicit vector notation from
the momentum, k, in Eq. (1). In the cone approximation,
the dispersions, and therefore the spectral function are not
dependent upon the direction of k, only on its magnitude k.

We consider in this work two contributions to the self-
energy, which we detail fully in the Appendix. There, we
introduce the electron-electron coupling strength, α, and the
electron-phonon coupling strength, A, and take the total self-
energy for a given band, s, as the sum of these two interactions.
Thus the total self-energy for the band s is �s(k,ω) =
�EEI

s (k,ω) + �EPI(ω,ωE), where �EEI
s is the contribution of

the EEI for the s band, which is dependent on both k and ω,
and �EPI is the contribution from the EPI, which depends only
on the frequency ω and assumes an Einstein phonon mode at
energy ωE . The electron-electron coupling strength is given by
α = ge2/(ε0vF ), where g = gsgv is the combined spin-valley
degeneracy factor, e is the electron charge, ε0 is the effective
dielectric constant, and vF is the Fermi velocity.
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FIG. 2. (Color online) (a) The bare dispersion, εk (solid black
lines), and EEI renormalized energies E+

k (blue) and E−
k (red) for

the case of α = 2. The upper half cone is well approximated by a
simple renormalized cone (dotted line). (b) The total spectral density
A(k,ω) = A+(k,ω) + A−(k,ω) with (c) A+(k,ω) and (d) A−(k,ω)
shown separately.

As has been noted in the literature,4 for the case of the
EEI, there exists a diamond-shaped feature in the renormalized
dispersion, which has two band energy crossings, replacing
the single Dirac point of the bare case, plus a plasmaron
ring. Clearly, in the limit of α → 0 (no EEI), the G0W-RPA
calculation must produce the bare conical dispersions. This is
pertinent since the effective α goes as ε−1

0 , the inverse of the
effective substrate dielectric constant, which is the average of
that of the materials above and below the 2D graphene sheet.
In this way, the EEI in graphene becomes tunable through the
substrate.

The renormalized lines are obtained from solutions to the
equation

ω − Re�s(k,ω) − εs
k = 0, (2)

which corresponds to the poles in the spectral density,
As(k,ω), in the limit of damping going to zero. We define the
renormalized dispersion as Es

k = εs
k + Re�s(k,ω) for a given

band, s, such that ω − Es
k = 0 as in Eq. (2). In Fig. 2(a), we

compare the bare and EEI renormalized bands for the case of
α = 2. Here, the solid blue (grey) curve applies to s = +1, the
upper modified Dirac cone, and the red (light grey) curve to
s = −1, the lower one. Note that the axes are dimensionless
and scale with doping, here described through the chemical
potential μ0 and the Fermi momentum kF .

For most momenta, E+
k is reasonably well represented by

a new cone (dotted line) with a single scaled renormalization
corresponding to a slightly steeper slope with the new Dirac
point displaced to slightly lower energies, denoted by E0. This
is an energy regime of weak renormalizations resulting in a
dispersion which is close to the bare one. In addition, the k

dependence of �EEI provides multiple solutions to Eq. (2) for a
given ω, the results of which form a complicated bat-ears-like

structure in E+
k in the range −1.5 < ω/μ0 < −1.0. These have

been identified in the literature as representative of plasmaronic
effects.4,11 The bottom of this structure ends in a point that
matches the top of the red curve corresponding to the lower
band, E−

k , together forming a second Dirac crossing at k = 0
and energy E2, below which the red curve again roughly has
a conical shape, but this cone is far displaced from the bare
cone for s = −1 (solid black curve) an indication of strong
Coulomb renormalizations. This band, E−

k , also provides an
additional feature that peaks at E0.

Figure 2(b) shows the spectral function and Figs. 2(c) and
2(d) its subcomponents. The full spectral function, shown
in Fig. 2(b), shows more clearly the appearance of new
plasmaronic side peaks extending between ω = 0 and E2, and
then beyond but very broadened. Primarily one notes that the
Dirac point has split along k = 0 into two separate energies
at E0 and E2. Comparing the renormalized dispersions of
Fig. 2(a) to the color plot of Fig. 2(b) we note the familiar
diamond shape. This diamond is formed as a joint feature
of the renormalized and plasmaronic bands. Below E2,
the cone is strongly renormalized as this is an energy regime
where transitions occur through coupling with the particle-hole
continuum and plasmons. In this energy range, the spectral
function again shows an additional peak not present in the
renormalized energy band. However, comparison with the
energy dispersions suggests that these peaks at larger k are
the residual spectral weight along the simply-renormalized
Dirac cone (dotted black).

An interesting aspect of the color plots of Fig. 2 is to
be found in the detailed examination of the variation in the
spectral intensity as a function of k for fixed ω. For frequency
just above E0, for instance, it is clear in Fig. 2(a) that there
are three zeros from Eq. (2) yet the intensity at these three
values is quite different for each zero. This is a result of the
k dependence of the imaginary part of the self-energy. This is
characteristic of the EEI and is in contrast to the EPI where the
self-energy has no k dependence, only an energy dependence.
That the damping varies with k is clearly seen in Fig. 2(b)
where we note a solid black “x” shape, plus wings that are
green, indicating an increase in smearing.

We now consider the case of including the EPI. In Fig. 3, we
display Ek dispersions and A(k,ω) color map plots for the α =
0.5 case for varied EPI coupling strengths, A = 0, 0.2, and 0.25
[(a) → (c)]. The black lines define the usual Dirac cone without
interactions. In Fig. 3(a), by comparing the solid blue curve
with Coulomb correlations for α = 0.5 with the similar curve
in Fig. 2(a), we see that reducing α has significantly changed
the shape of the plasmaron structures of Ek in the energy region
around the two Dirac crossings but more importantly, below
this region the bare and renormalized dispersions differ less in
energy, in comparison to the α = 2 case, reflecting the reduced
effect of the Coulomb interaction. In Figs. 3(b) and 3(c), we
show how the bands are modified by the additional inclusion
of the 200 meV phonon for increasing coupling strength. We
see the usual ARPES “kinks” at ω = ±ωE , representative of
coupling to a boson.23 We can see that the plasmaronic bands
have changed shape rather significantly, but most noteworthy
is the now nearly unrenormalized band in the lower half cone.
The electron-phonon interaction acts to merge these at larger
binding energies. The renormalizations and chemical potential
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FIG. 3. (Color online) Energy renormalizations and spectral
functions for EEI with a fixed α = 0.5 and varied EPI coupling, A, for
μ0 = 1 eV. (a)–(c) As the phonon strength increases, the renormalized
band merges with the bare band (solid black) at high energy. The real
part of the self-energy due to EPI is large in this energy region and
has opposite sign from that due to the EEI. Plasmaron structures are
also modified. (d)–(f) The spectral function for the corresponding
dispersions in the region of the plasmaron feature.

change of the EPI counteracts that of the EEI. For negative
values of ω, the real part of the phonon self-energy is positive
while the EEI contribution is negative. Thus one expects that,
for sufficiently strong phonon coupling, the joint EPI and EEI
will result in energy bands nearly identical to the bare case.

This issue is further illustrated in Figs. 3(d)–3(f), where
we display the spectral function for the cases shown in
Figs. 3(a)–3(c) for a doping of μ0 = 1 eV and α = 0.5. The
diamond-shaped feature is still present in the spectral function.
The height of peaks, which do not appear in the renormalized
dispersion, will appear lighter or darker as ω − Ek gets further
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k/k

F

-0.2

-0.1

0

0.1

0.2

-2 -1.5 -1
ω/μ0

-0.3

-0.15

0

0.15

0.3
(a) (b)

FIG. 4. (Color online) Spectral function and self energies for the
α = 0.5 case as in Fig. 3. (a) Variation with k at ω = −0.8μ0 for
A+(k,ω) including only EEI. The corresponding real and imaginary
parts of the self-energy are also shown. The value of ω − Re� − εk

from Eq. (2) is plotted (black circles) and shows three zeros, while
the spectral function has only two obvious peaks. (b) Variation with
ω at fixed k = kF of the self-energies for EEI (solid red), EPI (dashed
purple), and EEI + EPI (solid blue) cases for the s = −1 band as in
Figs. 3(c) and 3(f) as well as the values of the left side of Eq. (2) with
and without the EPI (blue and red circles, respectively).

or closer from zero, while not being a pole, and therefore not
appearing in frames (a) through (c).

We emphasize the k dependence of the EEI self-energy
in Fig. 4(a) where we show variations with k of some
quantities for a given frequency ω = −0.8μ0, which is in the
region where the dispersion E+

k has additional plasmaronic
peaks [as shown in Fig. 3(a)]. We also include the quantity
ω − Re� − εk , the left-hand side of Eq. (2), shown as black
circles. This quantity has three zeros at this frequency, which
corresponds to three distinct lines of zeros of Eq. (2) in the
curves of Fig. 3(a) on either side of k/kF = 0. The zero for
smallest k, leads to the sharp peak in A+(k,ω) because the
imaginary part of the self-energy, shown as the solid black line
in Fig. 4(a), is also small. This is not the case for the other two
zeros, the last of which has been identified as the plasmaronic
side band, here appearing as a rather disperse peak in the
spectral function near k = 0.35kF . The second zero occurs at
a point of large damping and does not show up as a peak in
A+(k,ω). The rapid variation of Im�EEI

+ (k,ω) in this region
is also the reason that the second broad peak in the spectral
density (solid red curve) is shifted from the position in k of
the third zero. The partial cancellation between EEI and EPI
self-energy effects is detailed in Fig. 4(b) where we see that
in the region of interest, the real parts carry opposite sign. In
this case, the self-energy depends not only on ω but also on
momentum. �−(k = kF ,ω) is shown (red) for the EEI only
case as well as the sum of EEI and EPI contributions (blue).
We see that below ω = −1.5, the sum is rather small and
this explains why the renormalized and unrenormalized curves
approach each other. Further, at these large binding energies
there is only a single zero of Eq. (2) (solid red points), which
shifts location with increasing electron-phonon coupling (solid
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FIG. 5. (Color online) Imaginary part of the s = 1 band self-
energy for α = 0.5, A = 0.25 eV, and μ0 = 1 eV as in Fig. 3(c). The
EEI is shown in red (light grey), EPI in dark blue (dark grey), and the
sum is shown as the dashed curve. Inset: enlargement of the region
around ω/μ0 = −1 with arrows indicating the locations of the three
Dirac-like crossings at k = 0 in Fig. 3(c).

blue points) toward positive energies. While this is true for
smaller values of α, larger electron-electron coupling may
favor multiple zeros even at higher binding energy despite the
presence of phonons. This result of the G0W-RPA calculation
deviates from experimentally observed ARPES spectra across
a wide range of α values.24 The exact source of this deviation
or required additional interaction has yet to be understood.

The imaginary part of the self-energy and how it is
changed with the introduction of an electron-phonon con-
tribution can also provide additional important information
on the plasmaron structure. In Fig. 5, we show results for
−Im�+(k = 0,ω) for varied ω along the k = 0 line, which
defines the Dirac points. The figure applies to the case α = 0.5
and A = 0.25 eV, which is shown in Figs. 3(c) and 3(f). The
solid red (light grey) is the EEI contribution, while the solid
blue (dark grey) is the EPI contribution. The sum of the two
is represented by the dashed black curve. Note that the EPI

provides no damping in the interval from −ωE to ωE relative
to the Fermi energy at ω = 0. The physics behind this feature
is that at zero temperature an electron of energy ω (assume
ω > 0 for definiteness) cannot decay by the emission of a
phonon if ω < ωE . Thus, around ω = 0, only electron-electron
interactions contribute to the damping. Another important
feature of the EPI is that it gives, on its own, a zero in
−Im�+(k = 0,ω) at ω = −ωE − μ0, which occurs at −1.2
eV in the case shown. The imaginary part is proportional to
the density of states, which has been shifted away from the
Fermi level by ±ωE [see Eq. (A15)] and therefore the zero in
the bare quasiparticle density of states at −μ0 appears as a zero
in Im� at −ωE − μ0. In this region of energy, the EPI adds
little to the damping, which is mainly provided by the EEI,
which shows a strong peak just below ω = −μ0. This peak
damps out structure in this region of the energy dispersion as
seen in Fig. 3(c) where there appear to be three Dirac-like
crossings at k = 0 but the middle one does not appear as a
Dirac point in Fig. 3(f). This is further illustrated by the inset
of Fig. 5, which locates with arrows the positions of the three
Dirac-like crossings from Fig. 3(c) and shows that the middle
one lies at the energy of large damping as compared to the
other two arrows that occur in a region of low damping.

III. PLASMARON FEATURES IN THE DENSITY
OF STATES

The electronic density of states at a frequency ω is given in
terms of the charge carrier spectral function by

N (ω) = gsgv

∑
k

A(k,ω), (3)

where gs and gv are the spin and valley degeneracies,
respectively, and A(k,ω) is given by Eq. (1). While the EPI is
strongly dependent on the value of μ0, in the absence of the
EPI (A = 0), the resulting density of states including EEI is
nearly independent of the value of the bare chemical potential
with only a very weak dependence at large ω approaching the
band cutoff, Wc. In general, we can write the density of states
as

N (ω)

N0
=

∫ Wc

0
εdε

{∑
s=±

1

π

−Im�s(ε,ω)

[ω − Re�s(ε,ω) − sε + μ0]2 + [Im�s(ε,ω)]2

}
, (4)

where N0 = 2/(πh̄2v2
F ).

We present the results of Eq. (4) for the density of states
using the G0W-RPA in the absence of the EPI in Fig. 6, for
varied α. The bare DOS (green dashed line) is a wedge shape
pointing to the chemical potential, with a value of zero at
μ0 in the absence of scattering. For nonzero α, this point
is lifted due to the finite lifetime at this energy provided
by |Im�|.16 Additionally, the slope of the DOS is modified;
reduced in magnitude with increasing α over a broad energy
scale. Furthermore, in Fig. 6(b) we examine the region near
the Dirac point and observe distinct features in the range

ω ∈ [−1.6μ0,−μ0]. In the DOS, the Dirac crossings of Ek

at E0 and E2 result in a parabolic minima located at those
energies as well as a similar feature at E1 associated with
the plasmaron ring. It is these minima in the DOS that we
use in this paper to identify the energies E0, E1, and E2

rather than the corresponding features in the renormalized
dispersion curves. Plasmaron structures, while small in the
DOS, are in principle imprinted on N (ω) between the two
minima associated with the split Dirac points at k = 0. For
variation in α, we observe that these energies are modified.
This is plotted in the inset of Fig. 6(b). The energies scale
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FIG. 6. (Color online) DOS for EEI only. (a) Increasing α results
in reduced slope far from the Dirac point. (b) Closeup of upper
frame. Increasing α results in distinct parabolic features with the
minima positioned at the energies corresponding to the features seen
in Fig. 2(b), which are denoted as E0, E1, and E2. Inset: E0, E1, and
E2 versus α.

with μ0 for a given α. The energies, E0, E1, and E2 and
their variation with α are of importance for the experimental
community, as different substrates can modify α through
several orders of magnitude, from 2.0 for H-SiC to 10−3 for
SrTiO3. In the latter case, there is evidence for strong variation
of the substrate dielectric constant with temperature, creating
a scenario where the value of alpha is modified by an order of
magnitude as temperature is changed from room temperature
to liquid helium temperature.25

In Fig. 7, we display for the α = 2 case the DOS with
[blue(dark grey)] and without [red(light grey)] a 200-meV
phonon for chemical potential above (a) and below (b) ωE .
For too large a chemical potential, the DOS becomes smeared
in the region of E0, E1, and E2 due to additional broadening
provided by the |Im�EPI| resulting from electron-phonon
scattering. This is similar to the lifting of the Dirac point
in the EPI only case for μ0 > ωE .16 Decreasing the chemical
potential to avoid this smearing, however, will weaken the
plasmaronic features in the DOS due to the scaling with μ0.
As a result, there is perhaps a region of doping values just
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FIG. 7. (Color online) DOS with EEI + EPI for α = 2 and
A = 0.25: (a) μ0 > ωE , (b) μ0 < ωE . Phonon interaction shifts
plasmaronic and Dirac features toward positive energy due to the
shift in chemical potential. Inclusion of additional phonon scattering
acts to fill between these features making them less apparent in the
DOS. Insets: larger field of view of DOS. For reference, we include
the bare DOS (dashed line).

less than the phonon frequency where one might look for
plasmaronic features in tunneling.

Several features in Fig. 7 are to be noted. The introduction
of coupling to a phonon has shifted the structures in N (ω)
corresponding to Coulomb renormalizations (E0, E1, E2)
toward positive energy, though the distance between the three
energies remains fairly constant. There are also additional
structures introduced that correspond to pure phonon peaks
seen at ω = ±ωE = ±0.2 eV. We note also that while the
slope of the DOS curve at the Fermi energy, ω = 0, has
changed, the value of the DOS at this point is unchanged
by the introduction of the EPI. However, its EEI renormalized
value is quite different from the bare density of states (dashed
line).

Taking a derivative with respect to ω acts to accentuate
features of the parabolic minima and has been shown in the
past to be an effective way to bring out subtle structures
in general.15,26 In Fig. 8(a), we show N ′(ω) = 1

N0

dN(ω)
dω

for
three values of μ0 for the EEI with α = 2. Also shown are
the derivatives of the bare DOS, shown with dashed lines,
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FIG. 8. (Color online) N ′(ω) = 1
N0

dN(ω)
dω

for α = 2, A = 0.25
with (a) EEI and (b) EEI + EPI, for μ0 = 0.25 (black), 0.15 (red),
and 0.1 eV (blue). Also shown are the bare cases (dashed lines).

which are smeared step functions at μ0. In the EEI case, one
immediately notes the suppressed value of N ′(ω) at ω = 0.
Further, there are new features below −μ0. These features
include several zeros and shrink in magnitude with reduced
μ0 but do not change their relative shape, which reflects the
scaling of the self-energy with μ0 noted for the pure EEI case.
Seen most clearly for μ0 = 0.25 eV (black), there are five
zeros below −μ0. The zeros, which cross from negative to
positive (having positive second derivative), correspond to the
local minima in the DOS, which are caused by the features
in the spectral function at energies E2, E1, and E0. Thus
these zeros describe these special energies and represent a
clear image in the quasiparticle density of states of Coulomb
renormalizations and particularly of plasmarons in graphene.
If one includes the EPI as in Fig. 8(b), there are now two new
features, one occurring at ω = −ωE and another at −μ0 − ωE .
This latter energy is where the |Im�EPI| goes to zero. As a
result of the EPI, the value of N ′(ω) is brought closer to the
bare case both at ω = 0 and especially so at large negative ω

due to the feature at −μ0 − ωE . While in the EEI case, the
energies of the zeros of these curves scale with μ0, in the EPI
case, this is not so.

IV. RENORMALIZATIONS IN Ek AND THE DOS

The observed impact of the EEI and EPI on slopes of
the dispersion, Ek , and the DOS at the Fermi level as well
as their variation with coupling parameters, motivates the
detailed study of these renormalizations. To do this we start
by expanding the self-energy about a given momentum k = k∗
and energy ω = ω∗ to lowest order. We write the real part as

Re�(k,ω) ≈ Re�(k∗,ω∗) + ∂

∂k
Re�(k,ω∗)|k∗(k − k∗)

+ ∂

∂ω
Re�(k∗,ω)|ω∗ (ω − ω∗). (5)

FIG. 9. (Color online) Renormalizations for EEI in G0W-RPA
for a range of α values shown at (a) the Fermi level and (b) E2.
(c) Energy dispersion for α = 2 (solid line) compared to the simple
renormalizations at ω = 0 (red dashed) and E2 (blue dashed). The
ω = 0 renormalization, shown schematically by the line with rise and
run given by Zk and Zω, respectively, roughly agrees with the full
calculation until nearly E1.

We introduce the notation

λk=k∗ = 1

vF

∂

∂k
Re�(k,ω∗)|k∗, (6)

λω=ω∗ = − ∂

∂ω
Re�(k∗,ω)|ω∗ . (7)

From these, we define k- and ω-dependent renormalization
factors as Zk = 1 + λk and Zω = 1 + λω. At the Fermi level,
Eq. (2) now becomes ωZω − εkZk = 0. From this we can
approximate the renormalized energy in terms of the bare
dispersion and the renormalization factors as Ek = εkZk/Zω.

We show details for two points on the dispersion curves,
the Fermi surface (k∗ = kF , ω∗ = 0) and the lower Dirac
crossing (k∗ = 0, ω∗ = E2). The slopes of Ek at these two
points are indicated in Fig. 9(c) [for α = 2] as dashed red and
dashed blue, respectively. The slope of Ek at the Fermi surface
defines quite well the variation of the Coulomb renormalized
dispersion curves over the entire range down to the first Dirac
point at E0. The dashed blue line, which defines the slope of the
renormalized dispersions at the second Dirac point, E2, begins
to deviate somewhat from the solid blue curve for energies
away from E2. Thus the extent over which this approximation
scheme is valid is limited near the vicinity of E2. It is worth
noting that in general, the slope of this blue dashed line is not
the same as that of the red dashed line.

Figure 9(a) and 9(b) show slopes at the Fermi energy, ω = 0,
and E2, respectively, as a function of α. The solid (black)
curve gives Zk , the dashed-dotted (red), Zω and the dashed
(blue) Ek/εk . We define this ratio to be Ek/εk = mε = Zk/Zω,
which is rather close to one for all values of α even though for
α = 2, Zk=kF

≈ 1.7, and Zω=0 ≈ 1.5. At ω = 0, the Zω and Zk

renormalizations both grow in tandem for increasing α. This is
not the case for other energies, such as E2, where above some
coupling strength the renormalization values cross. This is a
consequence of the fact that the EEI energy renormalization
limits to zero at the Fermi energy, not at E2. To illustrate
this point, we define a quantity β = λEEI

ω=0/λ
EEI
k=kF

plotted as the
dotted black line of Fig. 9(a). It is clear that β is essentially
constant for all values of α and in fact has a value of roughly
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2/3. If one defined a similar quantity at E2, or any other
energy, this behavior would not be observed. In this light,
β has a universal value for varied α, or to put it in a more
experimentally relevant context, β is substrate independent.

This is an important result, which needs to be kept in mind
when analyzing ARPES data with a view at understanding the
role of Coulomb interactions. Also shown, for completeness, is
the chemical potential shift, �μ/μ0, due to the EEI. Note that
the Zs begin at a value of 1 for α = 0. The lower part of the left
frame gives similar results for the Dirac point at ω = E2. For
the well-known case of the electron-phonon interaction, Zk =
1 and we recover the known result that Ek = εk/(1 + λEPI

ω ).
With this idea of slope renormalizations near the Fermi

level, we draw the reader’s attention back to the DOS
calculations of Fig. 7. We can understand both the DOS value
and slope change at the Fermi level. One must rewrite the delta
function δ(εZk − ωZω) = δ(ε − ωZω

Zk
)/|Zk|. Thus the density

of states is subject to this Zk renormalization.
Further, in the limit ω → 0,

N (ω → 0)

N0
=

Nbare
(
ωZω

Zk

)
∣∣ZkF

∣∣ ∼ Nbare(0)∣∣ZkF

∣∣ + sgn(μ0)
Zω=0

Z2
kF

ω,

(8)

where Nbare(ω) = |ω + μ0|. We conclude from Eq. (8) that,
for example, in the case of α = 2 where ZkF

= 1.63, the EEI
provides about a 40% reduction to the DOS as seen in Fig. 6(a)
at ω = 0. This is to be contrasted to the well-known effect
in metal physics that the electron-phonon interaction leaves
the DOS at ω = 0 unaltered (ZEPI

kF
= 1). Further, while the

variation in N (ω) for small ω remains linear in ω, its slope
is changed by the factor mN = Zω=0/Z

2
kF

, which is to be
contrasted with our previous result for the dispersion curve
renormalization where the renormalized quasiparticle energy
Ek = (ZkF

/Zω=0)εk = mεεk . We now have slope renormal-
ization factors for the DOS and dispersion given by mN

and mε , respectively. Measuring mN in scanning tunneling
spectroscopy (STS) and mε in ARPES, we can separate the
renormalization factor, ZkF

≡ (mεmN )−1. If we include both
the EEI and the EPI, we have that

Zk = 1 + λEEI
k , (9)

Zω = 1 + λEEI
ω + λEPI

ω . (10)

If we note that (mNm2
ε)−1 = Zω=0 = 1 + λEEI

ω=0 + λEPI
ω=0, we

can obtain both λEEI
kF

and the sum of λEEI
ω=0 and λEPI

ω=0, separately.
Now the value found for λEEI

kF
can be used to deduce [from

Fig. 9(a)] the value of the coupling constant involved (α)
and consequently, the substrate dielectric constant. Also from
examination of Fig. 9(a), we see that for a given α we can
relate λEEI

kF
to λEEI

ω=0 through β such that λEEI
ω=0 ∼ βλEEI

kF
.

To continue this example, we would find that (mNm2
ε)−1 ∼

1 + βλEEI
kF

+ λEPI
ω=0 from which we conclude that

λEPI
ω=0 = (

mNm2
ε

)−1 − β(mNmε)−1 − (1 − β). (11)

This analysis should allow a direct experimental estimate of the
strength of the electron-phonon interaction given mε measured
by ARPES and mN by STS.

As we have seen, when only Coulomb effects are considered
in the G0W-RPA approximation, there is a single curve for the

0 0.5 1 1.5
μ0

0

0.2

0.4

0.6

0.8

1

mε
m

N

λω=0
EPI

   Eq. (7)

Eq. (11) for β=2/3

α=2 A=0.25 eV

FIG. 10. (Color online) DOS and EkF
slope renormalizations, mN

and mε at the Fermi level due to the EPI and EEI. Manipulation
of these slopes using Eq. (11) allows the extraction of the EPI
contribution λEPI

ω=0 given knowledge of the factor β in the EEI. The
result of Eqs. (7) and (11) match precisely due to the independence
of the EEI on μ0.

density of states whatever the value of chemical potential. As
a consequence, the contribution to the renormalization at the
Fermi surface from the EEI is constant for variation in μ0.
On the other hand, the electron-phonon mass renormalization
increases with increasing μ0.16,17As a result, when both the
EEI and EPI are considered, mε and mN will vary as seen
in Fig. 10. While in this theoretical work, the evaluation
of Eq. (11) is trivial, we include the case for β = 2/3 to
emphasize that the knowledge of mε and mN is sufficient to
obtain the EPI renormalization, λEPI

ω=0, shown in Fig. 10. This
analysis should be an experimentally realizable task, given one
performs ARPES and STM on a sample with the same α.

V. CONCLUSIONS

We have studied how Coulomb interactions change the
density of states in graphene within the dynamically screened
G0W-RPA. As was previously found for the dispersion curves,
a single universal function scaled by the chemical potential
N (ω/μ0)/μ0 can describe all doping values for a given value
of the coupling strength α. The Dirac point of the bare case
splits into two as predicted and seen in ARPES experiments
and these show up in the DOS as two minima at E0 and E2

with a quadratic behavior. The plasmaronic ring presents itself
as a further additional minimum at energy E1 between E0

and E2. These structures can serve to identify plasmarons in
the DOS as measured in STS experiments. Application of a
first derivative to N (ω) further enhances these signatures. We
describe how the three energies vary with coupling α, which
is inversely proportional to the substrate dielectric material.

We find that Coulomb coupling reduces the value of the
interacting DOS at the Fermi surface below its bare value by a
factor of ZkF

, independent of doping. This is a radical departure
from the well-known result that the electron phonon interaction
itself does not renormalize the DOS at ω = 0. This difference
is understood as a result of the fact that Coulomb interactions
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provide a self-energy that depends on both momentum, k, and
energy, ω, while the EPI depends only on ω. The factor ZkF

comes directly from the derivative with respect to k of the
self-energy. On the other hand, the slope of the renormalized
dispersion curves at kF is given by a ratio ZkF

/Zω=0, where
Zω is related to the derivative of the self-energy with respect
to ω. Both factors have similar magnitudes, which results in
the ratio ranging from a value of 1 at α = 0 to 1.2 at α = 2.

In a similar fashion, we show that the slope of the linear-
in-ω dependence of the DOS at the Fermi surface is given
by the factor Zω=0/Z

2
kF

. Consequently, a joint measurement
of the slope of the dispersion curves by ARPES and that of
the DOS by STS allows one to measure directly the Coulomb
renormalization factor ZkF

as the ratio of these two slopes.
We have also studied the effect of additionally including

the electron-phonon interaction. This second interaction can
significantly affect the plasmaron structure in both renormal-
ized dispersions and density of states. In particular, the EPI
causes the energies E0 and E2 to move toward the Fermi
level as does E1, which remains roughly at the same relative
position between the quadratic minima associated with the
split Dirac points. For the set of parameters examined, an
important effect of including both EPI and EEI is that well
below the second Dirac point, the real part of the self-energy
of each interaction separately carries the opposite sign, and so
partially cancel against each other. This leads to a reduction
of the difference between renormalized and bare dispersion in
the high-binding-energy region than would arise from the EEI
alone.

We also establish a procedure whereby the EEI and
EPI renormalizations at the Fermi surface can be separately
determined from combined measurements of the DOS in STS
and dispersion curves in ARPES.
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APPENDIX: THEORETICAL BACKGROUND

A. Electron-electron interaction (EEI)

One can calculate the self-energy within random phase
approximation (RPA) through a procedure that is standard
for a 2D electron gas (2DEG)20 and modified to include
the issue of chirality in a chiral 2D electron gas (C2DEG).
The electron-electron interaction is assumed to be due to
an effective potential W , which accounts for the screened
Coulomb repulsion. The form of the self-energy then includes
a Green’s function G, and the effective screened potential W ,
leading to the G0W-RPA expression in terms of a sum over
Matsubara frequencies, given by

�RPA
s (k,ω)

= −T
∑

s ′=±,q,m

Go
s ′ (k + q,ω + im)Fss ′ (θkk′)W (q,im).

(A1)

Here, the noninteracting Green’s function in the s ′ band is
given by

Go
s ′ (k + q,ω + im) = 1

ω + im − εs ′
k+q

, (A2)

where im = i2πm, m = 0,±1, ± 2, . . . are the bosonic
Matsubara frequencies and εs ′

k′ is the energy, relative to the
Fermi level, of the s ′ band at final momentum k′ = k + q. Due
to the symmetry of the cone approximation, the k direction can
define the coordinate system, such that εs ′

k′ is a function of the
magnitudes of k and q and the angle between them, θkq . This
results in εs ′

k′ = vF s ′√k2 + q2 + 2kq cos θkq − μ0.
In addition to an effective potential, the G0W-RPA calcula-

tion for a chiral system includes a scattering amplitude, which
is the overlap of the state k in the s band with the state k′ in
the s ′ band. This factor acts to remove backscattering, and is
given by

Fss ′ (θkk′) = 1
2 [1 + cos(θkk′)ss ′], (A3)

where θkk′ is the angle between the vectors k and k′. Again, if
one defines k′ relative to the direction of k, we can write the
angle between as

θkk′ = arctan

(
q̄ sin θkq

k̄ + q̄ cos θkq

)
, (A4)

where q̄ and k̄ are dimensionless quantities as defined below.
We note that in calculations, it is important to correct for the
nonprincipal value of the arctan function.

The final piece to Eq. (A1) is the effective potential given
by

W (q,im) = Vq

1 − Vq�0(q,im)
, (A5)

where Vq is the 2D Coulomb potential, Vq = 2πe2/(ε0q),
where ε0 is the effective dielectric constant of the medium
and �0 is the polarization function for doped graphene.10,21

All necessary quantities can be written in a dimensionless
form by scaling the energies by the bare chemical potential, μ0,
and scaling the momenta by the bare Fermi momentum. We
denote these dimensionless quantities with a bar notation. With
this in mind, we define Vq�o = �̄

q̄
α, where α = ge2/(ε0vF )

(g = gsgv is the combined spin and valley degeneracy factor)
and �̄ is given for a given q̄ and ī as21

�̄(q̄,ī) = −1 − π

8

q̄2√
̄2 + q̄2

+ 1

4

q̄2√
̄2 + q̄2

Re

[
arcsin

(
2 + ī

q̄

)

+
(

2 + ī

q̄

)√
1 −

(
2 + ī

q̄

)2]
. (A6)

Alternate polarization functions have been explored such as,
for example, the case of gapped graphene,26 which maps onto
Eq. (A6) as the gap goes to zero. In this case, we can write the
effective potential as

W (q̄,ī) = 2πα

g

vF

kF

1

q̄ − α�̄(q̄,ī)
. (A7)
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Evaluation of the self-energy of Eq. (A1) is generally
performed in two parts, identified as the line and residue
(RES) portions.20 The line component is completely real,

while the residue portion has both real and imaginary parts.
These are given by

�̄RES
s (k̄,ω̄) =

∑
s ′=±1

∫ ∞

0

∫ 2π

0

dq̄dθkq

2π

α

g
ε−1

(
q̄,ω̄ − ε̄s ′

k+q

)
Fss ′ (θkk′)

[
�

(
ω̄ − ε̄s ′

k+q

) − �
( − ε̄s ′

k+q

)]
, (A8)

and

�̄line
s (k̄,ω̄) = −

∑
s ′=±1

∫ ∞

0

∫ 2π

0

dq̄dθkq

2π

α

g
Fss ′ (θkk′ )

∫ ∞

−∞

d̄

2π
ε−1(q,ī)

[
ω̄ − ε̄s ′

k+q

̄2 + (
ε̄s ′

k+q − ω̄
)2 − ī

̄2 + (
ε̄s ′

k+q − ω̄
)2

]
, (A9)

where ε−1 is given by

ε−1 = 1

1 − Vq�o

= q̄

q̄ − α�̄
. (A10)

Here, we have also written the band energies for general k
and q in a dimensionless form:

ε̄s ′
k+q = εs ′

k+q

μ0
= s ′

√
k̄2 + q̄2 + 2k̄q̄ cos θkq − 1, (A11)

which is the energy in the Dirac cone approximation.
The integral over ̄ in Eq. (A9) contains two terms, the

first has a Lorentzian shape, which provides a natural cutoff,
while the second term is odd and vanishes over the ̄ integral.
Also, �̄ for purely imaginary frequencies is completely real.21

The evaluation of real frequencies in, for example, ε−1(q̄,ω̄)
requires that one includes a finite lifetime for the plasmons.
This can be done in the form ε−1(q̄,ω̄) → ε−1(q̄,ω̄ + i�),
where � is the plasmon scattering rate.10,28 Failure to include
such a term results in infinitely long lived plasmons, which
cannot scatter with electrons. Thus such a rate controls
electron-plasmon coupling (plasmarons).

Previous work12 has shown that the q integrals of Eqs. (A8)
and (A9) suffer from a divergence at large q. This ultraviolet
divergence is an artifact of the assumed linear dispersion in
graphene, which allows for arbitrarily large q scattering. A
detailed calculation would include a band cutoff at an energy
Wc 
 7 eV, which corresponds to the energy that maintains the

number of states in the Brillouin zone. Hence, this is important
for density of states calculations, such as Eq. (4) where we
include a normalized ultraviolet cutoff of � = ±Wc/μ0. A
similar cutoff is required in the self-energy calculation itself.
It has been established28 that the value of � lies in the range
of 10 → 100 for experimentally relevant values of chemical
potential. Thus we have chosen a fixed cutoff of � = 50 in
the self-energy formulas, independent of the value of μ0. This
fixed cutoff removes any μ0 dependence in the EEI self-energy.
If one seeks to compare directly to experiment, then � can be
modified for a given doping. The precise variation due to the
choice of � was thoroughly explored in Ref. 28.

We define the total self-energy for band s due to the
electron-electron interaction as

�̄EEI
s (k̄,ω̄) = �̄RES

s (k̄,ω̄) + �̄line
s (k̄,ω̄). (A12)

One can reinstate units of energy by writing �EEI
s (k,ω) =

μ0�̄
EEI
s (k̄,ω̄).

B. Electron-phonon interaction (EPI)

We take the total self-energy to be the sum of the EEI and
EPI contributions such that the total is �s = �EEI

s + �EPI −
�μ, where �μ is the correction to the chemical potential
(given by the real part of the self-energies evaluated at k =
kF and ω = 0). While the electron-electron contribution is
dependent on k, the electron-phonon interaction is not. The
EPI self-energy is given by16

Re�EPI
μ0>0(ω,ωE) = A

Wc

[
ωE ln

∣∣∣∣ (Wc + ωE − ω − μ0)(μ0 + ω + ωE)2(
ω2 − ω2

E

)
(Wc + ω + ωE + μ0)

∣∣∣∣
− (μ0 + ω) ln

∣∣∣∣ (Wc + ωE − ω − μ0)(Wc + ω + ωE + μ0)(ω + ωE)

(ω − ωE)(ω + μ0 + ωE)2

∣∣∣∣
]

(A13)

for the real part, where

Re�EPI
μ0<0(ω,ωE) = −Re�EPI

|μ0|(−ω,ωE). (A14)

The imaginary part is given by

−Im�EPI(ω,ωE) =
{

πA
Wc

|ω − ωE + μ0|, for ωE < ω < Wc − μ0 + ωE,

πA
Wc

|ω + ωE + μ0|, for −ωE > ω > −Wc − μ0 − ωE,
(A15)

and is zero outside these intervals. We see that this self-energy is a function of frequency, ω, and also dependent upon the choice
of Einstein frequency, ωE . We assume a model where ωE = 200 meV as has been done previously,16 which was proposed by
Park et al.14 on the grounds of fitting density functional theory calculations within the local density approximation (LDA).
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