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Role of intermediate states in low-velocity friction between amorphous surfaces

Woo Kyun Kim
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA

Michael L. Falk*

Department of Materials Science and Engineering, Department of Mechanical Engineering, and
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA

(Received 23 August 2011; published 11 October 2011)

Simulated sliding between an oxidized silicon tip and surface over six decades of velocity using accelerated
molecular dynamics (MD) reproduces the experimental velocity dependences of the friction. Unlike in the
crystalline case, as increasing forces are applied to the amorphous tip, intermediate states arise. These intermediate
states serve as critical transition pathways. The emergence of such states leads to the emergence of a plateau in
sliding velocity at lower sliding speeds and higher temperatures. A simple theory based on these observations
successfully describes both the experimental and simulated data.
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I. INTRODUCTION

Friction has presented a challenge since man’s earliest
technological feats and, in recent years, it has become possible
to study nanoscale friction via Atomic Force Microscopy
(AFM).1 A typical AFM tip is a single asperity contact with
a radius of 10 to 100 nm.2 Macroscopic friction arises from
many such asperities, and as such AFM studies have been used
to study superlubricity,3–5 the temperature and sliding velocity
dependence of friction,6,7 and the effects of surface vibrational
frequency shifts on nanoscale friction.8

Several theoretical models have been developed to inter-
pret the experimental results.9–14 However, most of these
theoretical models assume idealized crystalline surfaces,9–12

although many if not most sliding surfaces are disordered due
to native oxides that form spontaneously or are attributable to
the extremes of pressure and shear that accompany friction.
Recently it has been noticed that transitions in such a system
may be significantly more complex than accounted for in
the canonical theories of friction.13,15 Interesting statistical
models for considering the relative roles of bonding and
debonding have been proposed,14 but such theories would
benefit from atomic-scale analysis of particular tip-surface
dynamical systems to confirm the mechanisms proposed are,
in fact, the most critical.

Directly observing buried sliding interfaces in situ is
still a formidable challenge. Molecular dynamics (MD)
simulations,16–21 including some studies about amorphous
contacts,17–19,21 have been proposed as an alternative means
of observing atomic behaviors, but MD’s submicrosecond
time scale limits such simulations to sliding speeds orders of
magnitude faster than most AFM experiments. One exception
is the extension of the parallel replica method to driven
systems,22 which has reduced sliding velocities as low as
1 mm/sec. However, this method is generally insufficient to
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reach experimental sliding speeds in AFM studies, typically
in the μm–nm/sec range. We demonstrate here that much
lower sliding speeds can be achieved using an accelerated MD
scheme23 based on hyperdynamics.24 In this method, which
was developed by the authors and applied to a realistic problem
for the first time here, the potential energy function is modified
in a controlled way to facilitate transitions, and many such
simulations are performed simultaneously in order to exploit
parallel computing architectures.

Friction between an oxidized silicon AFM tip and surface
under ultra-high vacuum conditions has been shown to exhibit
unexpected relationships between friction force and sliding
velocity with nontrivial temperature dependences.6 At lower
temperatures the frictional force increases logarithmically
with sliding velocity, but at higher temperatures the frictional
force had no apparent dependence on the sliding velocity. The
simple single-step activated transition picture, the Tomlinson
model,9,10 has been shown not to hold at low sliding speeds
where multistep transition mechanisms must be involved.15

However, to the best of our knowledge, there has not been any
direct observation of the specific mechanisms that are present
during the sliding, although many candidate mechanisms have
been proposed.13–15 In this study we investigate the origin of
these deviations from logarithmic sliding rate dependences
predicted by the Tomlinson model using our accelerated MD
methodology.

II. SIMULATION RESULT

First we present the simulation results and show that these
results mirror the experimental observations.6 Figure 1 shows
our three-dimensional AFM model consisting of an oxidized
silicon tip and substrate. The spherical tip with a radius of
2.1 nm consists of 569 silicon and 309 oxygen atoms, and
the substrate (4.61 nm × 4.61 nm) contains 1152 silicon and
1248 oxygen atoms. The atomic interactions are modeled by
a modified Stillinger-Weber potential developed by Watanabe
et al.25 Instead of including the Coulombic interaction terms,
the Watanabe potential models long-ranged interactions with
the coordination-dependent Si-O pair interaction term and
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FIG. 1. (Color online) A diagram of a three-dimensional AFM
model consisting of an oxidized silicon tip and a substrate. Dark-
colored smaller spheres are oxygen atoms, and light-colored larger
spheres are silicon atoms.

the three-body term. Moreover, the parameters which appear
in these terms were chosen by performing a best fit to the ab
initio calculations of various silica clusters, and the Watanabe
potential has been used to reproduce the structural features of
thin oxide films.25,26 The oxidized layers were generated by a
procedure proposed by Dalla Torre et al.,27 in which oxygen
atoms are inserted one by one into Si-Si bonds. The tip is
joined to the substrate in the [001] direction by a normal force
of 1.5 nN. The atoms on the bottom of the substrate are fixed,
and those on the top of the tip move like a rigid body. These
atoms on the top of the tip are pulled by a spring with a stiffness
of 6.1 N/m, representing an AFM cantilever. The normal
force and the spring stiffness are derived from experiments
in Ref. 6. Temperature is controlled by a Nosé-Hoover chain
thermostat,28 and the equations of motion are solved using a
modified velocity-Verlet algorithm.29 To reduce the sliding
velocity we used a version of the hyperdynamics method

implemented specifically for frictional sliding, as described
in our previous work.23 Simulations were performed at 100 K
and 400 K spanning a wide range of sliding velocities from
273 nm/sec to 273 mm/sec.

In Fig. 2(a) the system exhibits a nonuniform stick-slip
behavior arising from the amorphous character of the surfaces,
which is in contrast to the uniform stick-slip motion observed
in MD simulation studies of crystals.22,23 In the simulated
results, as in the experiments, we clearly observe deviation
from the logarithmic velocity dependence of the friction force
predicted in the Tomlinson model. Figure 2(b) shows a detailed
comparison between the transitions that initiate sliding at
T = 100 K and vs = 27.3 mm/sec and at T = 400 K and vs =
2.73 μm/sec. Transitions occur among three states: an initial
state A, a final state C, and an intermediate state B. The atomic
configurations corresponding to these states are illustrated in
Fig. 3(a). In state A there is one silicon-silicon bond between
the tip and the substrate, and in state B the silicon atom is
bonded at a different angle with the same substrate atom. In
state C this silicon atom forms a new bond with a different
silicon atom in the substrate. The transition from B to C induces
a larger drop in the lateral force than the transition from A to B.
While at low temperature the system undergoes two one-way
transitions (first from A to B and then from B to C); at high
temperature the system switches back and forth between A and
B, confirming the importance of multistep processes, as noted
in previous investigations by others.13,15 In fact the frequency
of the transitions was greater than apparent in Fig. 2(b) since
limited resolution requires us to show time-averaged data.

Figures 3(b) and 3(c) show the tip positions and the
minimum energies of each state as a function of the slider
position and illustrate that the stability of each state depends on
the slider position. The intermediate state B, in particular, does
not emerge until a finite force is applied. This is a significant
additional deviation from the Tomlinson model not anticipated
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FIG. 2. (Color online) (a) The lateral force as a function of slider position measured at vs = 27.3 mm/sec and T = 100 K. (b) Lateral forces
near the first transition as functions of the slider position. Dashed lines represent the three states illustrated in Fig. 3.
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FIG. 3. (Color online) (a) Atomic configurations of states A, B, and C. (b) The tip positions of the minimized configurations corresponding
to each state as functions of the slider position. (c) The minimum energies of each state as functions of the slider position.

in prior work, such as Refs. 13 and 15. At the smaller slider
positions only states A and C are stable. As the slider moves,
state B emerges, and it becomes more stable than state A after
a slider displacement of 0.26 nm. As the slider moves further,
state A becomes unstable, and states B and C remain. Neither
the transition from A to C nor the backward transition from C
to B is observed.

III. THEORETICAL MODEL

The previous observations, taken together, imply that
switching between states A and B has a significant effect on
the lateral force in large part because of the intermediate nature
of state B and its absence at low applied loads. If the transition
occurs when only states B and C exist, as would happen at
high sliding speeds and/or low temperatures, we should see
the predicted logarithmic dependence.10 At sufficiently low
sliding speed and/or high temperature, A and B coexist. As
the sliding speed decreases and/or the temperature rises, the
probability of residing in the intermediate state B decreases,
and the rate of a transition to state C consequently decreases
leading to a deviation from the logarithmic dependence. Since
state B does not exist until the system achieves a certain
slider position, no matter how slow the sliding speed or high
the temperature a critical force must be reached before the
transition can proceed along this pathway.

To analyze this phenomenon quantitatively we have devel-
oped a theoretical model. We begin by writing a set of Kramers’
rate equations30 among states A, B, and C. Using the linear
relationship between the lateral force and the slider position
(F = keffxs = keffvst), we obtain the rate equations in terms of
the lateral force, as in Gnecco’s model10

dpA

dF
= −RA→B(F )

keffvS

pA + RB→A(F )

keffvS

pB, (1)

dpB

dF
= +RA→B(F )

keffvS

pA −
(

RB→A(F ) + RB→C(F )

keffvS

)
pB,

(2)

and
dpC

dF
= +RB→C(F )

keffvS

pB, (3)

where pA, pB , and pC are the probabilities that the system stays
at A, B, and C, respectively, and RA→B , RB→A, and RB→C

are the transition rates. We ignore the backward transitions
from C to A or B and the transition from A to C. We write the
rate constants in the standard Arrhenius form, f exp(−β�E)
where β = 1/kBT. We make the approximation that RA→B ,
RB→A � RB→C so that the system, on average, makes many
more transitions between A and B before making the transition
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FIG. 4. (Color online) Lateral forces as functions of sliding velocity. (a) Simulation (100 K and 400 K) in comparison with the experimental
data from Ref. 6 (95 K, 115 K, and 255 K). The error bars represent the standard deviations. (b) AFM experiment (Ref. 6) over a wide range
of temperatures and at sliding velocities shown in the experimental window. Solid curves in (a) and dashed curves in (b) are fits based on the
intermediate state switching theory discussed in the text.

from B to C, leading to the relation

pB

pA+pB

≈ RA→B

RA→B + RB→A

= 1

1+η(F ) exp[β(VB − VA)]
,

(4)

where VA and VB are the energies of state A and B. The function
η(F) is the ratio of the attempt frequencies of the B→A and
A→B transitions. We approximate this ratio as

η(F ) = C1[(F − FU )/(F − FL)]2, (5)

where the A→B and B→A attempt frequencies must vanish
at some lower critical force FL and upper critical force FU ,
respectively, since only state A is stable when F < FL, only
state B is stable when F > FU , and both are stable when
FL < F < FU . To obtain an explicit expression for the most
probable force at transition F ∗, we assume that the transition
energies vary linearly with the applied force such that �EB→C

= λ(FC − F), where FC is the lateral force when the energy
barrier from B to C vanishes. We also parameterize the energy
difference between states A and B in terms of the applied force
by the linear expression VB − VA = C2F + C3. From Eqs. (3),
(4), and (5) the probability distribution function of the lateral
force at transition, g(F) is given by

g(F ) = −d(pA + pB)

dF
= dpC

dF
= Req

keffvS

× (pA + pB), (6)

where

Req = RB→C × RA→B

RA→B + RB→A

= fB→C exp[−β�EB→C]

1 + η exp[β(VB − VA)]
. (7)

Then the most probable lateral force at transition F ∗,
satisfying g′(F ∗) = 0 is obtained by solving the following
equation:

dReq

dF

∣∣∣∣
F ∗

= (Req)2

keffvS

. (8)

By imposing this condition and incorporating the relation-
ships �EB→C = λ(FC − F) and VB − VA = C2F + C3, we
can derive the sliding speed as a function of the temperature
and friction force,

vS

vO

= exp[λβ(F ∗ − FC)]

1 + [(
1 − C2

λ

)
η − η′

λβ

]
exp[β(C2F ∗ + C3)]

, (9)

where

vO = fB→C

λβkeff
. (10)

Note that when only states B and C exist, we recover a
logarithmic dependence, as in Gnecco’s model,10 and Eq. (9)
simply becomes F ∗ = (1/λβ) ln(vs/vo) + FC .

Now we analyze both the simulation results and the
experimental observations using Eq. (9). The comparison of
the theory and the simulation is shown in Fig. 4(a) using
fit parameters from Table I. Most parameters are determined
directly from Fig. 3 and the high-velocity portion of the data
leaving only one independent fitting parameter. It is apparent
that the switching between states A and B, modeled in the
denominator of Eq. (9), results in a plateau at the higher
temperature. We expect this theory is too simple to accurately
model the experiments that represent an average over many
dissimilar transitions. However, if such state switching is
common, and if the energies associated with such transitions
are not broadly distributed, the model should be able to capture
the general trends in the data. Figure 4(a) also shows the force
at the initiation of sliding in comparison with the experimental
data from Ref. 6. The forces measured in simulation are the
peak force during a single slip transition, while the experiments
measure average sliding force over several nanometers. For
this reason we expect the two quantities to be related by a
factor of 2.
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TABLE I. Fitting parameters.

Parameters Simulation Experiment

λ (Å) 0.828 0.302
FC (nN) 1.09 1.15
FL (nN) 0.25 0.1
FU (nN) 0.6 0.6
FC fB→C/keff (m/sec) 142 572
C1 120 10
C2 (eV nN) −1.80 −0.25
C3 (eV) 0.681 0.01

Figure 4(b) shows an application of the theory to describe
the lateral forces measured by AFM in Ref. 6 over a wide range
of temperatures (55 ∼255 K) and at the sliding velocities rang-
ing from 100 nm/sec to 16 μm/sec. The fit parameters used in
Fig. 4(b) are given in Table I. The general trend of decreasing
force and decreasing velocity dependence with increasing
temperature is captured by the theory. More importantly, the
transition from logarithmic dependence at low temperature
to a high temperature plateau is consistent with predictions
based on the theory. The nonmonotonic dependence of force
on temperature at high temperature, we believe, may arise
from experimental limits accurately resolving such small
differences in force. The model also predicts that at higher
sliding velocity the logarithmic dependence will be recovered
at higher temperatures.

IV. CONCLUSION

In conclusion we showed using a novel-accelerated MD
scheme that switching between states, combined with the
emergence of new intermediate states during sliding, together
plays a crucial role in determining the forces between
amorphous surfaces. This work demonstrates the impact that
simulation methodologies capable of reaching longer time
scales can have in the interpretation of nanoscale experimental
investigations. Moreover, it is striking that even a rather
simple theoretical model that includes this mechanism is
able to explain the observations in an actual experimental
system analytically over a wide range of sliding speeds
and temperatures. Although the sliding model used in this
study is not completely realistic in terms of size, contact
area, scanning length, etc., we conjecture that this type of
state-switching mechanism may be quite common in frictional
sliding especially when one or more of the involved surfaces
are not perfectly crystalline. If this is indeed true, then our
model is more applicable than the Tomlinson-derived models
that assume a unidirectional transition mechanism.
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