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Enhanced electron confinement in pyramidal nanostructures
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From scanning tunneling spectroscopy measurements, we recently found evidence for the effect of electron-
phonon interactions on the lifetime of hot electrons and holes. This information was obtained by measuring the
linewidth of quantum well states resulting from the confinement of Shockley states in truncated hexagonal Ag
nanopyramids. In the present paper, we show that a careful analysis allows us to obtain both the intrinsic and
extrinsic broadening contributions. This latter contribution results from the lossy boundary scattering which is
strongly reduced in this peculiar geometry. Indeed, we deduce the energy dependence of the reflection coefficient
which remains higher, as usually observed in nanostructures like adatom islands and quantum corrals.
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I. INTRODUCTION

In a recent publication,1 we presented evidence for the effect
of electron-phonon coupling on the lifetime of electron states
in Ag. This was achieved by exploiting confined states in Ag
nanostructures on a Ag(111) film with a special geometry
(truncated hexagonal pyramids). In such nanostructures, the
Shockley state is confined to the top layer and exhibits
narrow resonant modes depending on the lateral size of
the pyramid. The electron lifetime was obtained by measuring
the differential conductance with a scanning tunneling mi-
croscope (STM) at low temperature. This spectroscopic tech-
nique, called scanning tunneling spectroscopy (STS), allows us
to obtain conductance spectra at a given point or spectroscopic
map at a given energy which, in a simple approach, can be
identified with the spatial distribution of the local density of
states. Other techniques like photoemission and two-photon
photoemission have also been used in recent years to determine
the spectral linewidth and lifetime of surface states.2,3 The
knowledge of the electron lifetime is important because it
gives the coherence length which plays a fundamental role
for the electronic properties; in particular, transport. From a
theoretical point of view, the lifetime concept is related to
the notion of a quasiparticle developed to describe low-energy
excitations in ordinary metals. Due to many-body interaction
between electrons, an elementary excitation corresponding to
an additional electron or a hole is not an independent entity.
It is a quasiparticle with an effective mass that depends on the
strength of the interaction and with a well-defined momentum,
but an energy only defined within an uncertainty �E4 that is
related to the lifetime by �Eτ ∼ h̄. In the Fermi liquid model,
which is valid for most three-dimensional metals, the lifetime
diverges for zero-energy excitations.

Different STS-derived methods can be used to probe either
the coherence length or the linewidth of excitations; both being
related to electron lifetime. On the one hand, the coherence
length can be obtained from the damping of the quantum
interference patterns due to the scattering of the surface
state by a step edge or a quantum corral.5,6 On the other
hand, the linewidth can be directly obtained by measuring
the differential conductivity spectra (dI/dV ) at a fixed point
above the surface. But as this spectroscopic technique is not
selective in momentum, it is limited not only to discrete states
like confined states in nanostructures (e.g., adatom islands

on a surface or artificial quantum corrals7–9), but also to the
discontinuity in the density of states like the onset of the surface
Shockley state.10

However, in nanostructures, an additional mechanism leads
to a supplementary broadening of the linewidth of confined
states. This is related to the partial confinement resulting from
the boundary potential of the nanostructure being not infinite.
This lossy boundary scattering originates from the transmis-
sion of the Shockley state through the boundary potential but
also from the absorption of the Shockley state due to scattering
into the bulk states. Following the optics analogy proposed
by Avouris et al.,11 the imperfect confinement can be simply
described by a reflection coefficient. The energy dependence
of this coefficient has been determined with high accuracy
for Ag(111) step edges.12 The lossy boundary scattering
broadening, which depends on the reflection coefficient,13

increases with increasing deviation from total reflection
(R = −1). Unfortunately, in many cases, the reflection coef-
ficient is small,14 leading to a broadening contribution which
dominates the intrinsic contributions. This is a severe limita-
tion for the determination of the electron lifetime; in particular,
close to the Fermi surface where the lifetime (linewidth) is
large (small). Nevertheless, our recent investigation of the
linewidth of Shockley states confined in truncated hexagonal
Ag pyramids provides evidence of the effect of electron-
phonon coupling on the electron lifetime:1 the low-energy
excitations exhibit the characteristic signature of this coupling;
that is, a sudden decrease of the linewidth in an energy range
corresponding to the Debye frequency at the Fermi energy.
This was achieved thanks to the exploitation of the spatial
dependence of the confined states and, to a lesser extent, to the
fact that the lossy broadening is reduced in such a geometry.

The present paper focuses on the lossy boundary scat-
tering broadening by a careful analysis of the linewidth of
confined Shockley states in truncated hexagonal Ag pyramids
from low-temperature STS measurements. By exploiting the
different symmetries of the resonant modes and their spatial
distributions, we determine the linewidths of about 15 confined
states. We demonstrate that the lossy boundary broadening
is smaller than the broadening usually observed in quantum
corrals or adatom islands. From the energy dependence of this
contribution, we deduce the reflection coefficient and show that
it is significantly reduced with respect to the standard value.
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II. EXPERIMENTAL DETAILS

The measurements were carried out in an ultrahigh vacuum
(UHV) setup composed of a molecular beam epitaxy chamber
for the elaboration and characterization of the surfaces, a
scanning tunneling microscopy (STM) chamber equipped with
a 5 K Omicron STM, and a photoemission chamber with
a high resolution Scienta SES 200 analyzer. The Cu(111)
single crystal was cleaned by several cycles of Ar+ etching
and annealing at 500 ◦C and it was characterized by STM
and Auger electron spectroscopy (AES). Ag adatoms were
evaporated from a Knudsen cell at the rate of 1 ML/min to
obtain a film about 15 monolayers (MLs) thick. The surface
state parameters (effective mass and energy) are known from
photoemission measurements to be progressively modified
from the substrate values to the Ag(111) values.15,16 For film
thicknesses larger than 15 MLs, the surface-state values of
Ag(111) are restored. The dI/dV maps (and spectra) were
recorded at 5 K in the open feedback loop mode using the lock-
in technique with a bias modulation in the range of 1 to 3 meV
rms at 700 Hz. For 1 meV rms, the instrumental resolution
(about 3.5 meV) leads to a negligible broadening of less
than 1 meV for the narrowest spectral feature. High-frequency
voltage noise could increase the instrumental broadening but
we think that such a mechanism is negligible. The additional
broadening we observe depends on the measured nano-object
in the same sample and is interpreted as resulting from the
defect contribution.

To compare with spectroscopic maps, we considered nu-
merically the problem of an electron confined in an hexagonal
well with infinite potential. The first stationary states, and
the associated energies, have been computed by means of a
Lanczos-type diagonalization of the Hamiltonian.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Probing different symmetries

Growth mode of epitaxial Ag films on Cu(111) single
crystal allows the formation of three-dimensional nanostruc-
tures. Indeed, at low deposition temperature, one observes
Ag truncated pyramids corresponding to the stacking of 4
to 6 atomic layers on relatively thick (about 10 to 15 ML)
Ag film.1 The lateral size distribution is quite large and
many of them have a nearly hexagonal symmetry. Figure 1(a)
shows an STM image of such a pyramid. The corner-corner
distance in the hexagonal top layer is 17 nm. Figure 1(b)
reports a spectroscopic image corresponding to the dI/dV

map recorded at U = 0.27 mV. The bright signal represents
the maxima of the standing-wave pattern associated with the
Shockley surface state at this energy. It reveals the lateral
confinement of the Shockley surface state in the nanostructured
surface. Figure 1(c) presents a series of spectroscopic images
at different energies corresponding to resonant modes of the
hexagonal nanopyramids. Close to the minimum of the surface
band, the fundamental mode (at −41 meV) consists of a broad
lobe centered in the hexagon. With increasing energy, we
observe excited modes with hexagonal symmetry. As expected,
the number of nodes increases with energy, and we point
out that some of them are characterized by zero intensity
at the center. This reflects the symmetry (C6v group) of the

(a) (b)

(c)

FIG. 1. (Color online) (a) Topographic STM image of a truncated
hexagonal Ag pyramid (U = −0.3 V, I = 1 nÅ). (b) Spectroscopic
image (dI/dV ) recorded at U = 27 mV. (c) Series of spectroscopic
images recorded at several energies showing different quantum well
states of the resonator.

hexagonal potential and, more precisely, the symmetry of the
different modes. An eigenstate must have the symmetry of
one of the irreducible representations of the group, but only
one representation (the fully symmetric A1 representation)
exhibits nonzero weight at the center. The determination of
the different modes has been previously reported in hexagonal
adatom islands by Li et al.7,17 and we will show below how the
spatial distribution of these modes can be exploited to obtain
their energy and spectral linewidth. Such measurements were
systematically achieved as illustrated in Fig. 2. For example,
we report in Fig. 2(b) a dI/dV map as a function of energy and
position along the high-symmetry direction of the hexagonal
face corresponding to the white lines in the STM image
[Fig. 2(a)]. This spectral map, corresponding to the density
of states in one direction, exhibits the different modes, their
spatial localization (horizontal axis), and their energy width
(vertical axis). Two spectra recorded at two different points (�1
and �2 in the STM image) and corresponding to the two dashed
white lines in the spectroscopic map are reported in Fig. 2(c).
These spectra are fit by a sum of Lorentzian functions,
convoluted by the narrow experimental resolution, whose
positions determine the confined state energies and widths
and their total linewidth. A very good agreement between
experimental and fitted curves (solid lines) is obtained. By
changing the tip position, the energy and linewidth of the
spectral features remain unchanged, only their intensity, which
is proportional to the square of the confined wave function,
is modified. At point �1, corresponding to the center of the
nanostructure, only resonant modes having A1 symmetry can
be probed (for example, the 10th mode which is close to
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FIG. 2. (Color online) (a) Topographic image of 25 nm pyramid
indicating the two points �1 and �2 corresponding to the STS spectra
shown in (c). (b) Spectroscopic map obtained from 64 dI/dV spectra
recorded along the line in the topographic image. (c) STS spectra
(dI/dV ) recorded at points �1 and �2. The solid black line represents
the fitting curve composed of Lorentzian structures (dashed lines)
associated with the confined states. The pink (∼0 meV) and green
(∼30 meV) lines represent the spectral signatures of modes 10 and
16.

the Fermi energy). By moving the tip position from point
�1 to point �2, the intensity of the structures having A1

symmetry decreases whereas the structures corresponding
to other irreducible representations increase. This symmetry
sensitivity is illustrated by the evolution of the 10th and 16th
structures, which exhibit opposite evolution. We would like
to point out that the 16th structure, which should have a
zero intensity at the center, has a small finite intensity. This
is due to the spatial resolution of the tip. The energy and
linewidth of the different modes can be obtained with accuracy
at the tip position where the structure is intense. This method
allows us to determine the energy and linewidth of the first
confined states. This is in contrast with many lifetime studies
in the literature, which usually only focus on spectra at the
nanostructure center.7,9

B. Energy of resonator modes

In Fig. 3 we compare quantum well state energies cor-
responding to three pyramid sizes (12.0, 17.7 and 25.9 nm)
with energies (εn) calculated in the framework of a two-
dimensional hexagonal infinite potential (n is the mode index).
The experimental energies are taken relative to the Shockley
band onset E0 (kinetic energies). In these truncated pyramids,
it was found at E0 = −50 meV; a value which is slightly higher
than the corresponding Shockley energy for the Ag(111) single
crystal (−65 meV). The error bars for the calculated values are
due to the uncertainty of electron effective mass and pyramid
size. The size parameter 〈L〉 is obtained from an average over
the different corner-corner distances measured by STM. A very

 

FIG. 3. (Color online) Comparison between experimental en-
ergies (symbols) for the different resonant modes with energies
calculated in a simple infinite quantum well resonator (lines) for
the three pyramids represented in the right part of the figure. The top
curve shows that the experimental energies follow a scaling behavior,
as expected from the theoretical model.

good agreement is obtained. Some modes (for example the
6th and 11th modes) cannot be probed because their spectral
intensities are too small in the recorded direction. As expected
from confinement effects, the smaller the pyramids, the higher
the energies since the confined state energy for an infinite
potential varies with the size L of the hexagon according to:7

εn = μn

m∗L2
, (1)

where μn is a number characterizing the mode index and m∗ is
the effective mass of the Shockley state (m∗ = 0.4 ± 0.02m0).
The scaling behavior of the energy as a function of pyramid
size is illustrated in the top curve where we have reported
the experimental energy En − E0 times the effective mass and
the square of the pyramid length. The agreement corroborates
the fact that an infinite hexagonal well is a satisfactory model,
at least for the 20 first states.

A more stringent argument is the comparison of the
two-dimensional spectroscopic map at a given energy with
the calculated electron density of the corresponding mode.
However, we have to take into account the finite linewidth of
the experimental peaks. As shown in Fig. 2(c), this linewidth
increases with increasing energy (the origin of this behavior
will be discussed later). Therefore, at a given bias voltage, the
STS map probes several modes close in energy. As a conse-
quence, a spectroscopic map cannot be compared directly with
a single-mode-calculated electron density. The neighboring
modes should slightly contribute to the experimental intensity.
In Fig. 4, we compare the fourth (“4”), seventh (“7”), and
tenth (“10”) experimental modes with the calculated electron
density (|�|2). To take into account the finite linewidth, |�|2
is a mixture of several hexagonal-well-calculated electron
densities |�n|2. For example, for the fourth experimental map,
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FIG. 4. (Color online) Spectroscopic image (top) and calculated
electron density (bottom) associated with the “4,” “7,” and “10” modes
of the hexagonal resonator.

one has

|�4|2 ∝ |�4|2 + 0.15 (|�3|2 + |�5|2 + |�6|2),

where the 0.15 coefficient has been empirically found for the
best agreement with experiments. Because with increasing
energy the linewidth increases and the energy separation
between two adjacent modes decreases, the contributions of
the neighboring modes are more important. For the tenth mode,
we have

|�10|2 ∝ |�10|2 + 0.6(|�9|2 + |�11|2).

In conclusion, the simple model of an infinite hexagonal
quantum well provides a satisfactory description of the energy
of the resonances as well as their spatial distributions in the
top layer of the nanopyramids.

C. Linewidth: intrinsic and extrinsic lifetime

Now we would like to discuss the spectral width and then
the lifetime of the electron excitations. As discussed in the
introduction, there are several contributions to the linewidth:
intrinsic contributions reflecting the lifetime of electron exci-
tations in solids and extrinsic contributions resulting from the
fact that the measured states are confined in a nanostructure
with particular boundary conditions. The intrinsic linewidth
depends on the different interactions in the solid. In noble
metals, it is composed of mainly three contributions associated
with electron-electron (�e-e), electron-phonon interactions
(�e-ph), and interactions with defects (�def). As demonstrated
by Landau,4 the low-energy electron-electron excitations lead
to a linear shift of the energy associated with the real part
of the self-energy [�E = α(E − EF )] and a quadratic energy
dependence of �e-e [�e-e = β(E − EF )2] reflecting the self-
energy imaginary part. However, the energy and broadening
contributions are vanishing at the Fermi energy (EF ) so that,
very close to EF , the electron-phonon contribution (�e-ph)
is the dominant mechanism. In the simple Debye phonon
model,18 it is given by

�e-ph = 2π

∫
α2F (ω)[1 + 2n(ω) + f (E + ω)

− f (E − ω)]dω,

where n(ω) and f (ω) are, respectively, the Bose-Einstein and
the Fermi functions. The Eliasberg coupling function α2F (ω)

is equal in a system characterized by the Debye frequency
ωD up to λ(ω/ωD)2, where λ is a free dimension parameter
characterizing the electron-phonon coupling. Finally, the last
contribution (�def) due to the scattering of electrons by defects
can be considered to be energy independent. The electron-
phonon contribution depends on a characteristic energy scale,
which is the Debye energy in this simple model. At low
temperature with respect to the Debye temperature, the
energy dependence of the electron-phonon linewidth exhibits a
pronounced increase close to ωD and a plateau at higher energy.
The value of the plateau is proportional to the electron-phonon
coupling (λ).19 This dependence is illustrated by the dashed
line in the inset of Fig. 5 with λ = 0.09, ωD = 20 meV, and
T = 5 K. Such values yield a plateau �sat

e-ph = 4 meV. These
parameters have to be considered as effective parameters which
reproduce the dependence measured by photoemission on flat
Ag(111).20 The extrinsic contribution results from the fact
that the measured states are confined in a nanostructure and
that there is an additional broadening associated with the
lossy boundary scattering. Indeed, this mechanism can be
understood by the partial confinement of the Shockley state
in the nanostructure since, at the nanostructure boundary,
the electronic waves can be scattered into the bulk state
(absorption) or transmitted in the surface state outside the
top layer. As mentioned in the introduction, this extrinsic
contribution is usually the dominant mechanism and prevents
the precise determination of the intrinsic linewidth.21 However,
a scattering model has been developed to quantify this lossy
boundary scattering.13 For a circular resonator of diameter L,
the linewidth of the nth confined state with energy En is given
by

�R(En) = −2h̄2

m∗

√
2m∗En

h̄2

ln |R(En)|
L

, (2)

where R(En) is the reflection coefficient at energy En and m∗
is the effective mass of the electron. This equation shows that,
for a fully reflective wall corresponding to R = −1 (infinite
potential limit), �R(En) = 0 since, in this limit, there is no
transmission and no absorption of the electronic waves and
the surface states are perfectly confined in the nanostructure.
However, one is generally far from this ideal situation. The
energy dependence of the reflection coefficient R(E) has
been measured from the damping of the standing waves,
which develop close to a monoatomic step (ascending and
descending) on the surface.12 This experimental determination
shows that |R| is much smaller than unity. This is corroborated
by theoretical calculations which yield values around 0.3 to
0.4 in most cases.14 This step-reflection coefficient has been
used to model this extrinsic contribution in nanostructures
like monoatomic islands or vacancy islands on a surface.21,22

The typical energy dependence of �R is depicted in the
dotted-dashed line in the inset of Fig. 5. The sum of the
electron-phonon and lossy scattering contributions represented
by the pink solid line in the same inset exhibits two singular
points indicated by arrows. The first one, at the onset of the
surface state and then zero kinetic energy, corresponds to a
zero-�R contribution whereas the second one, just at the Fermi
level, corresponds to a zero–electron-phonon contribution.
These two minima in the linewidth are clearly seen in the
experimental linewidth measured in two pyramids (17 and
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FIG. 5. (Color online) Experimental spectral linewidth as a
function of energy for the confined states in two different pyramid
sizes (circles 17 nm and diamonds 25 nm). The black dashed
horizontal line represents the maximum electron-phonon and defect
contributions. The two arrows represent the position of the two
minima at the bottom of the Shockley band and at the Fermi energy.
Inset gives the schematic shape of the electron-phonon contribution
(dashed line) and the lossy scattering mechanism (dotted-dashed line)
The pink solid line is the sum of these two contributions.

25 nm). Therefore, the raw data clearly provide evidence
of a dip at EF extending over the energy range from −20
to +20 meV, which is in qualitative agreement with the Debye
energy of Ag. Moreover, the dependence at high energy is
dominated by the �R contribution. Quantitative information
can be obtained by exploiting these two particular points. The
linewidth at the onset of the Shockley band is simply the sum
of the defect contribution and the electron-phonon broadening,
which is the plateau value �sat

e-ph. The electron-electron inter-
action could yield an additional broadening. However, at this
energy very close to the Fermi level, its contribution to the
linewidth is smaller than 0.5 meV. This value can be estimated
from the theoretical calculation which shows that intraband
decay is the dominating mechanism.22–24 An adjustment of
this calculation by a quadratic energy dependence leads to β =
2.7 × 10−4 meV−1, in qualitative agreement with previous
photoemission data.20 Such a dependence ignores the deviation
from the Landau asymptotic behavior evidenced recently.22

However, in the explored energy range (E − EF < 140 meV),
the electron-electron broadening remains small (smaller than
5 meV at 140 meV).

Therefore, from the linewidth at the bottom of the Shockley
band, it is possible to determine the defect contribution
which is found to be about 6.5 meV. The second particular
value at the Fermi energy is simply �R(EF ) + �def, hence
�R(EF ) = 4 meV. In order to extract the intrinsic contribution,
a quantitative description of the lossy boundary scattering is
needed over the whole energy range; in other words, it is
necessary to determine the appropriate reflection coefficient
which appears in Eq. (2).

Let us first consider the standard case of adatom islands
corresponding to a well-known reflection coefficient. In Fig. 6,
we present the linewidth measured in two adatom hexagonal

FIG. 6. (Color online) Experimental spectral linewidth as a
function of energy for the confined states in two different monoatomic
islands (open is 13.5 nm and filled is 23 nm). The solid line represents
the intrinsic linewidth due to electron-phonon coupling.

islands (13.5 and 23 nm) found on terraces of the same Ag
film on Cu(111). The defect contribution has been subtracted
by using the method presented above. Close to the Fermi
energy a dip reveals the electron-phonon coupling, like in
nanopyramids, but it seems to be less pronounced because
of a larger �R contribution. The lossy broadening, which
is zero at the bottom of the Shockley band, remains weak
up to the Fermi energy as shown in the STS spectrum of
Fig. 7(a), which was recorded from the center of an hexagonal
L = 17 nm adatom island and which exhibits two structures
with very narrow spectral width: 7.5 meV for the structure
close to the bottom of the band and 8.5 meV for the structure
close to the Fermi energy. The boundaries of such islands
consist of monoatomic steps and it has been demonstrated
that the reflection coefficient determined experimentally from
the damping of the standing waves close to a linear step
edge5 (called step coefficient in the following) can be used
to model the reflection-broadening contribution in Ag islands
on Ag.13,21 The energy dependence of this step-reflection
coefficient is reproduced in the inset of Fig. 7(b): |R| decreases
from 1 at the bottom of the Shockley band to about 0.4 for
250-meV-kinetic-energy electrons. With such a dependence,
the broadening at EF remains less than 6 meV, as shown in the
inset of Fig. 7(a). This means that the defect contribution is
about 2 to 3 meV in this island and confirms that �e-ph ≈
4 meV in agreement with calculations and photoemission
experiments.20

We have extracted the reflection broadening contribution
in these adatom islands by removing from the experimental
linewidth all intrinsic contributions; that is, electron-electron,
electron-phonon, and defect broadening contributions:
�expt(E) − �e-e(E) − �e-ph(E) − �def. The electron-electron
and electron-phonon contributions have been calculated as
explained above and the defect contribution can been estimated
by exploiting the linewidth of the fundamental mode close
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FIG. 7. (Color online) (a) Experimental spectrum recorded from
the center of an adatom island (L = 17 nm). Dashed and solid
(pink) lines are Lorentzian curves associated with resonant-mode
signatures. The inset presents the lossy scattering broadening (�R)
calculated from the energy-dependent reflection coefficient deter-
mined in.5 (b) Comparison between the size-rescaled calculated (solid
line) and experimental (symbols) lossy scattering broadening for
3 different island sizes (�RL). The inset shows the step-reflection
coefficient.5

to the Shockley band bottom. Since the lossy scattering
broadening in principle obeys a scaling behavior in which
it scales with the island size, as revealed by Eq. (2), we have
reported in Fig. 7(b) the experimental extrinsic broadening for
three different island sizes (13.5, 17, and 23 nm) renormalized
by their size and compared them with the product �RL

calculated with Eq. (2). As the lossy scattering broadening
has to vanish at the band bottom E0, the value has been
reported as a function of the kinetic energy E − E0. A very
good agreement between experimental and calculated values
for the three pyramids is obtained, confirming the validity of
the step-reflection coefficient for such adatom islands.

The same analysis can be carried out for nanopyramids.
We report in Fig. 8(a) the experimental linewidth of the states
confined in a 17.7 nm pyramid (the constant defect contribution
estimated to be 9.2 meV has been removed). We compare
the experimental data with a calculated dependence taking
into account the same electron-electron, electron-phonon, and
lossy scattering broadening contributions (dashed line) as in
the previous case (adatom islands). The latter contribution
has been calculated by using the step-reflection coefficient
which nicely fits the linewidth in adatom islands. This
comparison shows that the calculated values reproduce the
experimental linewidths at low energies (for E < 40 meV)
but significantly deviate at higher energies, indicating that
the genuine reflection coefficient |R| is larger than the step-
coefficient in the high-energy range. Therefore, we adapt the
energy dependence of the reflection coefficient in order to
reproduce the experimental data. This procedure leads to the
reflection coefficient described by the solid line in the inset of
Fig. 8(a). |R| remains around 0.7 for 200 meV kinetic energy, in
contrast to its rapid decrease for monoatomic steps and adatom
islands. Such a high reflection coefficient has been observed
recently at stacking-fault-induced fractional steps on Ag(111)

FIG. 8. (Color online) (a) Defect-free linewidths of states
confined in a 17 nm pyramid (the defect contribution has been
subtracted from the raw experimental linewidth). The dashed and
solid lines represent the sum of the electron-phonon and lossy
scattering contributions, respectively, calculated with the two
reflection coefficients illustrated in the inset. (b) Size-scaled lossy
scattering contribution for three different pyramid sizes (symbols)
and contribution calculated with the reflection coefficient illustrated
by the solid line of inset of (a).
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surfaces.25 The lossy scattering broadening calculated with this
high reflection coefficient [solid line in Fig. 8(a)] is found to be
in very good agreement with experimental extrinsic linewidth
obtained by subtracting the intrinsic contribution from the
experimental linewidth for several pyramids. In this figure,
we have exploited the scaling behavior by reporting �RL as
a function of the kinetic energy in Fig. 8(b). The agreement
between experimental and calculated values demonstrate that
the same reflection coefficient can be used whatever the
nanopyramid size.

This analysis shows that the reflection coefficient in
nanopyramids is larger than the step-reflection coefficient
observed in adatom islands. This strongly suggests that ab-
sorption and transmission probabilities, which are respectively
associated with scattering from the confined surface state to
bulk states and to the surface state outside the top layer of the
nanostructure, are reduced in this pyramidal geometry. It is
clear that monoatomic step edges are far from ideal reflectors
for electrons because leakage occurs into the surface state
on the other side and into the bulk state of the crystal.5,14

The geometry of the nanopyramid favors a higher reflection
coefficient. First, the height of the pyramids (4 to 5 atomic
layers) likely yields a decrease of the transmission into the

surface state of the underlying layer. Second, it seems intuitive
that the the decay mechanism of the surface state into the bulk
is also reduced because of the lower overlapping of the surface
state with bulk states in the nanopyramid.

IV. CONCLUSION

In conclusion, we have performed 5 K STS measurements
on truncated Ag hexagonal nanopyramids. We showed that
the confined-state energy can be simply described in the
framework of an infinite potential quantum well model. We
also showed that the spectral linewidth of confined states close
to the Fermi energy provides evidence of the signature of
electron-phonon coupling. Moreover, the linewidth remains
narrow at relatively high energy in contrast to the results
obtained in quantum corrals and adatom islands. This reflects
a more efficient confinement of the Shockley state (i.e., a
higher reflection coefficient) due to the peculiar geometry of
these pyramidal nanostructures which reduces transmission
and absorption processes. We develop a method to extract
the intrinsic contribution from which we propose an energy-
dependent reflection coefficient for the Shockley state in these
nanopyramids.
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