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Electromagnetic spin polarization on the surface of topological insulator
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We study the spin polarization of the electrons on the surface of topological insulators under a dc electric
field or a circularly polarized light by using the Keldysh Green’s function formalism. When a dc electric field
Ex ∼ 103 V/m is applied, a spin polarization 〈σy〉 � 5.2 × 10−8 Å−2 is induced. Furthermore, we also find
that a light illumination induces the out-of-plane component of the spin polarization as a result of the inverse
Faraday effect. The magnitude of the spin polarization is proportional to the square of the lifetime τ and
〈σz〉 � 2 × 10−10 Å−2 for typical parameters. Finally, we investigate the spin polarization in the presence of the
warping term. By the symmetry consideration of the system, we find that the out-of-plane spin polarization is
cubic of the current and that the magnitude of the induced spin polarization depends on the direction of the
applied current.
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I. INTRODUCTION

The three-dimensional topological insulator (TI) is an
intriguing material, which is insulating in its bulk but has
conducting surface states topologically protected by the time-
reversal symmetry.1–6 The surface state of the TI forms
the Dirac cone band, and recent spin and angular resolved
photoemission spectroscopy (spin-ARPES) experiments have
revealed the Dirac band structure. Also, other experimental
reports on the TI include the observation of a massive Dirac
fermion in magnetically doped TIs.7 Up to now, several materi-
als, such as Bi2Te3 and Bi2Se3, have been identified as TIs.8–11

There are several theoretical predictions on phenomena
unique to the TI.1,12,13 Among them, it is worthy of attention
that the spin and the momentum of an electron are locked
to each other, which causes external-field-driven spin-related
responses on the surface of the TI. This effect will not only
feature spintronics applications14–23 but also brings up the
possibilities of a new probe to surface states of TIs. From
this point of view, it is worthwhile to focus on the response of
the surface states of TIs to external electric fields.

The spin-related response of the TI to electric fields is
attributed to the spin-orbit coupling (SOC). A similar effect is
also present in the Rashba system.24 The Rashba system has the
Hamiltonian of the form k2

2m
+ α(σ × k)z, where the σi’s are

the Pauli’s matrices in spin space and α is a constant unique to
the material. Since the spins of the electrons in the Rashba
system are aligned in the clockwise or counterclockwise
manner in the k space, it is seen that dc currents induce
spin accumulations.25–27 Because of this fact, we expect that
interesting spin-related phenomena also appear on the surfaces
of the TI.

Optical effects of a TI have been studied theoretically
in Refs. 28–30. The inverse Faraday effect (IFE) is an
effect that circularly polarized light induces the stationary
magnetization.31–38 Recent experimental progress has made it
possible to reverse magnetization in magnets with a circularly
polarized light through the IFE,39–41 and now the IFE is
a powerful method of ultrafast magnetization manipulation.
Recently, optical responses of a TI have been experimentally
studied in Refs. 42,43. In view of this, it is quite timely to
study the IFE of the TI.

Additionally, it has been clarified that the effect of the
warping term may be remarkable in Bi2Te3.44 The warping
term arises accordingly to the space group of the crystal.
Theoretically, based on the k · p theory it is found that the
warping is due to the cubic term of k in the Hamiltonian.45,46

It is easily seen that on the warped band structure, the spins of
the eigenstates have out-of-plane components. Therefore it is
naively expected that dc current flowing through the surface
will induce out-of-plane spin polarizations.

In this paper, we study the spin polarization of the electrons
on the surface of TIs under a dc electric field or a circularly
polarized light by using Keldysh Green’s function formalism.
When a dc electric field Ex ∼ 103 V/m is applied, a spin
polarization 〈σy〉 � 5.2 × 10−8 Å−2 is induced. Furthermore,
we find that a light illumination induces the out-of-plane
component of the spin polarization as a result of the IFE.
The magnitude of the spin polarization is proportional to the
square of the lifetime τ and 〈σz〉 � 2 × 10−10 Å−2 for typical
parameters. Finally, we also investigate the spin polarization
in the presence of the warping term. By the symmetry
consideration of the system, we find that the out-of-plane spin
polarization is cubic of the current and that the magnitude of
the induced spin polarization depends on the direction of the
applied current.

The organization of this paper as follows. In Sec. II, we
explain the formalism. In Sec. III, we present the calculated
results of the current-induced spin polarization and the spin
polarization by circularly polarized light, and discuss the spin
polarization in the presence of the warping term. In Sec. IV,
we summarize our results. In Appendices A and B, details
of the calculations of Green’s functions are presented. In
Appendix C, we compare our results with those in the Rashba
system.

II. FORMULATION

We consider a surface of a TI along the xy plane. The
Hamiltonian of the surface state is given by

H0 = v(σ × k)z =
(

0 ivk−
−ivk+ 0

)
, (1)
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where k± = kx ± iky , the σi’s are the Pauli matrices, v is a
constant representing the velocity, and we choose the unit
so that h̄ = 1. The eigenvalues are Eks = svk with s = ±
and k =

√
k2
x + k2

y , and the corresponding eigenstates are

φk,s(r) = eik·r/
√

2L2(1, − isk+/k) with L2 being the size
of the system.

In what follows, we introduce the Keldysh Green’s function
formalism, which allows us to calculate physical quantities in
nonequillibrium states. At first, we define the lesser Green’s
function with the field operators c and c† as G<(r,t,r ′,t ′) ≡
i〈c†H(r ′,t ′)cH(r,t)〉, which takes a 2 × 2 matrix form since
these field operators are spinors. The c

(†)
H is the Heisenberg

representation of the annihilation (creation) operator. The
brackets 〈· · ·〉 mean both quantum and thermal averages.

Usually, it is impossible to calculate the Green’s func-
tion exactly for complicated Hamiltonian, and therefore the
perturbative method for the Green’s function is employed.
We now consider the entire Hamiltonian written in the form
H = H0 + V , where the H0 is the unperturbative Hamiltonian,
which has been solved exactly, and the V is a perturbative term.
The calculation is done with the Dyson’s equation. With g0

and g being the unperturbed and perturbed Green’s functions,
respectively, the Dyson’s equation yields

g< = g<
0 + gr

0Vg< + g<
0 Vga. (2)

gr
0 and ga

0 are the retarded and advanced Green’s functions,
which are expressed as gr

0 = (ω − H0 + i0)−1 and ga
0 =

(ω − H0 − i0)−1, respectively. We utilize relations between
these Green’s functions g<

0 , gr
0, and ga

0: g<
0k,ω = f (ω)(ga

0k,ω −
gr

0k,ω) with f (ω) being the Fermi distribution function.47

Then we can use Eq. (2) iteratively to obtain arbitrary
higher order perturbations as g< = g<

0 + gr
0Vg<

0 + g<
0 Vga

0 +
gr

0Vgr
0Vg<

0 + gr
0Vg<

0 Vga
0 + g<

0 Vga
0Vga

0 + · · ·.
Here, we consider spin-independent impurities Vimp =∑Nimp

i=1 uimpδ(r − r i), where Nimp is the number of the impu-
rities in the system. Supposing that the impurities are dilute,
the self-consistent equation can be solved perturbatively. We
take the random average over all possible configurations of
the impurities to recover the translation symmetry of the
system. The self-consistent Born approximation is equivalent
to the Born approximation in the limit of dilute impurities.
We assume this limit in the following, and then we get the
self-energy as

�r(a) = nimpu
2
imp

L2

∑
k

g
r(a)
k,ω � nimpu

2
imp

L2

∑
k

g
r(a)
0k,ω

� ∓i
nimpu

2
imp

4v2
|ω|σ0, (3)

where σ0 is the identity matrix in spin space and nimp =
Nimp/L

2 is the concentration of the impurities. We here
supposed |εF |τ 
 1 and the real part of the self-energy
can be neglected. Using the self-energy, we obtain the
modified Green’s functions: gr(a) = (ω − H0 − �r(a))−1. We
define ηω = nimpu

2
imp|ω|/4v2, and the relaxation time is then

given by τ = 1/2ηεF . In the following sections, we assume
that |εF|τ 
 1 and �τ � 1, where � is the frequency of

-q q q1-q1

k k
= + +...-q2 q2

FIG. 1. The perturbed Green’s function obtained by the self-
consistent Born approximation. The single and double lines mean
the unperturbed and perturbed Green’s functions, respectively, and
the dashed lines are scattering potentials by the impurities.

the external field. The explicit form of the modified Green’s
function reads

g
r(a)
k,ω = 1

(ω ± iηω)2 − v2k2

(
ω −ivk−

ivk+ ω

)
, (4)

which corresponds to the diagram in Fig. 1.

III. RESULTS

A. Current-induced spin polarization

In this section, we will study the spin polarization in
response to the dc electric field applied parallel to the surface.
When we consider the dc external field, it makes the calculation
easier to introduce the field oscillating with frequency � and
then take the limit � ↘ +0. In the following, we consider the
spatially uniform field so that the wave vector k becomes
a good quantum number. We omit the wave number k of
quantities for brevity.

The external field is expressed by the vector potential
A(t) which satisfies E(t) = − Ȧ(t), and then the perturbation
term reads V (t) = − j · A(t), where j is the current operator.
The current operator is given by jx = −eẋ = evσy , jy =
−eẏ = −evσx . When the electric field is along the +x direc-
tion, the perturbation term yields V (t) = evExe

i�tσy/(i�),
whose Fourier transform is 2πδ(� − �′)Ṽ�′ = 2πδ(� −
�′)evExσy/(i�′). Using Eq. (2), we obtain up to linear order
in V ,

G<
ω,ω+�′ � 2πδ(�′)g<

ω + 2πδ(� − �′)
[
f (ω + �′)gr

ωṼ�′

× (
ga

ω+�′ − gr
ω+�′

) + f (ω)
(
ga

ω − gr
ω

)
Ṽ�′ga

ω+�′
]

= 2π
[
δ(�′)g<

ω + δ(� − �′)
{ − f (ω)

(
gr

ωṼ�′gr
ω

− (r ↔ a)
) + �′{f (ω)

(
gr

ωṼ�′
(
gr

ω

)2 − (r ↔ a)
)

+ f ′(ω)gr
ωṼ�′

(
ga

ω − gr
ω

)}}]
, (5)

where f (ω) = (e(ω−εF)/kBT + 1)−1 is the Fermi distribution
function. We here expanded the Fermi distribution function
and Green’s functions in terms of �. In the above expansion,
we can show that the gr(a)

ω Ṽ�′gr(a)
ω terms vanish by the

integration in k space (see Appendix A). Furthermore, the
gr(a)

ω Ṽ�(gr(a)
ω )2 terms do not contribute to physical quantities.

The higher order derivatives of Green’s functions give higher
order terms of � and can be neglected. Then, only the
gr

ωṼ�′ga
ω term contributes to the result. Therefore, the Keldysh

formalism within the linear response is apparently equivalent
to the Kubo formula approach.

Next, we calculate the sum of the ladder diagrams in
Fig. 2, which corresponds to the vertex correction. To calculate
these ladder terms, we use the iterative procedure. First, we
consider the diagram with impurity scattering in Fig. 2(a).
The corresponding term is 〈Vimpg

r
ωV�ga

ωVimp〉AV, where the
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+ + +...

k´ s´ k´ s´

k s k s
(b)

(a)

(c)

FIG. 2. We have to include the diagrams shown in (a) to satisfy
the Ward-Takahashi identity, which ensures the gauge invariance. (b)
and (c) are the iterative method we use to get the nth ladder diagrams
shown above.

〈· · ·〉AV is the random average over the impurity configurations.
Using the concrete expressions of Green’s functions and
perturbation terms, we obtain 〈Vimpg

r
ωṼ�ga

ωVimp〉AV ≡ Ṽ
(1)
� =

Ṽ�/2. This calculation shows that the first-order correction for
the vertex function becomes half the original one. Similarly,
the higher correction terms yield 〈Vimpg

r
ωṼ

(n)
� ga

ωVimp〉AV ≡
Ṽ

(n+1)
� = Ṽ

(n)
� /2; therefore Ṽ

(n)
� = Ṽ�/2n. Summing up all

the ladder diagrams, we obtain
∑∞

n=1 Ṽ
(n)
� = ∑

Ṽ�/2n = Ṽ�.
This means that when the ladder terms are considered, the
original V� should be doubled V̂� ≡ Ṽ� + ∑∞

n=1 Ṽ
(n)
� = 2Ṽ�.

After substituting Ṽ� with V̂� and the Fourier transform, we
obtain the perturbed lesser Green’s function including the
vertex correction at zero temperature of the form

G<(r,t,r,t) � − 1

L2

∑
k

∫
dω

2π
�f ′(ω)gr

ωV̂�ga
ω

= ievEx

2πnimpu2
imp

σy. (6)

The local spin density of the spin polarization 〈σi〉 at the
position r and time t is given by making the trace of the product
of the Pauli’s matrix and the lesser Green’s function:

〈σi〉 = −iTr σiG
<(r, t,r, t), (7)

where i = x,y,z. Therefore, the expectation value of σy reads

〈σy〉 = −iTr σy

[
ievEx

2πnimpu2
imp

σy

]
= evEx

πnimpu2
imp

. (8)

In a similar way, the expectation values of σx and σz are
calculated to be zero. As for the charge conductivity, it can
be calculated in a similar way:

σxx = e2v2

πnimpu2
imp

. (9)

Note that the conductivity is independent of the Fermi
energy within the self-consistent Born approximation, with
the real part of the self-energy neglected. The form of the
conductivity [Eq. (9)] is the same as that of the graphene for
the short-ranged impurities,48 which also has a similar linear
dispersion. This relation can be understood in an intuitive way
by noting a difference of the degrees of freedom: Graphene
has two Dirac cones at the K and K ′ points in its Brillouin
zone, and each Dirac cone is spin degenerate, and hence is

twofold. Therefore, the number of freedom of the graphene
that contributes to the conductivity is four times greater than
that of the TI. However, the contribution from nonmagnetic
impurities in graphene is four times larger than that in the
TI because of the spin-momentum locking. As a result, these
factors cancel out each other and we get the same expression
of the conductivities.

Experimentally, the presence of the bulk conduction carrier
would hinder precise estimations of longitudinal conductivity
of surfaces of TIs. The bulk conduction is mainly due to
vacancies of Se and Te atoms, ionic impurities, or lattice
defects. However, the spin polarization discussed above is a
surface effect, and its measurement give us the physics of
helical surface states separated from the bulk. In fact, there
is a relation between the spin response function φy and the
longitudinal conductivity σxx as σxx = evφy , which offers a
possibility of a new probe to the surface states of TIs.

Now, we make a realistic estimate of the spin polarization.
We here suppose that it is a good approximation that the
conductivity on the surface of TI σxx is as large as that
of graphene; σ

graphene
xx = 2.5 × 10−4 �−1. The parameter v

in the model Hamiltonian [Eq. (1)] is v � 2.0 eV Å from
the observation of surface states of Bi2Se3 by the ARPES
experiment,44 which is typically larger than the Fermi velocity
in graphene. We assume applying the electric field of strength
103 V/m, and then the induced spin polarization is calculated
to be 〈σy〉 � 5.2 × 10−8 Å−2. The corresponding magnetiza-
tion can be obtained by multiplying it by the Bohr magneton
μB and the electron spin g factor.

B. Inverse Faraday effect

In this section, we investigate the nonlinear effect caused
by a circularly polarized light, namely the IFE, where a dc spin
polarization is induced by a light illumination. The axes are
set as in Fig. 3.

We employ the gauge to set the scalar potential to be
zero and hence Ȧ(t) = −E(t). Then, the perturbation term is
V (t) = − j · A(t) + H.c. We consider spatially uniform elec-
tric field E(t) = E�ei�t with E� = (E(x)

� ,E
(y)
� , 0); then the

Fourier transform of the perturbation Hamiltonian is Vk,�′ =
2πL2δk,0[δ(�′ − �)Ṽ� + δ(�′ + �)Ṽ †

�], where Ṽ� = − j ·
E�/i� and Ṽ

†
� is the Hermitian conjugate of Ṽ�. When

the polarization is left circularly polarized, the electric field

circularly polarized light

x

y

z

spin polarization

topological insulator

FIG. 3. (Color online) The circularly polarized light propagating
along the z axis induces the spin polarization 〈σz〉.
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FIG. 4. (a) and (b) correspond to the terms gωVgω−�Vgω and
gωVgω+�Vgω, respectively. These terms give the diagonal compo-
nents in the Fourier-transformed ω space.

is E� = E(1, − i, 0) with E being real, and V� and V
†
� are

reduced to be

Ṽ� = 2ev

�

(
0 0

E 0

)
, Ṽ

†
� = 2ev

�

(
0 E
0 0

)
. (10)

Because we are especially interested in the dc response of
the TI to the oscillating field, we calculate the second-order
perturbation with the Keldysh formalism, and take into account
the terms in Fig. 4.

By using the Dyson’s equation iteratively, we obtain the
expression up to the second-order perturbation with respect
to V :

G< � g< + grVg< + g<Vga

+ grVgrVg< + grVg<Vga + g<VgaVga. (11)

In particular, the diagonal elements in ω are necessary to
calculate the dc response of the system. G<

ω is given by

G<
ω � g<

ω + f (ω)
{(

gr
ωṼ�gr

ω+�Ṽ
†
�

(
ga

ω − gr
ω

)
+ gr

ωṼ
†
�gr

ω−�Ṽ�

(
ga

ω − gr
ω

)) − H.c.
}

+ f (ω + �)gr
ωṼ�

(
ga

ω+� − gr
ω+�

)
Ṽ

†
�ga

ω

+ f (ω − �)gr
ωṼ

†
�

(
ga

ω−� − gr
ω−�

)
Ṽ�ga

ω, (12)

where we used the formula g<
ω = f (ω)(ga

ω − gr
ω). Notably,

the first perturbative terms, which include a single Ṽ�, do not
contribute to the result, because they do not contribute to the
diagonal ω components.

To proceed further, we assume that � is small and expand
the Fermi distribution function and Green’s functions in terms
of �. We expect that we have to expand at least up to the
third-order with respect to � because the perturbation terms Ṽ�

and Ṽ
†
� are inversely proportional to �. Actually, the terms up

to second order perturbation in � become zero (see Appendix
B). The leading terms in Eq. (12) are therefore reduced to

�3

(
1

3!
f (ω)

[
−gr

ωṼ�

∂3gr
ω

∂ω3
Ṽ

†
�gr

ω + gr
ωṼ

†
�

∂3gr
ω

∂ω3
Ṽ�gr

ω − H.c.

]

+ 1

2!
f ′(ω)

[
gr

ωṼ�

∂2ga−r
ω

∂ω2
Ṽ

†
�ga

ω − gr
ωṼ

†
�

∂2ga−r
ω

∂ω2
Ṽ�ga

ω

]

+ 1

2!
f ′′(ω)

[
gr

ωṼ�

∂ga−r
ω

∂ω
Ṽ

†
�ga

ω − gr
ωṼ

†
�

∂ga−r
ω

∂ω
Ṽ�ga

ω

]

+ 1

3!
f ′′′(ω)

[
gr

ωṼ�ga−r
ω Ṽ

†
�ga

ω − gr
ωṼ

†
�ga−r

ω Ṽ�ga
ω

])
, (13)

where ga−r
ω = ga

ω − gr
ω. Second and higher derivative terms

of the Fermi distribution function is partially integrated,
which yields only the first-order derivative of the Fermi
distribution function. With the partial integration and the
Fourier transformation, we get the perturbed Green’s function
G<(r,t,r,t). From this Green’s function, we calculate the local
spin density as

〈σz〉 = −iTr[σzG
<(r,t,r,t)] = k2

F

4π
K�, (14)

where k2
F/4π is the 2D electron density, and K� is represented

with γ = ηεF/εF as

K� = −ie2v2(E� × E∗
�)z�

ε5
F

[
2γ (3 − γ 2)

9π (1 + γ 2)3
+ 2γ (3 + 2γ 2 + 3γ 4) + 3(1 − γ 2)(1 + γ 2)2(πsgn(γ ) − 2 arctan γ )

12πγ 2(1 + γ 2)2

]
. (15)

K� is the averaged spin polarization per electron. Note that
|γ | ∼ |(εFτ )−1| � 1. In the limit of γ → 0, Eq. (15) gives

K� � sgn(γ )
−ie2v2(E� × E∗

�)zτ 2�

ε3
F

, (16)

which is proportional to the square of the relaxation time τ . In
this limit, the local spin density 〈σz〉 yields

〈σz〉 = sgn(εF)
−ie2(E� × E∗

�)zτ 2�

4πεF
. (17)

Notice that a finite spin polarization per unit area, 〈σz〉,
is generated as a result of the light illumination. The spin
polarization is proportional to (E� × E∗

�)z and hence the IFE
is dependent on the helicity of the applied electric field. It is
seen that when the polarization of the incident light is reversed
or equivalently we change the field from E� = E(1, − i, 0) to
E� = E(1, i, 0), then the induced spin polarization reverses.
Apparently 〈σz〉 is zero for a linearly polarized light. Although

the IFE also occurs under the illumination of elliptic-polarized
lights, it is most efficient in the case of circular polarized
lights. For example, if the external field is E� = E(1, − i, 0),
then E∗

� = E(1, + i, 0) yields E� × E∗
� = 2iE2ez with ez

being the unit vector along the z axis. As for the frequency
dependence, the spin polarization by the IFE is proportional
to � and vanishes in the limit of � ↘ 0.

The polarization is proportional to the square of the
relaxation time τ . This is in stark contrast to the case of the
Rashba system, where it is proportional to τ−2 for high light
frequency.35 The resulting spin polarization is independent of
the sign of εF . Therefore, for a left-circularly polarized light,
we have −i(E� × E∗

�)z > 0 and 〈σz〉 > 0.
At the end of this section, let us estimate the spin

polarization for the realistic parameters: 1/2τ � 1 meV, � �
1 meV, εF � 102 meV, and v � 2 eV Å.44 When the electric
field is of strength E � 1 × 104 V/m, then K� = 1 × 10−6.
For the typical surface state of the TI, the 2D electron
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density is 2 × 10−4 Å
−2

; then the spin polarization density
is 〈σz〉 � 2 × 10−10 Å−2. As noted in the former section, we
can translate this value to the magnitude of magnetization by
multiplying it by Bohr magneton μB and the electron spin
g factor.

C. Warping effect

In this section, we investigate effects of the warping term.
In terms of the crystal structure, Bi2Te3 has the rhombohedral
structure44 and its band structure has C3v symmetry. This effect
have been treated theoretically in Refs. 45,46. According to
these studies, the effective Hamiltonian includes the hexagonal
warping term and takes the form

H = v(σ × k)z + α

2
(k3

+ + k3
−)σz. (18)

The eigenstates and the eigenvalues are given by

ψ+ = eik·r
√

L2

(
ie−iφk cos θk

2

sin θk
2

)
,ψ− = eik·r

√
L2

(
sin θk

2

ieiφk cos θk
2

)
,

(19)

εk,s = s
√

v2k2 + α2k6 cos2 3φk, (20)

with φk = tan−1(ky/kx) and tan θk = k2
c /(k2 cos 3φk), where

kc = √
v/α. It is apparent that each eigenstate has nonzero

expectation value of σz as

〈ks|σz|ks〉 = s cos θk �≡ 0, (21)

which is schematically depicted in Fig. 5.
To investigate the current-induced spin polarization, we

expand the spin density 〈σz〉 in terms of the current 〈ji〉 (i =
x,y) with coefficients Aij :

〈σz〉 =
∑
i,j

Ai,j 〈jx〉i〈jy〉j , (22)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

ky/kc

kx/kc

0

0

FIG. 5. (Color online) The spin configuration of the eigenvectors
for the s = + band. The arrows in this figure indicate the in-plane spin
components of the eigenstates and the solid circle (cross) indicates
the out-of-plane spin components. At the cusp points the spin lies
completely in the xy plane just as in the case without the warping
term. However, at other points the spin has nonzero σz component,
which is the largest in its magnitude at the valley points.

where the expression Aij is restricted by the symmetry of the
system.

The Hamiltonian [Eq. (18)] possesses the time-reversal
symmetry T , the threefold rotational symmetry around the
z axis C3z, and the mirror symmetry with respect to the yz

plane, Myz. The mirror symmetry Myz gives 〈jx〉 → −〈jx〉,
〈jy〉 → 〈jy〉, and 〈σz〉 → −〈σz〉, and therefore 〈σz〉 is an odd
function about 〈jx〉 and Aij is allowed to be nonzero only for
i = odd. In addition, because of the time-reversal symmetry,
〈σz〉 is an even function of 〈jy〉 and Aij is allowed to be
nonzero only for j = even. Furthermore, 〈σz〉 is invariant
under the threefold rotation C3z: (〈jx〉, 〈jy〉) → (− 1

2 〈jx〉 −√
3

2 〈jy〉,
√

3
2 〈jx〉 − 1

2 〈jy〉), which gives a restriction on the
coefficients Aij . For example, the i = 1, j = 0 term cannot
be invariant under the 2π/3 rotation, but the i = 1, j = 2
and i = 3, j = 0 terms remain the same under this rotation
if A30 = −A12/3. From these symmetry considerations, the
expansion of the spin polarization with respect to the current
in the lowest order yields

〈σz〉 ∝ 〈jx〉3 − 3〈jx〉〈jy〉2, (23)

which is cubic of the current. When the external field is small,
the current is linearly dependent on the field, and the spin
polarization can be written as 〈σz〉 ∝ E3

x − 3ExE
2
y . The spin

polarization depends not only on the magnitude but also the
direction of the electric field. The spin polarization is largest
when the field is along the x axis, and zero when the field is
tilted by π/6 from the x axis.

IV. CONCLUSION

In this paper, we have investigated the response of the
surface of TI to the electric fields. We have used the Keldysh
formalism to calculate the spin polarization of the surface of
TI in a systematic fashion. In the linear response regime, we
have found that dc current can induce the spin polarization
perpendicular to the current due to the strong spin-orbit
coupling. Also, we have estimated the magnitude of the spin
polarization. We have further investigated the inverse Faraday
effect of the TI based on the second-order perturbation, and
we have found that the spin polarization emerges by circularly
polarized light illumination, which is proportional to the square
of the lifetime τ . We also investigated effects of the warping
term and found that there is a spin polarization perpendicular to
the surface of TIs which has the threefold rotational symmetry
and is cubic with respect to the current.
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APPENDIX A: CALCULATION OF THE GREEN’S
FUNCTION IN EQUATION (5)

Here, we show how the gr(a)Vgr(a) terms vanish in Eq. (5).
The key is that V is written in the form of the current operator.
Hence, the vertex function can be written in the form of the
derivative of the Hamiltonian in terms of kx ,

Ṽ� = ieEx

�

∂H0

∂kx

, (A1)

and hence we have

gr(a)Ṽ�gr(a) = ieEx

�

∂gr(a)

∂kx

. (A2)

Considering the integration of these terms about k, we
obtain ∫

d2k

4π2
gr(a)Ṽ�gr(a) ∝

∫
d2k

4π2

∂gr(a)

∂kx

= 1

4π2

∫
dkyg

r(a)
∣∣∣kx=+∞

kx=−∞
, (A3)

where the integrand is zero from the periodicity of the system.
Therefore, the integration becomes zero after all.

APPENDIX B: CALCULATION OF THE GREEN’S
FUNCTION IN EQUATION (12)

Here, we show details of the calculation of the Green’s
function in Eq.(12). In this case, Ṽ

(†)
� is proportional to the

derivative of the Hamiltonian with respect to k±:

Ṽ� = 2ieE
�

∂H0

∂k+
, Ṽ

†
� = −2ieE

�

∂H0

∂k−
. (B1)

Therefore, we have

gr(a)Ṽ�gr(a) = 2ieE
�

∂gr(a)

∂k+
, gr(a)Ṽ

†
�gr(a) = −2ieE

�

∂gr(a)

∂k−
.

(B2)

The terms independent of � and composed of only gr(a) in
Eq. (12) are shown to vanish as follows:

∫
d2k

4π2
(grṼ�grṼ

†
�gr + grṼ�grṼ�gr−(r ↔ a))

∝
∫

d2k

4π2

[
∂gr

∂k+
(gr)−1 ∂gr

∂k−
+ ∂gr

∂k−
(gr)−1 ∂gr

∂k+
−(r ↔ a)

]

=
∫

d2k

4π2

[
gr ∂(gr)−1

∂k+∂k−
gr + gr ∂(gr)−1

∂k−

∂gr

∂k+

+ ∂gr

∂k−
(gr)−1 ∂gr

∂k+
− (r ↔ a)

]
= 0, (B3)

where we used the partial integration and made use of the
relation ∂(gr)−1gr/∂k± = 0. Note also that (gr(a)

ω )−1 = ω −
H0 ± iηω and the Hamiltonian H0 is linear about k.

Next, we show that the terms linear in � which consist of
only gr(a) vanish as follows:∫

d2k

4π
f (ω)�

[
grṼ�

∂gr

∂ω
Ṽ

†
�gr−grṼ

†
�

∂gr

∂ω
Ṽ�gr − (r ↔ a)

]

= −f (ω)�
∫

d2k

4π2

[
grṼ�grgrṼ

†
�gr

−grṼ
†
�grgrṼ�gr − (r ↔ a)

]
∝ −f (ω)�

∫
d2k

4π2

[
∂gr

∂k+

∂gr

∂k−
− ∂gr

∂k−

∂gr

∂k+
− (r ↔ a)

]
= 0, (B4)

where we again used the partial integration. As for those terms
which include the derivative of the Fermi distribution function,
we can take a similar procedure to show that they vanish:∫

d2k

4π2
�f ′(ω)[grṼ�(ga − gr)Ṽ †

�ga − grṼ
†
�(ga − gr)Ṽ�ga]

∝ �f ′(ω)
∫

d2k

4π2

[
gr ∂H0

∂k+

∂ga

∂k−
− ∂gr

∂k+

∂H0

∂k−
ga

− gr ∂H0

∂k−

∂ga

∂k+
+ ∂gr

∂k−

∂H0

∂k+
ga

]

= �f ′(ω)
∫

d2k

4π2

[
− ∂

∂k−

(
gr ∂H0

∂k+

)
ga + gr ∂

∂k+

×
(

∂H0

∂k−
ga

)
− gr ∂H0

∂k−

∂ga

∂k+
+ ∂gr

∂k−

∂H0

∂k+
ga

]

= −�f ′(ω)
∫

d2k

4π2

(
gr ∂2H0

∂k−∂k+
ga − gr ∂2H0

∂k+∂k−
ga

)
= 0, (B5)

since ∂2H0/∂k+∂k− = 0.
The terms proportional to �0 or �1 have to be zero because

otherwise some physical quantities, such as electron density
∝ TrG<(r,t,r,t), diverge in the low-frequency limit � ↘ 0.

Regarding the terms proportional to �2, we find that these
vanish after multiplying the corresponding term by σz and
taking the trace:

Tr σz�
2

[
f (ω)

2

[{(
gr

ωṼ�

∂2gr
ω

∂ω2
Ṽ

†
�ga−r

ω +gr
ωṼ

†
�

∂2gr
ω

∂ω2
Ṽ�ga−r

ω

)

− H.c.

}
+ gr

ωṼ�

∂2ga−r
ω

∂ω2
Ṽ

†
�ga

ω + gr
ωṼ

†
�

∂2ga−r
ω

∂ω2
Ṽ�ga

ω

]

+ f ′(ω)

[
gr

ωṼ�

∂ga−r
ω

∂ω
Ṽ

†
�ga

ω − gr
ωṼ

†
�

∂ga−r
ω

∂ω
Ṽ�ga

ω

]]
= 0,

(B6)

with ga−r = ga − gr.

APPENDIX C: COMPARISON TO THE RASHBA SYSTEM

The previous studies on the Rashba systems24 have shown
that the dc current-induced spin accumulation occurs in the
Rashba system.25–27 In this appendix, we introduce the calcu-
lation of longitudinal conductivity and the spin accumulation
in the Rashba system. The calculation methods used below are
presented in Ref. 26.
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The model Hamiltonian for the Rashba system is

H Rashba
0 = k2

2m
+ α(σ × k)z, (C1)

where the α is the magnitude of the SOC. The eigenval-

ues are given by Eks = k2/2m + sαk, where k =
√

k2
x + k2

y

and s = ±, and the corresponding eigenstates are φs(r) =
eik·r/

√
2L2(1, − isk+/k). It is notable that the Rashba

Hamiltonian has the diagonal component in its Hamiltonian
in contrast to the case of the TI. The current operator is
jx = e(bkx − ασy) and jy = e(bky + ασx) with b = 1/m. The
unperturbed Green’s function is g0 = [z − H Rashba

0 ]−1. Taking
into account spin-independent short-range impurity potential
V (r) = uimp

∑Nimp

i=1 δ(r − Ri), the self-energy can be derived.
The modification can be made via the self-energy η in a
similar manner to the case of the TI. We here employ the
Born approximation, and the perturbed Green’s function reads
gr(a) = [z − H Rashba

0 ± iη]−1, where η = mnimpu
2
imp/2 is the

magnitude of the self-energy.

Before using the Green’s function obtained above to
calculate the longitudinal conductivity, the vertex correction
has to be considered. With the iterative method used in the case
of the TI, we obtain the modified current operator j̃x , which is
obtained by setting the α in jx zero. The conductivity is then
calculated via the Kubo formula as

σxx = 1

2πL2
Trjxg

rj̃xg
a = 2e2n0τ

m
+ e2α2

πnimpu2
imp

(C2)

with the τ being the relaxation time, and n0 is the local electron
density. The contribution of the first term of Eq. (C2) is the
same as that of the Drude model, and we can see that the
second term is the same as the conductivity of the surface
state of the TI. The calculation of the spin accumulation can
be done in a similar way, which yields

〈σy〉 = eα

2πnimpu2
imp

Ex, (C3)

which is half the spin accumulation on the surface of the TI.
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