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Effective mass modeling of excitons in type-II quantum dot heterostructures

E. J. Tyrrell and J. M. Smith
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom

(Received 19 May 2011; revised manuscript received 10 August 2011; published 27 October 2011)

We present a study of CdTe/CdSe and CdSe/CdTe type-II core-shell nanocrystals using a (2,6)-band effective
mass approximation for quantum-dot heterostructures and map the exciton properties as a function of core radius
and shell thickness. The Coulomb interaction (including the effects of dielectric mismatch) is calculated in
first-order perturbation theory, and optical absorption wavelengths of the two structures are compared. We find
that the (2,6)-band theory allows us to identify higher exciton states in absorption data for CdTe/CdSe which a
single-band theory does not, thereby demonstrating the importance of an accurate description of the nanocrystal
valence band structure. Excitation probabilities are significantly lower and the number of allowed transitions
greater in the (2,6)-band theory due to s-d mixing in the hole wave functions.
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I. INTRODUCTION

Modern colloidal chemistry allows fabrication of semicon-
ductor nanocrystals (NCs) with different shapes and composi-
tions; the combination of more than one semiconductor in a NC
produces a heterostructure, or hetero-NC. Such multicompo-
nent nanostructures provide the opportunity of tuning material
properties via wave function engineering. Various types of
heterostructure nanocrystal have been synthesized, including
core-shell NCs,1,2 three-layer quantum-dot quantum wells,3,4

and shape-controlled nanoparticles such as heteronanorods5

and tetrapods.6 The energetic alignment of the bulk conduction
and valence band edges of the constituent materials at a
heterointerface determines how the carriers are localized,
and choice of these band alignments can have a profound
effect on the physical properties of the nanocrystal. In type-I
structures, the band edges of one semiconductor are located
within the energy gap of the other semiconductor so that both
electron and hole localize in the narrower-gap material. Type-II
heterostructure NCs, in which the conduction and valence
bands have a staggered alignment, offer an alternative design in
which the lowest-energy states for conduction band electrons
and valence band holes lie in different spatial regions, leading
to charge separation between the carriers. Type-II NCs can
be classified7 according to whether their band alignments
tend to localize the hole in the core and the electron in the
shell [h/e structures, Fig. 1(a)] or the electron in the core and
the hole in the shell [e/h structures, Fig. 1(b)]. The spatial
separation of the carriers has a number of useful physical
consequences. It allows NC band gaps of lower energy than
the band gap of either constituent semiconductor;7 it can also
allow tuning of carrier-carrier interactions that may lead to
applications in nonlinear optics,8,9 lasing,10 and photovoltaic
cells.11,12 For lasing applications, it has been shown that Auger
recombination can be controlled and suppressed,13 leading to
longer optical gain lifetimes. In addition, it has been shown
that by reversing the sign of the exciton-exciton interaction
energy in type-II NCs optical gain in the single-exciton
regime is possible.14 The starting point in the design of
type-II heterostructure nanocrystals for many applications
must be a detailed understanding of single-exciton states,
which determine many of the important optical properties and
provide a basis for understanding more complex situations

such as multiple excitons. The behavior of parameters such as
the carrier self-energies and interparticle Coulomb energies
is considerably richer than that of type-I core-shell NCs,
so it is worthwhile to develop a comprehensive picture of
how they vary as functions of the core and shell dimensions.
Others have used the effective mass approximation (EMA) for
quantum-confined carriers to model the emission spectra,15

electron-hole overlap,14 and biexciton energies7of type-II
NCs, but calculations presented to date often assume single
energy bands for the electron and hole (which we refer to as
single-band models) and infinite confining potentials, thereby
considerably simplifying the calculation of single-particle
states and their Coulomb interaction. In this paper we extend
the calculations to higher hole levels using both a single-band
and a (2,6)-band approach to assess the effect of the valence
band structure, and include the effects of a finite confining
potential on the wave functions. The (2,6)-band approach uses
the 2 × 2 electron and 6 × 6 hole Hamiltonians developed by
Pokatilov et al.16 for quantum-dot heterostructures, which take
into account correct operator ordering at the heterointerfaces,16

the complex valence band structure, and coupling between
valence and conduction bands.17 These Hamiltonians are
valid over the entire heterostructure,16 in contrast to earlier
multiband calculations,18–20 which used Hamiltonians derived
assuming homogeneous material parameters (application of
these to heterostructures may lead to nonunique matching
of the homogeneous solutions at material boundaries16). We
compare single-particle states calculated in the single-band
and (2,6)-band models and include the Coulomb interaction
as a first-order perturbation to calculate exciton energies. We
show that the (2,6)-band theory enables the identification
of four higher exciton transitions in experimental data for
CdTe/CdSe NCs, which the single-band theory does not, and
the absence of s-d mixing in the single-band theory leads it to
underestimate the number of allowed transitions.

II. EFFECTIVE MASS MODELS

The conduction and valence band profiles of the core-shell
NCs are modeled using bulk material parameters, with a
finite band gap Eg3 in the surrounding material and equal
potential barriers for the electron and hole (Fig. 1). We
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FIG. 1. (Color online) Type-II band alignments in (a) h/e and
(b) e/h core-shell NCs with core radius a and shell thickness as . Eg1,
Eg2, and Eg3 represent the band gaps of the core, shell, and matrix
materials, respectively. Ev1 and Ev2 are the valence band offsets. CB
denotes the conduction band and VB the valence band. The blue
and red horizontal lines indicate quantum-confined energy levels of
the electron and hole, respectively, in the type-II limit of spatially
separated carriers.

assume spherically symmetric NCs with core radius a and
shell thickness as .

Different localization regimes result from different com-
binations of a and as . Energy criteria are used to classify
carriers as primarily core or shell localized.7 For the h/e NC
[Fig. 1(a)] the electron is shell localized if its energy lies below
the conduction band edge of the core material, i.e., Ee < Eg1

(electron energy Ee measured from the core valence band
edge) and the hole core localized if |Eh| < Ev1 where Eh is
the hole energy. For the e/h NC [Fig. 1(b)] the electron is
considered core localized if the energy level lies below the
bulk conduction band minimum of the shell semiconductor,
i.e., Ee < Eg2 (Ee measured from the shell valence band edge)
and the hole is considered shell localized if its level lies above
the valence band offset at −Ev1, i.e., |Eh| < Ev1.

A. Single-particle calculations

1. Single-band model

Electron and hole wave functions are of the form �
e(h)
lm (r) =

R
c(v)
l (r)Ylm(θ,φ), where Rl is the radial function, Ylm is

the spherical harmonic,21 and the parity p = (−1)l . The
conduction and valence bands are described by parabolic
bands whose curvature is determined by the electron and hole
effective masses me and mh. We apply the BenDaniel-Duke
boundary conditions22,23 at the material boundaries to calculate
electron (hole) energies Ee (Eh). Electron (hole) levels are
labeled nq (nQ) where q = s,p,d, . . . (Q = S,P,D, . . . )
denote the envelope angular momentum l, and n is the level
number. The excitation probability Pt of the electron-hole pair
state �e∗

lm�h
l′m′ is

Pt = δmm′δll′ |
∫

Rc∗
l Rv

l′r
2dr|2, (1)

where δll′ represents the Kronecker delta.

2. (2,6)-band model

We use the energy-dependent two-band electron and six-
band hole radial Hamiltonians derived by Pokatilov et al.16 for
quantum-dot heterostructures to calculate electron and hole
states for spherical core-shell NCs within Burt’s envelope func-
tion representation.24–26 The Hamiltonians take into account
the complex structure of the valence band and include the
coupling between the conduction and valence bands through
energy-dependent parameters.17 Due to spherical symmetry,
the wave functions are eigenfunctions of the total angular
momentum j , its z component m, and its parity p.16 In the
notation of Efros and Rosen (ER) the electron and hole wave
functions are27

�e±
j,m(r) = R±

c,j

1/2∑
μ=−1/2

�c
μuc

μ, (2)

�h±
j,m(r) =

2∑
i=1

3/2∑
μ=−3/2

R±
hi,j�

hi
μ uv

3/2,μ

+R±
s,j

1/2∑
μ=−1/2

�s
μuv

1/2,μ, (3)

where u
c,v
J,Jz

are Bloch functions of the conduction and valence
bands with band edge angular momentum J , the � angular
functions are defined in Ref. 27, and the ± superscript denotes
p = ±1. In the notation of Pokatilov et al. the electron and
hole radial functions are16

R
(p)
e,j = R

c;j
1/2,j−p/2,R

(p)
h,j =

⎛
⎜⎝

R
v;j
3/2,j+p/2

R
v;j
3/2,j−3p/2

R
v;j
1/2,j+p/2

⎞
⎟⎠ (4)

and are related to the ER radial wave functions by16

R
c;j
1/2,j−1/2 = R+

c,j , R
c;j
1/2,j+1/2 = −R−

c,j ,

R
v;j
3/2,j+1/2 = R+

h1,j , R
v;j
3/2,j−1/2 = R−

h1,j ,
(5)

R
v;j
3/2,j−3/2 = −R+

h2,j , R
v;j
3/2,j+3/2 = −R−

h2,j ,

R
v;j
1/2,j+1/2 = R+

s,j , R
v;j
1/2,j−1/2 = R−

s,j .

Independent electron (hole) energies Ee (Eh) are then
calculated by imposing continuity of the electron (hole) radial
wave functions R

(p)
e(h),j and the radial probability current16 at

the material boundaries at r = a and r = a + as . For example,
at r = a (

R
(p)
e(h),j

)
A
|r=a− = (

R
(p)
e(h),j

)
B
|r=a+, (6)

Ĵ (p)
e(h),j

(
R

(p)
e(h),j

)
A
|r=a− = Ĵ (p)

e(h),j

(
R

(p)
e(h),j

)
B
|r=a+, (7)

with similar equations for r = a + as . Ĵ (p)
e(h),j is the radial

component of the electron (hole) current operator and A and B

denote the core and shell regions, respectively. The resulting
equations are solved numerically. Energies are measured from
the top of the core valence band for the h/e NC and from
the top of the shell valence band for the e/h NC. Electron
(hole) states are labeled nqj (nQj ), where q = s,p,d, . . .

(Q = S,P,D, . . . ) denotes the lowest value of the envelope
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angular momentum l in the overall wave function and n is the
level number. Q = j − p/2 for electrons and Q = min(j +
p/2,|j − 3p/2|) for holes.16 Momentum matrix elements are
calculated for electron-hole pairs 1s1/2nS3/2 (n = 1,2,3) to
measure the change in strength of optical transitions as a
function of a and as . We define the excitation probability Pm,m′

of the pair state �e±∗
j,m �h±

j ′,m′ to be proportional to the square of
the momentum matrix element:28,29

Pm,m′ =
∣∣∣∣
∫

δ(re − rh)�e±∗
j,m (re)

e · p
P (r)

�h±
j ′,m′ (rh)dredrh

∣∣∣∣
2

,

(8)

where p is the momentum operator, e is the polarization of
incident light, and P = 〈S|p̂z|Z〉 is the Kane momentum
matrix element. For the NCs studied here, P (r) factors out
because PCdTe ≈ PCdSe (see Sec. III A 1).

B. Coulomb interation

We work in the strong-confinement limit so the exciton
wave function �exc is approximated by the wave function of
the electron-hole pair: �exc = �e∗�h, where �e (�h) is the
electron (hole) wave function in either EMA model. First-order
perturbation theory gives the exciton energy as

Eexc = Ee − Eh + 〈�h|〈�e|U |�e〉|�h〉 (9)

where U is the Coulomb energy for the electron-hole pair,
which for a system with a spatially varying dielectric constant
ε(r) is30

U (re,rh) = Vc(re,rh) + Vs(re) + Vs(rh), (10)

where Vc is the interparticle Coulomb potential and Vs is
the self-polarization potential. The potential Vc = Vd + Vp,
where Vd is the “direct” interparticle Coulomb potential
[Fig. 2(a)] and Vp is the interface polarization potential7

[Fig. 2(b)] due to the interaction between a particle and the
induced charge of the other particle. The self-polarization
potential Vs arises from the interaction of a particle and its
own induced charge31 [Fig. 2(c)]. We calculate Vc and Vs by
applying the numerical method of Bolcatto and Proetto31 to
core-shell NCs by assuming a smooth spherically symmetric
dielectric profile ε(r) = ε(r) which changes over distances
of 2δ1 and 2δ2 at the inner and outer material boundaries,
respectively [Fig. 2(c), inset]. This is modeled by discretizing
the region a − δ1 < r < a + as + δ2 into N − 1 slices where
N = 500. This is expected to describe the actual NC dielectric
profile more realistically than the commonly used “steplike”
profiles that assume an abrupt change of constant at the
material boundaries and localize all self-induced charge there,
causing discontinuities in the self-polarization potential. In
particular, this method avoids the infinite discontinuity at
r = a + as in such models, which is incompatible with the
use of a finite potential well in the surrounding medium. The
self-polarization potential is31

V m
s (r) = e2

8πε0εm

∞∑
l=0

1

1 − pm,lqm,l

× (pm,lr
2l + pm,lqm,lr

−1 + qm,lr
−2(l+1)), (11)

FIG. 2. (Color online) The l = 0 component of (a) the direct
Coulomb potential Vd and (b) the interface polarization potential
Vp with (c) the self polarization potential Vs corresponding to the
dielectric profile shown in the inset for a CdTe/CdSe NC with a =
1 nm, as = 1 nm and δ1 = δ2 = 0.1 nm.

and the l = 0 component of the interparticle Coulomb potential
is31,32

Vc,0(re,rh)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−e2

4πε0εm

(pm,0 + r−1
> ), if i � m

−e2

4πε0εm

(pi,0 + r−1
> )

i∏
j=m+1

1 + pj−1,0Rj−1

1 + pj,0Rj−1
, if i> m

(12)

The pm,l and qm,l are recursive coefficients (see Ref. 31 for
full definitions). In Eq. (12) the index i (m) indicates that the
particle with coordinate re (rh) is located in the ith (mth) slice
of the discretized region, and Ri is the radial coordinate of the
ith slice. εm is the dielectric constant in the mth slice. Vd is
given by the terms proportional to 1/r> = 1/max(re,rh), and
Vp is given by those proportional to pi,j . We find that Vp = 0
for r > a + as + δ2 since there is no induced charge outside
the NC outer dielectric interface, and Vd corresponds to the
classical interparticle Coulomb interaction. Vd is unaffected
by the external dielectric constant ε3 while Vp increases in
magnitude as the dielectric mismatch increases.
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The interparticle Coulomb energy Ec and self-polarization
energies Es,i (i = e,h) are

Ec = 〈�h|〈�e|Vc(re,rh)|�e〉|�h〉, (13)

Es,i = 〈�h|〈�e|Vs(ri)|�e〉|�h〉. (14)

Figure 2(c) (inset) shows the profile used for a CdTe/CdSe NC.
We assume δ1 = δ2 = 0.1 nm for both NCs so the interface
regions are of the order of a lattice constant in width. For the
NC we use high-frequency dielectric constants, εCdTe = 7.1
(Ref. 33), εCdSe = 6.2 (Ref. 34), and ε3 = 2 for r > a + as +
δ2.

Following Eqs. (9) and (10) the exciton energies are

Eexc = Ee − Eh + Ec + Es,e + Es,h. (15)

III. NUMERICAL RESULTS AND DISCUSSION

A. Single-particle calculations

1. Single-particle energies

The effective mass parameters used to model the nanocrys-
tals are shown in Table I. We assume that the CdTe/CdSe and
CdSe/CdTe NCs have zinc-blende crystal structures, in ac-
cordance with structural characterization measurements.35,43

Ep = 2P 2/m0 is the Kane energy and 
 is the spin-orbit split-
ting. Modified Luttinger parameters γ and γ1 were calculated
in the spherical approximation using γ L

1 = 5.37, γ L
2 = 1.67,

and γ L
3 = 1.98 for CdTe,27 and γ L

1 = 3.33, γ L
2 = 1.11, and

γ L
3 = 1.45 for CdSe.36 We use a valence band offset of 0.4 eV

for the CdTe/CdSe heterointerface to give the best fit to the
absorption data of Oron et al.37

For the external medium we assume single-band parabolic
dispersion relations for the carriers, following Ref. 38 by
setting γ1 = 1, γ = 0, α = 1, and Ep = 0. We set Eg3 = 8 eV
to represent the organic ligands and external medium. In
Fig. 3 we compare the bulk band structure of the two NC
materials arising from the two models calculated using the
parameters in Table I. It is seen that the (2,6)-band theory
electron dispersions (solid lines) of both materials deviate from
the parabolic model (dashed lines) for higher energies due to

TABLE I. Effective mass parameters used to model CdTe/CdSe
and CdSe/CdTe NCs.

CdTe CdSe Matrix

Eg (eV) 1.56a 1.75a 8
Ep (eV) 17.9b 17.5a 0

 (eV) 0.953b 0.42c 0
γ −0.056 −0.353 0
γ1 1.545 −0.0033 1
α 0.965 −1.02 1
me (m0) 0.096b 0.12d 1
mh (m0) 0.4e 0.45f 1

aReference 39.
bReference 27.
cReference 40.
dReference 36.
eReference 41.
fReference 42.

FIG. 3. Bulk band structure of (a) CdTe and (b) CdSe calculated
in the (2,6)-band theory (solid lines) and single-band theory (dashed
lines) using the parameters of Table I. lh, hh, and so label the light-
hole, heavy-hole, and spin-orbit split-off bands, respectively.

coupling with the valence band, which tends to reduce their
energy. We also see that in CdTe, the parabolic model follows
the heavy-hole (hh) and light-hole (lh) bands reasonably
well, lying between the two for energies up to ≈1.5 eV.
However, in CdSe the proximity of the spin-orbit split-off
(so) band means that the parabolic (single-band) dispersion
diverges significantly from the lh and hh dispersions. Since
we expect optical transitions between the conduction and
valence bands to involve mainly the J = 3/2 subbands, this
deviation will have a large effect on the predicted transition
energies in the single-band model compared to the (2,6)-band
model.

Figure 4 shows electron and hole energies for the two
NCs calculated in the single- and (2,6)-band models with
localization boundaries calculated from the appropriate en-
ergy criteria. The first row shows the energy of the lowest
spherically symmetric electron state, which is 1s (1s1/2) in
the single-band [(2,6)-band] model. The remaining rows show
hole energies of the first three levels with S and S3/2 symmetry
in the single-band and (2,6)-band models, respectively. nS

states are spherically symmetric while nS3/2 states are not [see
Eq. (2)].

The first two rows show very close agreement between
the single-band and (2,6)-band electron and hole ground state
energies since the band structure is approximately parabolic
for low energies. The localization boundaries of CdSe/CdTe
agree closely with those found in Ref. 7 for a generic e/h NC in
an infinite confining potential. Black regions indicate NCs that
are too small to produce confined states in the finite potential
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FIG. 4. (Color online) Single-particle energies in the CdTe/CdSe and CdSe/CdTe NCs calculated in the single-band model (first and third
columns) and (2,6)-band model (second and fourth columns). Row (a) shows the electron ground state energy Ee for the single-band 1s level and
the 1s1/2 (2,6)-band level. Rows (b)–(d) show the hole energy Eh for the 1S to 3S single-band levels and 1S3/2 to 3S3/2 (2,6)-band levels. Thick
black and red lines denote electron and hole localization boundaries, respectively. Constant-energy contours (thin black lines) are separated by
0.2 eV intervals, wih labels in eV. Areas shaded black indicate NCs too small to produce confined states.

well. The size dependence of hole energy levels is affected
by anticrossings in both models (shown by distortion of the
constant-energy contours) in the direction of the confining
dimension of the NC, for example looking along lines of
constant as for the h/e NC.

In the (2,6)-band model such anticrossings affect not only
the size dependence but also the character of the levels because
nS3/2 states have mixed s-d symmetry,27 which can change due
to anticrossings or interactions between levels. Generally, the
amount of s-like character in the wave function decreases as
the level number increases because higher angular momenta l

are associated with higher energies.
Figure 4 shows that the discrepancy between hole energy

levels in the two models increases with level number, as
expected from the different dispersion relations in Fig. 3. We

also see that the difference between the hole levels in the
two theories for n > 1 is greater in the e/h NC than in the
h/e NC. This difference in the ability of the two models to
predict hole energies in the two NCs results from the deviation
of the single-band dispersion from the lh and hh bands in
CdSe. This is counterintuitive because the hole localizes in
the shell in the CdSe/CdTe NC, but due to the valence band
profile of the NC (Fig. 1), when |Eh| < Ev1, the hole is
effectively confined in a finite potential well with unequal
potential barriers on either side. Therefore for the second and
third hole levels the corresponding radial wave functions have
significant components in the core region because the potential
barrier is smaller in this direction, and the band structure of
the core material becomes important. Since the hole tends to
localize in the core of the CdTe/CdSe NC, the valence band
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structure of the shell material tends to be less important for
calculating confined hole levels.

2. Excitation probabilities

Since we work in the strong-confinement regime, the
excitation probabilities of exciton states are equal to those
of the corresponding electron-hole pairs. In the single-band
theory the excitation probability Pt of an electron-hole pair
is simply defined as an overlap integral [Eq. (1)]. In the
(2,6)-band theory it is defined only between definite electron
(hole) eigenstates �e±

j,m (�h±
j ′,m′ ) with a specified polarization

direction e [Eq. (8)]. Substituting Eqs. (2) and (3) into Eq. (8)
for 1s1/2nS3/2 states, we find that light with polarization e
excites transitions between electron and hole states with the
relative probabilities shown in Table II, where

K =
∣∣∣∣
∫

R+∗
c,1/2R

+
h2,3/2r

2 dr

∣∣∣∣
2

(16)

and θ is the angle between e and the z axis. Probabilities
in Table II are in agreement with those of Efros found
using a four-band EMA for the holes.29 If we then average
over all polarization directions and sum over dipole-allowed
transitions, we get Pt = 2

3K . Equation (16) shows that because
the electron is in the 1s1/2 state only the s-like components of

TABLE II. Excitation probabilities for different electron-hole pair
states in the (2,6)-band theory.

m m′ Pm,m′ m m′ Pm,m′

− 1
2 − 3

2
1
2 K sin2 θ 1

2 − 3
2 0

− 1
2 − 1

2
2
3 K cos2 θ 1

2 − 1
2

1
6 K sin2 θ

− 1
2

1
2

1
6 K sin2 θ 1

2
1
2

2
3 K cos2 θ

− 1
2

3
2 0 1

2
3
2

1
2 K sin2 θ

the nS3/2 wave functions contribute to Pt and the probability
depends on the overlap of R+

c,1/2 and the l = 0 hole envelope
function R+

h2,3/2. In other words, in the (2,6)-band theory

only the J = 3
2 valence bands contribute to the absorption or

oscillator strength [see Eq. (5)] of 1s1/2nS3/2 excitons despite
the presence of J = 1

2 components in the hole wave functions.
Therefore absorption probabilities in the (2,6)-band model
have a maximum value of 2

3 compared to 1 in the single-band
theory, where hole states are pure S states and the overlap can
in theory reach unity if electron and hole densities are equal.

Figure 5 shows how the excitation probability Pt changes
with hole level n for the single-band 1snS excitons and the
(2,6)-band 1s1/2nS3/2 excitons.

FIG. 5. (Color online) Excitation probability Pt for exciton states in the CdTe/CdSe (first two columns) and CdSe/CdTe (last two columns)
NCs calculated in the single- and (2,6)-band models. Excitation probabilities for the single-band 1snS excitons are shown in the first and third
columns and the (2,6)-band probabilities of the 1s1/2nS3/2 excitons are shown in the second and fourth columns, with rows (a), (b), and (c)
corresponding to n = 1, 2, and 3. Black and red lines represent electron and hole localization boundaries, respectively. Thin black lines are
constant Pt contours at the values indicated.
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FIG. 6. (Color online) Probability ps(c) of finding the hole in the shell (core) region of the CdTe/CdSe (CdSe/CdTe) NC as a function of a

and as within the two models. Single-band results for the nS levels are shown in the first and third columns while (2,6)-band results for the
nS3/2 levels are shown in the second and fourth columns; rows (a), (b), and (c) correspond to n = 1, 2, and 3. The hole localization boundaries
of each level are shown as thick black lines and those of previous levels are shown as dotted black lines. Thin black lines are constant ps(c)

contours at intervals of 0.25.

For the lowest exciton state in both NCs, we see that the
highest probabilities occur in the type-I and quasi-type-II
regimes (where wave function overlap is greatest) and the
lowest in the charge-separated type-II regimes [Fig. 5(a)].
We find close agreement between our results for the 1s1S

CdSe/CdTe exciton and those of Ref. 7.
Figure 5 shows that for n > 1 the areas of high Pt

tend to occur in the quasi-type-II regimes, forming distinct
“islands” in the (a,as) space that move in the direction of
increasing core radius (shell thickness) for the h/e (e/h) NC.
The 1s1/22S3/2 exciton of CdSe/CdTe differs slightly, having
a high-probability region that lies mostly in the type-II region,
where we would naively expect Pt to be low.

We can explain the origin of the high-Pt features by
considering the distribution of hole probability density within
the NC for these levels. We use the hole wave functions �h to
calculate the probability of presence ps (pc) of the hole in the
shell (core) region for the CdTe/CdSe (CdSe/CdTe) NCs as a
function of a and as (Fig. 6). Figure 6 reveals that, for the lowest
CdTe/CdSe hole level, most of the hole probability density is in
the shell region when it is classified as delocalized (left of the
localization boundary), because NCs to the left of the boundary
mainly consist of the shell material (as > a). Therefore overlap
of this hole density with the electron probability density in the

shell gives rise to the area of high Pt in the type-I and upper left
quasi-type-II regimes of Fig. 5(a). The area of high Pt in the
lower right quasi-type-II regime arises from overlap between
the delocalized electron and the core-localized hole.

As the CdTe/CdSe NC hole is excited we see that there are
regions of high probability ps to the left of the localization
boundary of that level (thick black line), and areas of high ps

are reproduced in the plot for the next level in the same region
of (a,as) space, leading to a series of “lobes” (colored red) that
occur between the hole localization boundaries of previous
levels (dotted black lines). The same sort of pattern occurs for
pc of the CdSe/CdTe NC in the direction of increasing as . In
the (2,6)-band model, the area of high pc between the 1S3/2

and 2S3/2 levels is very narrow due to their similar energy.
The appearance of high probability lobes in approximately the
same positions in (a,as) space as those of lower levels can
be explained in terms of wave function orthogonality.44 For a
particular point in (a,as) space, if the radial wave function is
large in the core region, the wave function of the next level in
the same region will also have significant components to ensure
orthogonality, leading to replication of the high-probability
region. Lobes occur because the probability has to fall as the
localization boundary of the current level is reached and the
hole localizes in the other region of the NC.
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The probability Pt is determined by the overlap of the
electron and hole envelope functions. Comparing Figs. 5 and
6, we see that the overlap between the electron and hole wave
functions only picks out one particular lobe of high ps (pc) in
the h/e (e/h) NC for each level. This also originates from
hole wave function orthogonality—if the overlap between
the electron and hole wave functions is high for a particular
level, their envelope functions have similar radial dependences.
Since the hole wave function of the next level (and all other
levels) is orthogonal for constant NC dimensions, the overlap
will be low and that particular lobe will not give rise to high
Pt . This is shown in Fig. 5, where we see that an area of
high probability Pt for an exciton state is never replicated for
higher states of equal symmetry; for example, the shapes of
the high-Pt features in Fig. 5(b) fit in the regions in which Pt

was comparatively low in Fig. 5(a).
The weakness of the 1s1/23S3/2 transition in the lower

right quasi-type-II regime [Fig. 5(c)] in CdSe/CdTe can be
understood in similar terms. The high-Pt region of 1s1/22S3/2

must lie in the region in which Pt is low for the lowest
electron-hole pair state. Due to the proximity of the 2S3/2 and
1S3/2 levels, this region lies largely above the 2S3/2 localization
boundary. For the 1s1/23S3/2 level, we see that the hole wave
function has significant amplitude in the core to overlap with
the electron wave function only below the 3S3/2 localization
boundary [Fig. 6(c)]. However, since Pt is quite high for the
1s1/22S3/2 state over much of this region, Pt must remain
low for the 1s1/23S3/2 exciton in this same area of (a,as)
space.

B. Coulomb interaction

1. Interparticle Coulomb interaction

We found that the interparticle energy Ec tends to be
suppressed in the upper left quasi-type-II regimes of the
CdTe/CdSe NC and enhanced in the lower right quasi-type-II
regimes of the CdSe/CdTe NC. This is caused by shifts in the
distribution of hole probability density because the changes in
Ec occur at the hole (but not electron) localization boundaries.
We find that the effect is much smaller in CdTe/CdSe than
CdSe/CdTe and that this change with localization regime
originates from the direct Coulomb energy Ec,d since Vc,d

depends on max(re,rh) compared to Vp, which is essentially a
piecewise constant inside the NC (Fig. 2). Ec,d is suppressed in
the upper left quasi-type-II regimes of CdTe/CdSe because the
hole is delocalized over the NC which reduces the expectation
value of 1/max(re,rh) compared to the type-II regime where
the hole is core localized (with smaller mean radial coordinate).
Ec,d is enhanced in the lower right quasi-type-II regime of
CdSe/CdTe because the hole is delocalized over the NC,
which tends to increase the expectation value of 1/max(re,rh)
compared to the type-II regime where it is shell localized (on
average further from the center of the NC). Ec,d follows a size
dependence of approximately 1/(a + as).

2. Carrier self-energies

We focus on the hole self-energy Es,h since this shows
the more interesting behavior of the two carriers; Fig. 7

shows the size dependence of Es,h for the considered hole
levels. From Eq. (14), the hole self-energy is given by
Es,h = 〈�h|Vs(rh)|�h〉 and so reflects changes in the overlap
of hole probability density with the self-polarization potential
Vs . The overall (a,as) dependence of Es,h for each level arises
from the interplay of contributions from the core, shell, and
matrix regions, which change as the hole localizes in different
regions of the NC. We label these contributions Es,h,1, Es,h,2,
and Es,h,3, respectively. We find that Es,h,3 < 0 for most NCs
due to the attractive potential well just outside the NC surface
[Fig. 2(c)], and that it is small in magnitude compared to Es,h,1

and Es,h,2.
For the lowest h/e NC hole level, Es,h is slightly enhanced

to the right of the localization boundary (hole core-localized
regime) compared to the left of it (delocalized regime). This
is due to the fact that the increase in Es,h,1 on crossing the
boundary is nearly offset by the decrease in Es,h,2 as the
amount of probability density increases in the core and falls in
the shell. Changes of the self-energy with hole localization in
the e/h NC are more dramatic and can be understood in terms
of the contributions Es,h,1 and Es,h,2. For the lowest e/h hole
level, Es,h is dramatically enhanced with increasing as as the
localization boundary is crossed because Es,h,2 increases as
the hole localizes in the shell—this increase is considerably
larger than the corresponding decrease in Es,h,1 due to the large
peak in Vs which occurs at the NC surface [Fig. 2(c)] arising
from dielectric mismatch with the surrounding matrix. The
change in Es,h as as increases is greater in the (2,6)-band
theory than in the single-band theory due to faster hole
localization in the shell as its width increases, as shown by
the more rapid decrease of pc with as in Fig. 6(a). This is
due to the lower hole quantization energies in the (2,6)-band
model.

In general we see more dramatic changes in Es,h for the
e/h NC because they mainly arise from changes in overlap
with the large peak in Vs that occurs at the NC surface, while
in the h/e NC they arise from changes in the overlap with Vs

in the core region where it is approximately constant [see
Fig. 2(c)]. We find a complicated size dependence of the
self-energy for the higher levels, which can be understood
by considering Fig. 6 and the relative contributions of Es,h,1

and Es,h,2. For example, for the e/h single-band 2S level Es,h

is suppressed below the hole localization boundary relative
to above it, exhibiting a minimum shown by the bending
of the constant-energy contours [Fig. 7(b)]. We see for the
corresponding (2,6)-band level that, although the self-energy
is suppressed for shell widths less than ≈1.2 nm, there is a local
maximum below the hole localization boundary. Comparing
Figs. 6 and 7, we can see that areas of (a,as) space where
pc is high are associated with areas in with suppressed hole
self-energy in the CdSe/CdTe NC because these NC designs
are localizing the hole away from the large peak in Vs at the NC
surface. We also find that local maxima in Es,h as a function of
as correspond to local minima in the probability pc that occur
between the high probability lobes in Fig. 6. This is seen for
the 2S3/2 and 3S3/2 levels of CdSe/CdTe NCs with thin shells
(as ≈ 0.5 nm).

We find that the size dependence of the hole self-energy
for the 2S and 3S3/2 levels is quite similar in the two models,
due to their similar energies and hole localization. The latter
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FIG. 7. (Color online) Hole self-energy Es,h for CdTe/CdSe and CdSe/CdTe NCs calculated in the single-band model (first and third
columns) and the (2,6)-band model (second and fourth columns) for the nS and nS3/2 levels; rows (a), (b), and (c) correspond to n = 1, 2,

and 3. Red lines represent hole localization boundaries and constant-energy contours (black lines) are spaced at 25 meV intervals with labels
in eV.

is reflected in the similarity of the plots of the probability pc

for the 2S and 3S3/2 levels (Fig. 6).

3. Absorption wavelengths

Figure 8 shows the predicted absorption wavelengths for the
1s1/2nS3/2 and 1snS (n = 1,2,3) excitons in the CdTe/CdSe
and CdSe/CdTe NCs calculated with εout = 2 and δ1 = δ2 =
0.1 nm. We show wavelengths as constant-energy contours
to facilitate comparison with experimental data. Electron and
hole localization boundaries are shown as dashed black and
red lines, respectively. As expected, the shortest wavelengths
occur in the type-I regimes (which correspond to the smallest
NCs) and the longest in the type-II regimes (the largest NCs).
We see that the type-II band alignments of both NCs allow
for absorption wavelengths that span most of the visible
spectrum, from ∼450 nm in the type-I regime to ∼860 nm
in the type-II regime for the lowest optically active exciton;
this can be compared with the bulk absorption wavelengths
of 709 nm for CdSe and 795 nm for CdTe predicted using
the parameters in Table I. Overall, we see that the single-band
model predicts similar wavelengths to the more sophisticated
theory for the ground state exciton of both structures but
significantly different wavelengths for higher excitons. Most
of the discrepancy for the latter comes from the difference

between the predicted hole quantization energies, due to
the divergence of the single-band hole dispersion from the
J = 3/2 valence bands. We see that wavelengths predicted
for the 2S and 3S3/2 levels are similar, showing that the
single-band model in effect “misses” a level predicted by
the (2,6)-band theory when using the parameters listed in
Table I.

We find that inclusion of the Coulomb interaction is
necessary for quantitative agreement with experimental data,
particularly for the CdSe/CdTe NC where the change in hole
self-energy with localization regime significantly affects the
absorption wavelengths. The suppression of Es,h when the
hole is delocalized over the NC leads to considerable redshift
of the absorption wavelengths in the lower right quasi-type-II
regimes reflected by the distortion of the constant wavelength
contours in those regions (see Fig. 8). This effect is seen in
both models, but is more marked in the (2,6)-band theory
due to stronger hole localization in the shell region as its
width increases. Such changes in absorption should be easily
measurable by experiment and could provide a useful test
of the model used for the Coulomb interaction in these
structures.

In Fig. 9 we compare our model results for CdTe/CdSe NCs
with the absorption spectra measured by Oron et al.37 for NCs
with a 1.95 nm radius core and different shell thicknesses.
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FIG. 8. (Color online) Exciton absorption wavelengths for CdTe/CdSe and CdSe/CdTe NCs calculated in the single-band and (2,6)-band
models. The single-band wavelengths of the 1snS excitons are shown in the first and third columns, the (2,6)-band wavelengths of the
1s1/2nS3/2 excitons in the second and fourth columns; rows (a), (b), and (c) correspond to n = 1, 2, and 3. Constant-wavelength contours are
separated by 20 nm intervals and labels are in units of nanometers. Electron and hole localization boundaries are shown as dashed black and
red lines, respectively.

FIG. 9. (Color online) (a) Absorption spectra37 of CdTe/CdSe core-shell NCs having a = 1.95 nm cores and shells of thickness 0.2, 0.5,
0.9, 1.5, 2.15, and 2.5 nm. Spectra are vertically offset for clarity. (b) Calculated absorption wavelengths in the single-band theory. Absorption
features extracted from the spectra in (a) are shown as black squares. (c) Absorption wavelengths calculated in the (2,6)-band theory. Legends
to the right of (b) and (c) indicate the exciton transition corresponding to each wavelength line.
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FIG. 10. (Color online) Absorption wavelengths of the exciton
transitions identified using the (2,6)-band theory. Lines are color
coded to show the associated excitation probability, and the five
exciton states we assign to features in the absorption spectra are
labeled on the right. Absorption features identified in the data of
Oron et al.37 are shown as black squares.

For the single-band theory [Fig. 9(b)] we show all allowed
transitions involving electron states up to l = 2, and for the
(2,6)-band theory [Fig. 9(c)] we show all dipole-allowed
transitions involving electron states up to 1p3/2. We note
that only the l = 0 component of Vc [Eq. (12)] is needed to
calculate Ec if the electron is in a spherically symmetric state.
Higher angular momentum electron states invoke higher terms
in l of Vc (see Ref. 31 for full definition). Due to the forms of
the wave functions this leads to larger corrections in Ec in the
single-band theory than the (2,6)-band theory and shifts of up
to ∼15 nm in the calculated wavelengths of the single-band
theory compared to < 5 nm for the (2,6)-band theory.

Absorption peak positions were extracted from data pro-
vided by Oron et al. using the Savisky-Golay smoothed
second derivative of the data and are shown as black squares
[Figs. 9(b) and 9(c)]. We see that both models predict the
size dependence of the ground state exciton energy quite well.
However, the single-band theory completely fails to predict the
correct positions of the second and third absorption features
due to the artificially high hole quantization energies produced
by the parabolic valence band dispersion. Single-band theory
also underestimates the number of transitions compared to the
(2,6)-band theory since only transitions which have 
l = 0 are
allowed due to the orthogonality of the spherical harmonics
(see Sec. II A 1). In contrast, s-d mixing in the (2,6)-band
theory means that each hole wave function �h

j,m is essentially
a superposition of envelope functions with orbital angular
momenta j − 1

2 and j + 3
2 [see Eq. (5)] giving rise to more

allowed transitions.
The (2,6)-band theory predicts the energies of second and

third absorption features reasonably well, although it tends to
diverge from the data for thin shells (as ≈ 0.2 nm). This may be
due to failure of the effective mass theory as the shell thickness
approaches 1 monolayer. The energy of the third transition is
accurately predicted by the theory for as > 0.5 nm. Although

the difference between experiment and theory is greater for
the second transition, we see that the data show a decreasing
energy gap with increasing shell thickness. This suggests
that the crossing of the second and third exciton levels does
occur, but at a larger shell thickness than predicted by the
theory.

Despite differences with the data, the (2,6)-band theory
allows us to unambiguously identify the second, third, and
fourth absorption features as due to the 1s1/22S3/2, 1p3/21P3/2,
and 1p3/21P5/2 excitons. It also allows us to tentatively
identify the broad, strengthening absorption feature seen
around 575 nm for the last two NCs in the size series [Fig. 9(a)]
as due to the 1d3/22D5/2 exciton. We make this assignment on
the basis of its energy and increasing excitation probability Pt

with shell thickness compared to nearby transitions: Fig. 10
shows the absorption wavelengths of the five exciton states we
identify using the (2,6)-band theory, with lines color coded to
show the excitation probability. We see that the ground state
exciton has the highest excitation probability (as expected),
but higher transitions can have comparable values if the
radial character of the electron and hole wave functions is
similar.

IV. CONCLUSIONS

Spherical type-II NCs were modeled using a single-band
and a (2,6)-band EMA, including the effects of a finite
confining potential. We calculated single-particle states as
a function of core radius and shell thickness and identified
localization regimes. We found close agreement between the
two EMA models for the carrier ground states, but divergence
of the hole energies for n > 1 due to the difference between
the parabolic hole dispersion and the lh and hh valence
bands in CdSe. We found that for CdSe/CdTe NCs the
single-band model effectively misses the hole level which
should energetically correspond to 2S3/2 in the (2,6)-band
theory. We showed that hole wave function orthogonality
affects the (a,as) dependence of the hole localization of
successive levels, which in turn affects the size dependence
of the excitation probabilities. We also found that excitation
probabilities are potentially smaller in the (2,6)-band model
due to the mixed s-d symmetry of the hole wave functions and
the fact that only the J = 3/2 valence bands contribute to the
oscillator strength. In contrast, hole states in the single-band
model are pure S states which can in theory have perfect
overlap with the electron wave function. The absence of s-d
mixing in the single-band theory also means it significantly
underestimates the number of allowed transitions. We included
the Coulomb interaction as a first-order perturbation, including
interparticle and polarization charge effects. We calculated
absorption wavelengths as a function of core radius and
shell thickness for three exciton states in each theory. We
found that both models predict a suppression of the hole
self-energy in the quasi-type-II regime of the CdSe/CdTe
ground state exciton which should have a measurable effect
on transition wavelengths. We compared calculated absorption
wavelengths with experimental data for CdTe/CdSe NCs and
found that for δ1 = δ2 = 0.1 nm, ε3 = 2, and Ev1 = 0.4 eV
both models predict the size dependence of the exciton ground
state quite accurately, but the single-band theory completely
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fails to predict the energies of the second and third absorption
features correctly. The (2,6)-band theory allowed us to identify
the second, third, and fourth exciton states as 1s1/22S3/2,
1p3/21P3/2, and 1p3/21P5/2. We tentatively assigned the broad
absorption feature around 575 nm to the 1d3/22D5/2 exciton
for the last two NCs in the size series measured by Oron et al.37
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