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Coherent two-exciton dynamics measured using two-quantum rephasing two-dimensional
electronic spectroscopy
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We use fifth-order two-dimensional electronic spectroscopy to measure coherent four-particle dynamics in a
semiconductor nanostructure. By using optical polarization control in two-quantum measurements enabled by
the COLBERT spectrometer, we separate coherent signals due to bound biexcitons and unbound two-exciton
correlations. The rephasing nature of the measurement allows us to separate homogeneous from inhomogeneous
contributions to the two-quantum line shapes. We find that, unlike the bound biexciton state, the energy of
the unbound pair and its homogeneous linewidth depend on the laser fluence. Simulations using an extended
phenomenological model help determine the primary interaction mechanism that leads to the formation of the
unbound exciton pair; the model also indicates that seventh-order interactions contribute to the measured spectra
under high pulse fluences.
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I. INTRODUCTION

Excitons are bound electron-hole pairs with wave func-
tions somewhat similar to those of hydrogen atoms;1–3 their
resonances are the primary features in the optical spectra of
semiconductor nanostructures at temperatures below the exci-
ton binding energy. Exciton dynamics in direct-gap semicon-
ductors are often studied using ultrafast spectroscopy because
exciton correlations typically decay within a few picoseconds.4

Phase-coherent nonlinear spectroscopic measurements such as
four-wave-mixing are sensitive to the changes that occur when
excitons interact through Coulomb forces5 or local fields.6

Early nonlinear “self-diffraction” measurements revealed a
signal at “negative” delays due to many-body interactions
(MBIs),6–8 but since the exciton coherence frequencies could
not be correlated with the emitted coherence frequencies,
the contributions due to MBIs such as excitation-induced
dephasing (EID),9 excitation-induced energy shift (EIS),10 and
local-field effects (LFEs)6 could not be distinguished. EID
and EIS result in density-dependent collisional broadening
and renormalization of the exciton energy, respectively. These
experiments also could not distinguish these effects from
bound biexcitons, and they did not contain phase informa-
tion, which is an important distinguishing characteristic. In
a significant advance, exciton correlations were observed
using two-dimensional Fourier-transform optical spectroscopy
(2D FTOPT). The correlations between exciton coherences
induced by the first field interaction with the sample and
exciton coherences that radiated phase-matched signals after
two additional field interactions—meaning between one-
quantum absorption and emission coherences—in the complex
2D spectra collected through optically heterodyned third-
order four-wave-mixing revealed features due to many-body
interactions.11–13

All of these MBIs can cause the motions of two excitons—
four charged particles—to be correlated. This can result in
a correlation between a pair of excitons without a binding
energy (an unbound two-exciton correlation or UTC) or in
the formation of a weakly bound state called a biexciton.
The properties of biexcitons—first observed in GaAs quantum

wells through biexciton-exciton emission14—are of substantial
interest in connection with applications including optical
gain.15 A two-quantum variant of the 2D FTOPT measure-
ment can measure two-exciton correlations directly. Recent
improvements in the phase stabilization of multiple optical
beams16–19 enabled two-quantum 2D FTOPT measurements
of both biexciton and UTC coherences in GaAs.17–21 In
this type of 2D FTOPT experiment, two-quantum coherence
frequencies generated by the first two field interactions with
the sample were correlated with the one-quantum coherence
frequencies measured in the emitted signal induced by the third
field interaction. This allowed the measurement of the binding
energies and dephasing dynamics of biexcitons. The four-
beam, square phase-matching geometry (often called the
BOXCARS geometry) enabled selection and optimization of
desired third-order signal contributions based on all of the
optical phases, polarizations, and pulse-timing schemes.

Although UTC coherences appear in two-quantum, third-
order 2D FTOPT measurements with most polarization combi-
nations, their analysis is challenging because their signal con-
tributions cannot be separated easily. One study concluded that
the UTC feature can be modeled using an EIS term,20 but third-
order measurements have not provided detailed information
about the phenomenon. Through experiments and simulations,
here we show that the dominant mechanism giving rise to the
UTC remains EIS for fifth-order measurements, and our results
show that even higher-order correlations (above fifth-order)
result in collisional broadening and energy renormalization of
the UTC.

Here, we gain insights into the inhomogeneity and de-
phasing characteristics of two-quantum coherences by mea-
suring 2D spectra of fifth-order rephasing (photon echo)
signals. Similar measurements were performed in the IR to
study a very different phenomenon (molecular vibrational
anharmonicity);22 maintaining the required phase stability is
more difficult in the optical regime. Independent polarization
control of the two fields that create the two-quantum coherence
is needed to select between biexciton and UTC coherences.
We therefore use separate beams for those two fields, and we
use a third beam for three additional field interactions. This
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results in one of many unconventional beam arrangements
needed for fully phase-coherent measurements at high orders.
Therefore we have developed a versatile instrument, called
the coherent optical laser beam recombination technique
(COLBERT) spectrometer, to generate multiple beams in
specified geometries with fully phase-coherent fields.23

The paper is arranged as follows. In Sec. II, we describe
the sample and how multidimensional spectroscopy performed
using the COLBERT spectrometer probes exciton interactions
in quantum wells, and we show spectra measured using three
different polarization configurations that show biexciton and
UTC signals together and separately. In Sec. III, we describe
two theoretical approaches used to understand and predict
the signatures of MBIs in multidimensional spectroscopic
measurements of GaAs quantum wells. Finally, in Sec. IV,
the relative importance of specific many-body interactions in
the UTC dynamics and the sensitivity of the fifth-order mea-
surements to these interactions are discussed by comparing
the measured results to the predictions of the two theoretical
models.

II. EXPERIMENT

We performed the measurements using the COLBERT
spectrometer with the beams in the Y-shaped formation
illustrated in Fig. 1. The optical setup was fully phase stable
because all the beams traversed a common set of optics.23

Although five fields interacted with the sample and many
field parameters could have been varied, in the present
measurements only the time period (τ ) between the conjugate
beams (Ea and Eb) and the final beam (Ec) was scanned.
The final three field interactions—all due to one laser beam,
Ec—converted the two-quantum coherences created by beams
Ea and Eb to radiative one-quantum coherences. 2D scans were
performed by varying τ (maintaining constant optical phases
of all fields at a selected reference frequency) and at each step
interferometrically detecting the signal in a spectrometer after
overlapping it with the reference field. Fourier transformation
with respect to the delay time yielded 2D spectra as functions
of the two-quantum frequency and the emission frequency. The
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FIG. 1. (Color online) Block diagram of the COLBERT spec-
trometer and the multiple fields that it generates and controls for the
present experiments. A Ti:sapphire oscillator (o) creates femtosecond
pulses in a single beam. The beam shaper (BS) transforms this beam
into four beams arranged in a Y-shaped geometry. The pulse shaper
(PS) controls the delays and phases of the pulses, which are then
focused to the sample (QW). Fields Ea and Eb interact with the sample
first, followed after a variable delay (τ ) by field Ec which interacts
three times to generate a phase-matched signal in the 3kc-ka-kb

direction. The resulting signal is overlapped with a weak reference
field Eref and is heterodyne detected by the CCD spectrometer
(spec).
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FIG. 2. (Color online) Spectra and energy levels of the exciton
states of GaAs. (a) Linear absorption spectrum (solid) and optical
pulse spectra (dashed). The pulse spectra primarily excite the H
exciton. We do not observe signals involving the L exciton or the
continuum. (b) The quasi-particle energy level scheme includes the
energies of the ground state (Eg) and H excitons (EH ). The energy of
the biexciton state is redshifted by its binding energy (�B ) from
the two-exciton energy: EB = 2EH − �B . The triexciton energy
is similarly shifted from the three-exciton energy by its binding
energy: ET = 3EH − �T . Full and dashed lines indicate right and
left circularly polarized excitation. No transitions are indicated to the
unbound three-exciton levels because their signatures have not been
observed.24

carrier frequency and global phase were calibrated and phase
cycling was employed using established procedures.19,20,23,24

A Ti:sapphire oscillator with a repetition rate of 92.5 MHz
was adjusted to create nearly transform-limited pulses of
150 fs duration, centered at 1534 meV, with a FWHM of
about 11 meV. The sample consisted of ten layers of 10
nm thick GaAs, separated by 10 nm thick Al0.3Ga0.7As
barriers, and it was cooled to a temperature below 10 K
in a cold-finger cryostat. The heavy-hole (H) and light-hole
(L) exciton resonance energies are 1539 and 1546 meV,
respectively. The pulse spectrum shown in Fig. 2(a) was
set so that only resonances involving H excitons appeared;
resonances involving L excitons, such as mixed biexcitons,
were suppressed. Moreover, the pulses did not significantly
excite the continuum of unbound electron-hole states which
appear at energies greater than the L exciton. We use a
quasi-particle representation in Fig. 2(b) to illustrate the energy
levels and selection rules. Right-circularly (dashed lines) and
left-circularly (full lines) polarized fields excite spin-down
(>) and spin-up (<) H excitons, respectively, with energy
EH . Opposite polarized conjugate fields form a biexciton–
ground-state two-quantum coherence with energy EB , while
conjugate fields with the same circular polarization form a
UTC–ground-state two-quantum coherence with energy 2EH .
The energy difference between these two levels is the biexciton
binding energy, �B = 2EH − EB = 1.0 meV.17 We also
show the triexciton energy, redshifted from the three-exciton
energy by its binding energy, �T = 3EH − ET = 1.8 meV,24

because triexciton–biexciton emission pathways contribute to
the signals.

The first spectra we present were measured using col-
inearly polarized pulses. Both biexciton and UTC coherent
oscillations are measured during time interval τ in this
polarization configuration since signals derived from both
circular polarization components of each beam are present.
The amplitude spectrum, Fig. 3(a), has a node between the
two features, distorting them such that their peaks appear
farther apart than their true energy separation. Multiexciton
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FIG. 3. (Color online) Experimental 2D spectra for two polariza-
tion configurations. Dashed lines are two-quantum diagonals, E2Q =
2Eemit. Amplitude (a) and real (b) spectra for colinear polarized
fields show both two-quantum coherences. Cross-linear polarized
fields suppress UTC coherences to isolate biexciton coherences in
the amplitude (c) and real (d) spectra.

emission is visible as a redshifted shoulder on the biexciton
peak. The shoulder is due to the energy differences between
the radiative exciton–ground-state coherence (|H 〉〈g|) and the
other radiative coherences: biexciton–exciton (|HH 〉〈H |) and
triexciton–biexciton (|HHH 〉〈HH |). Because the pathways
overlap, we cannot separate the different emission energies.
The real part of the spectrum, Fig. 3(b), shows that the
biexciton coherence and the UTC coherence are out of phase
and interfere destructively. This results in an entwined line
shape and makes analysis difficult.

In the cross-linear polarization measurement, all of the
fields have horizontal polarization except field Ea , which has
vertical polarization; we measure identical spectra if only
field Eb is vertically polarized or if only field Ec is vertically
polarized. The main feature due to biexciton coherences in the
amplitude spectrum, Fig. 3(c), is shifted below the diagonal by
an amount equal to the biexciton–ground-state binding energy
(�B), which we measure to be 1.2 ± 0.2 meV. The redshifted
shoulder due to multiexciton emission is again present. The
two-quantum linewidth appears to have increased relative to
that in the colinear polarized spectrum. Unlike in third-order
rephasing spectra of single excitons where the nodes are
parallel to the diagonal,12,13,19 the nodes in Fig. 3(d) are tilted.

Figures 4(a) and 4(b) are spectra of only UTC measured
using cocircular polarization at low (1 μJ/cm2) and high
(25 μJ/cm2) laser fluence, respectively. In both spectra, the
lineshapes are dispersive and the nodes are again not parallel
to the diagonal. The diagonally elongated peak shows less
homogeneous broadening (antidiagonal width) at low powers
than at high powers. The peak also blueshifts by about
1 meV along the two-quantum diagonal at higher powers.
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FIG. 4. (Color online) Real spectra for cocircular polarized fields
at low (a) and high (b) powers. The arrows indicate the antidiagonal,
and the dashed lines indicate the two-quantum diagonals. (c) Result
of ten measurements with varying powers. The peak becomes more
homogeneously broadened (black squares) and blueshifts (red circles)
as the fluence increases. A fluence of 4 μJ/cm2 corresponds to
the carrier density where absorption saturation begins to occur,
∼1011 exciton/cm2/well.

To investigate these changes further, we measured cocircular
spectra at ten different fluences. Figure 4(c) shows how the
linewidth ratio (antidiagonal/diagonal) and the position of the
emission energy maximum change. As the fluence increases,
the diagonal linewidth increases 14% from 3.6 to 4.1 meV
and the antidiagonal linewidth increases 140% from 1.0 to
2.4 meV. The diagonal linewidth is strongly determined by
static disorder (inhomogeneity) due to well-width fluctua-
tions and defects;25 these parameters do not change with
pulse fluence. On the other hand, the antidiagonal linewidth
provides a measure of the homogeneous dephasing rate. At
higher fluences, more excitons are excited, more scattering
occurs, and therefore the coherent signal dephases more
quickly.

III. THEORY

Nonlinear optical signals involving the interactions between
a series of femtosecond laser pulses and a sample can be
described in terms of the time evolution of the system density
matrix. At least three distinct constructs are often employed
to model the system and the electric field interactions. In a
first approximation, a set of double-sided Feynman diagrams
can account for the possible light-matter interactions and time
orderings of the electric fields with the system eigenstates.26,27

This method has been called the sum-over-states approach,
and, because it cannot include any exciton interaction mecha-
nisms, it is a valuable reference for the result expected in the
absence of MBIs.

Other methods can include exciton interaction mechanisms.
The signatures in 2D FTOPT spectra of MBIs among excitons
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FIG. 5. (Color online) Double-sided Feynman diagrams relevant to the cross-linear polarization case in the sum-over-states model. Diagrams
(i), (ii), and (iii) illustrate exciton-ground-state, biexciton-exciton, and triexciton-biexciton emission pathways, respectively. Simulation for
cross-linear polarization spectrum using the sum-over-states model.

in semiconductor quantum wells have been simulated using
phenomenological11,17 and microscopic first-principles12,28,29

calculations. The former treat the quantum well as a simple
few-level system (meaning that it begins with the same isolated
states used in the sum-over-states approach) and then includes
phenomenological terms to represent the MBIs, including any
required binding energies, while the latter considers only the
band structure of the semiconductor quantum well and the
Coulomb coupling to generate the excitons, the multiexcitons,
and the MBIs. The differences and similarities between the
two approaches have been detailed elsewhere.30 While the
microscopic calculation provides details about MBIs—such
as the two-exciton memory function31 and exciton binding
energies29—that the phenomenological model cannot, the
phenomenological model allows researchers to identify the
signatures of specific MBIs (EIS, EID, LFEs, and bound
multiexciton states) in 2D FTOPT using more tractable
computations with ready physical interpretations.

As in third-order 2D FTOPT,12 MBIs can dramatically
modify the lineshapes, frequencies, and phases of peaks in
fifth-order 2D FTOPT. Microscopic calculations of fifth-order
one-quantum signals have been reported,32,33 but the manifes-
tations of MBIs in 2D FTOPT have not been discussed. Here,
we identify the signatures of MBIs in fifth-order 2D FTOPT
using a phenomenological model based on the two-level Bloch
equations, which we have extended to four levels to include
the bound biexciton and bound triexciton states. The purpose
of these calculations is not to simulate the signal rigorously
using first-principle equations,21,34,35 but to identify which
many-body interactions contribute to the experimental spectra.
After briefly describing the sum-over-states approach and
its results, we detail the derivation of the phenomenological
model and then describe the 2D spectra predicted under a
variety of conditions.

A. Sum-over-states model

The sum-over-states model22,36 treats the excitons and mul-
tiexcitons as isolated states and then accounts for the possible
interactions with the electric field in a perturbative fashion
given by the order of the nonlinear optical susceptibility,
χ (n). In this approach, we include four states: the ground |g〉,
exciton |H 〉, biexciton |HH 〉, and triexciton |HHH 〉 states,
and five coherent interactions with the incident electric fields

to generate the fifth-order signal as given by

E(5)
sig ∝ χ (5)E3

cE
∗
bE

∗
a . (1)

The three relevant double-sided Feynman diagrams are illus-
trated in Fig. 5, where all three diagrams contain two-quantum
coherences (|g〉〈HH |) during the scanned time period (τ ), but
contain different coherences during the emitted time period.
The weighting of each diagram is given by the number of
different time-orderings of the last three field interactions;
diagrams (i) and (ii) have three possible paths, while diagram
(iii) has only one possible path. In this simulation, we assumed
that the dipole moments connecting the various states are
equal.30

This simplified approach reproduces only the features due
to noninteracting particles. The sum-over-states model for
cross-circular polarization results in the spectrum shown in
Fig. 5. Both multiexciton emission pathways [pathways (ii)
and (iii)] are included in this spectrum using the measured
binding energies. This model reproduces the number of nodes,
their locations, and their relative intensities, but it does not re-
produce the slight nodal tilts or the vertical elongation present
in the experiment. The nodes are also blueshifted slightly up
the two-quantum axis from their experimental locations.

Although this approach results in a spectrum that quali-
tatively reproduces the cross-linear polarization experiment,
since the sum-over-states model does not include the unbound
two-exciton correlations or the interactions that produce them,
it does not reproduce the UTC features in the colinear spectrum
and it predicts no peak at all in the cocircular spectrum.

B. Phenomenological model

1. Derivation of coupled equations of motion

In the exciton basis, the density matrix and the Hamiltonian
describe the ground state and each exciton or multiexciton
state. An n-level system has a Hamiltonian with n diagonal
matrix elements containing the energy of each state and its
lifetime. The off-diagonal elements contain the electric field
interactions and the dephasing parameters. For example, the
four-level Hamiltonian given in Eq. (2) is used to represent
the ground (g), H exciton (X), HH biexciton (B), and HHH

triexciton (T) states. Optical transitions are allowed between
states with ±1 number of electron-hole pairs composing the
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states such that

Ĥ (t) = −i

⎡
⎢⎢⎢⎣

0 �l(t) − iγXg 0 0

�∗
l (t) + iγXg εX − i�X �l(t) − iγBX 0

0 �∗
l (t) + iγBX εB − i�B �l(t) − iγT B

0 0 �∗
l (t) + iγT B εT − i�T

⎤
⎥⎥⎥⎦ , (2)

where εα and �α represent the energy and lifetime of state
α, respectively, and γβα represents the dephasing of the off-
diagonal matrix elements, where α and β ∈ {g,X,B,T }, and
�l(t) = μEl(t) where μ is the transition dipole (equal for all
the transitions30) and El(t) is the electric field provided by a
laser pulse as elaborated further below. We have set h̄ = 1. The
density matrix for the case of the four-level system is given
by

ρ =

⎡
⎢⎣

ρgg ρgX ρgB ρgT

ρXg ρXX ρXB ρXT

ρBg ρBX ρBB ρBT

ρTg ρT X ρT B ρT T

⎤
⎥⎦ , (3)

where the time variable has been suppressed. The density
matrix and the Hamiltonian are inserted into the quantum-
Liouville equation, and a set of coupled differential equations
are derived. Generalized diagonal density matrix elements
derived from the quantum-Liouville equation describe the
population dynamics,

d

dt
ρaa = −�aaρaa + i[(ρa,a−1 − ρa+1,a)�l(t)

− (ρa−1,a + ρa,a+1)�∗
l (t)], (4)

and off-diagonal elements describe the coherence terms,

d

dt
ρab = −γab + i[ωabρab + (ρaa − ρbb + ρa,b−1 − ρa+1,b)

×�l(t) + (−ρbb + ρaa − ρa−1,b + ρa,b+1)�∗
l (t)],

(5)

where ωab = εa − εb. The equations can be solved through
numerical integration techniques. Equations (4) and (5) are
the optical Bloch equations.

The wave vector dependence is incorporated using a spatial
Fourier expansion of the matrix elements to determine which
components contribute to signals in a particular direction (the
phase-matched direction).37–40 Since the equations are not
perturbative, in this discussion “order” refers to the spatial
direction, not the susceptibility. In principle, the wave vector
expansion of the density matrix elements can result in a large
number of coupled equations. To keep the bookkeeping simple,
here we use two beams with wave vectors K + k and K − k,
and the interaction with the system is written as

�l(t) = μE−(t)e−i(K−k)·r + μE+(t)e−i(K+k)·r, (6)

where E+(t) and E−(t) are the electric fields in the K + k
and K − k directions, respectively. Multiple interactions with
the fields of these two wave vectors can produce signal in the

fifth-order phase-matched direction given by

3(K − k) − 2(K + k) = K − 5k. (7)

Describing the wave vectors of the two fields in this manner
allows us to count spatial expansion orders easily. (The
experimental geometry used differs only slightly in that the
K + k beam was split into two beams, each with a small
additional wave-vector component perpendicular to the plane
formed by K and k, so that we could insert different polarizers
into the two beams. The signal wave vector was the same as
in Eq. (7) since the perpendicular wave-vector components
cancelled.) The density matrix elements are then expanded in
terms of these wave vectors:

ρaa =
+m∑

A=−m

ρaa,AeiAk·r (8)

and

ρab =
+m∑

A=−m

ρab,Aei(|b−a|K+Ak)·r. (9)

In our approach, we truncate A at ±m using the desired spatial
expansion order. As a consequence, any term with |A| > 5 is
set to zero in the fifth-order expansion.

The standard approach is to assume the system begins in
only the ground state: initially only ρgg,0 is nonzero. Elements
ρXg,±1 then acquire some nonzero value due to the light-matter
coupling with ρgg,0. Subsequently, states coupled with ρXg,±1

acquire nonzero values, and so forth. Because the equations
are based on spatial expansion and not perturbation theory,
elements that have higher-order expansion coefficients may
couple to elements with lower-order expansion coefficients.
For example, a first-order polarization ρXg,+1 is coupled to
zero-order populations through fields with −k wave vector
component. A portion of the set of equations for the four-level
system example is shown in Fig. 6. This hierarchy represents
signals in positive-k directions where lower-order terms are
sources for higher-order terms. The set of differential equations
for signal in negative-k directions is represented by the same
hierarchy except solid (dashed) lines represent multiplication
by μE−(t) [μE+(t)] and all elements have negative-k indices
(for example, ρgX,−1 instead of ρgX,1). Not shown in Fig. 6 are
the transitions for which higher-order terms are sources for
lower-order terms. Representative equations for the fifth-order
example include

d

dt
ρXg,5 = [−γXg + iωXg]ρXg,5 + iμ[−E−(t)ρBg,4

−E∗
+(t)ρgg,4 + E∗

+(t)ρXX,4], (10)
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FIG. 6. (Color online) Hierarchy of differential equations for a
portion of the fifth-order signal. Lower-order terms act as source terms
for higher-order terms. Solid (dashed) lines represent multiplication
of lower-order terms with μE+(t) [μE−(t)] before addition to (black
lines) or subtraction from (red lines) differential equation of higher-
order terms. Some transitions—higher-order terms leading to lower-
order terms—are not shown. For example, ρXg,1 can lead to terms
ρXX,2 (shown) and ρXX,0 (not shown).

d

dt
ρBX,5 = [−γBX + iωBX]ρBX,5 + iμ[E∗

−(t)ρBg,4

−E−(t)ρT X,4 − E∗
+(t)ρXX,4 + E∗

+(t)ρBB,4],

(11)

d

dt
ρXg,3 = [−γXg+iωXg]ρXg,3+iμ[E+(t)ρBg,4−E−(t)ρBg,2

+E∗
−(t)(ρXX,4 − ρgg,4) + E∗

+(t)(ρXX,2 − ρgg,2)],

(12)
d

dt
ρgX,1

= [−γgX+iωgX]ρgX,1+iμ[−E+(t)ρBg,2 − E−(t)ρBg,0

+E∗
−(t)(ρXX,2 − ρgg,2) + E∗

+(t)(ρXX,0−ρgg,0)], (13)

and
d

dt
ρT B,5 = [−γT B + iωT B]ρT B,5 + iμ[E∗

−(t)ρT X,4

−E∗
+(t)ρBB,4]. (14)

The terms ρBg,0 and ρXX,0 in Eq. (13) are examples of terms
that are not illustrated in Fig. 6.

Many-body interactions such as LFEs, EID, and EIS can be
incorporated by inserting phenomenological terms. Although
we do not use the phrase, the signals these terms produce
have been called interaction-induced effects.41,42 Local fields
act as density-dependent source terms that modify the field
interaction, and they are included by introducing a new electric
field �(t) that includes the original electric field �l(t) and the
LFEs, as given by

�(t) = �l(t) + �LFE(t), (15)

where

�LFE(t) = μNl[μρXg,−1(t)e−i(K−k)·r

+μρXg,+1(t)e−i(K+k)·r], (16)

and l measures the strength of the effect. We neglect terms such
as ρBX,±1, which, although they have the appropriate spatial
order to be included in the total LFEs source, are orders of
magnitude weaker because the multiexciton density is always
far lower than the exciton density N .

The other MBIs, EIS, and EID, result from Coulomb cou-
pling to populations of excited states. The phenomenological
constants ω′ and γ ′ are the EIS and EID terms, respectively. To
the right side of Eq. (5), EID and EIS are added using d

dt
pEI

ab,
where

d

dt
pEI

ab = (γ ′ + iω′)N
∑

c∈{X,B,T }
ncpab. (17)

Although the EID and EIS parameters likely depend on the
choice of c (whether coupling involves excitons, biexcitons,
or triexcitons), we show below that the signals measured in our
experiments can be modeled without this complication; we use
a single value for γ ′ or ω′ which does not depend on the nature
of the state involved. The spatial Fourier expansions of the
density matrix elements, Eqs. (8) and (9), must be inserted
into Eq. (17). Populations (nc,q′ ) with wave vector q′ couple
with polarizations (pab,q−q′ ) with wave vector q − q′ and act
as source terms for polarizations (pab,q) with wave vector q
such that

d

dt
pEI

ab,q = (γ ′ + iω′)N
∑

c∈{X,B,T }
nc,rpab,q−q′ . (18)

In a fifth-order experiment, nT,q′ is zero for all orders of k so
the summation is effectively over c, where c ∈ {X,B}. Proper
selection of nc,q′ and pab,q−q′ is a tedious but straightforward
algebraic exercise.

Including all three effects results in equations of motion
with the following forms. Coherence terms have the form

d

dt

∑
A

ρab,A =
[
−

(
γab + γ ′

abN
∑
A,c

ρcc,A

)

+ i

(
ωab + ω′

abN
∑
A,c

ρcc,A

)] ∑
A,c,d

ρcd,A

+ i

( ∑
A

ρaa,A +
∑
A

ρab,A

)
�(t), (19)

where c,d ∈ {X,B,T }, and population terms have the form

d

dt

∑
A

ρaa,A = −
∑
A

�aaρaa,A + i
∑
A

ρab,A�(t), (20)

where we can collect terms having the same spatial expansion
order (given by the value of A) and equate them. Two elements
from our fifth-order example are the complete equations for
ρXg,5 and ρgX,1,

d

dt
ρXg,5

= [−γXg + iωXg]ρXg,5 + iμ[−E−(t)ρBg,4 − E∗
+(t)ρgg,4

+E∗
+(t)ρXX,4] + (γ ′ + iω′)N [ρXg,1(ρXX,4 + ρBB,4

+ ρT T,4) + ρXg,3(ρXX,2 + ρBB,2 + ρT T,2)

+ ρXg,5(ρXX,0 + ρBB,0 + ρT T,0)], (21)
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and

d

dt
ρgX,1

= [−γgX + iωgX]ρgX,1 + iμ[−E+(t)ρBg,2 − E−(t)ρBg,0

+E∗
−(t)(ρXX,2 − ρgg,2) + E∗

+(t)(ρXX,0 − ρgg,0)]

+ (γ ′ + iω′)N [ρgX,−3(ρXX,4 + ρBB,4 + ρT T,4)

+ ρgX,−1(ρXX,2 + ρBB,2 + ρT T,2)

+ ρgX,1(ρXX,0 + ρBB,0 + ρT T,0)

+ ρgX,3(ρXX,−2 + ρBB,−2 + ρT T,−2)

+ ρgX,5(ρXX,−4 + ρBB,−4 + ρT T,−4)]. (22)

In Eq. (22), for ρgX,1, there are no terms in the ρgX,−5 direction
because—even though the resulting signal is fifth-order—
such terms would require sixth-order populations, ρXX,6 for
example, which are excluded from our spatial expansion.
Similarly, there are no terms due to ρXg,−1 in Eq. (21).

The simplified equations, Eqs. (19) and (20), show that the
EID and EIS terms provide density-dependent modifications
to the real and imaginary parts, respectively, of coherences.
This result is the same for the third-order modified optical
Bloch equations.10 Extended to fifth order, the modified optical
Bloch equations contain more states and terms that couple the
differential equations, but the physical intuition underlying the
equations remains largely the same.

Finally, in this model, inhomogenous broadening can be
incorporated by summing over different configurations of the
Hamiltonian; in other words, small spreads in energies for
εX, εB , and εT could be used. We investigated the effect
of including inhomogeneous broadening and concluded that
the effect was of minor importance, as suggested by the
experiments. Therefore no inhomogeneity was included in the
simulated spectra presented here.

2. Computation details

Each spectrum was calculated by solving the set of
coupled differential equations using an adaptive Runge-Kutta
algorithm in approximately 15 minutes on a computer that had
a 2-GHz processor and 2-Gb RAM. The two-quantum time
dimension was calculated in 500 steps over 10 ps, while the
emission time dimension was calculated in about 1000 steps
over 50 ps. The adaptive algorithm uses small (large) time
steps when the oscillation amplitude is large (small), so the
emission dimension was interpolated to a linearly spaced time
axis after the signal was computed. The resulting time-time
matrix was fast Fourier transformed to yield the 2D spectrum.
Each spectrum was normalized and its amplitude and real parts
were plotted using sixteen contours. Red colors are positive
contours, while blue colors are negative contours.

We used a value of 15 D for the transition dipole moments
between states.30 The LFE parameter value (unitless) and
the EID and EIS parameter values γ ′ and ω′ (THz/m3)
were determined through comparison of the calculated and
measured spectra. We used pulse fluences appropriate for the
experiments.

3. Calculated spectra

Two-dimensional spectra were calculated by first summing
the fifth-order polarizations that contribute to signal in the

3(K − k) − 2(K + k) = K − 5k direction,

ptotal(t2Q,temait) = pXg,−5 + pBX,−5 + pT B,−5, (23)

and then converting the resulting spectra to energy units (meV)
after taking the 2D Fourier transform,

S(E2Q,Eemit) = F [ptotal(t2Q,temit)]. (24)

In this signal direction, a two-quantum rephasing scan occurs
when the E− interaction—the positive wave-vector field con-
tributing 3kc—occurs last; E− is held at time zero, while E+—
the field from time-coincident pulses contributing −ka − kb is
scanned backward from time zero to earlier times. Polarization
selection rules were enforced in the calculations by setting
density matrix terms involving biexciton and triexciton states
to zero for cocircular calculations (light-hole excitons, mixed
biexciton and triexciton states involving light-hole excitons,
and continuum contributions were not considered).

As discussed earlier, under the cross-linear polarization
condition, EID and EIS are suppressed because exciton
population gratings are not produced. On the other hand,
LFEs are not suppressed and are therefore expected to cause
phase shifts and lineshape changes in the heavy-hole biexciton
peak. We first calculated a spectrum in which no MBIs were
included; neither the amplitude of the spectrum in Fig. 7(a)
nor its real part in Fig. 7(b) reproduce the experiment. The
spectrum calculated after including a small LFE contribution
(l = 0.05), Fig. 7(c), largely reproduces the experimentally
observed spectrum shown in Fig. 3(d).

For cocircular scans, all three MBIs could, in principle,
contribute to the observed signal. To determine which MBIs
lead to the formation of the two-quantum signals, we first
calculated spectra using each term individually. The results
are shown in Fig. 8. When no MBIs are included, no signal is
observed (not shown). In the real part of the 2D spectrum, EID
[see Fig. 8(a)] produces a mostly absorptive line shape while
LFE [see Fig. 8(b)] and EIS [see Fig. 8(c)] produce dispersive
line shapes, although with different phase shifts from those
observed experimentally.

Compared to the experimental spectrum in Fig. 4, the
calculated spectra in Fig. 8 show that EIS is the dominant
MBI leading to the UTC two-quantum signal. However, the
match can be improved by including a small EID contribution
as shown in Fig. 9, where the spectra were calculated
using γ ′ = 5 × 10−25 THz/m3, ω′ = 5 × 10−24 THz/m3. The
spectra displayed in Figs. 9(a) and 9(b) were simulated at
low and high fluences corresponding to carrier densities of
3 × 1010 excitons/cm2/well (or, N γ ′ = 0.02 THz and N ω′ =
0.2 THz) and 7 × 1011 excitons/cm2/well, respectively. The
differences between these two spectra and their experimental
counterparts in Figs. 4(a) and 4(b) are minimal.

IV. DISCUSSION

The tilts, elongations, and energy shifts in the measured
spectra all indicate the presence of many-body interactions
beyond the pair interactions necessary for the two-quantum
peaks to appear at all. We use two theoretical models to help
understand these subtle spectral features.

Although calculations using the sum-over-states method for
cross-linear polarization result in a spectrum that qualitatively
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FIG. 7. (Color online) Cross-linear two-quantum rephasing spectra simulated using the phenomenological model. All four levels are
included, but γ ′ = ω′ = l = 0 for (a) and (b), and the carrier density matched that of the experiment. Neither the amplitude spectrum,
(a) nor the real part of the spectrum, (b) match the experimentally observed spectrum. (c) Inclusion of LFE (l = 0.05) better reproduces the
experimental spectrum.
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FIG. 8. (Color online) Calculated cocircular two-quantum
rephasing real spectra using single MBI contributions. Only the
ground and one single-exciton states are included, and the exciton
density matches that of the lowest-fluence spectrum. Calculations
were performed with (a) only EID: γ ′ = 0.5 × 10−24 THz/m3,
ω′ = 0, and l = 0; (b) only LFEs: γ ′ = 0, ω′ = 0, and l = 5; and
(c) only EIS: γ ′ = 0, ω′ = 5 × 10−24 THz/m3, and l = 0.

experiment. The multiexciton emission feature is blueshifted
from its experimental location; the nodes are not tilted; and
there is no vertical elongation. Moreover, the sum-over-states
model could not reproduce the UTC features in the colinear
and cocircular spectra.

The phenomenological model provided a better match
to the cross-linear experiment and could generate convinc-
ing cocircular polarization spectra as well. The cross-linear
spectrum, Fig. 7(c), does not include EID or EIS because
they are suppressed in this polarization scheme.13,20 However,
LFEs can still contribute to the signal, and their inclusion
stretches the spectrum vertically and tilts the nodes, yielding
a better match to the experimental spectrum shown in Fig. 3.
For the cocircular spectra in Figs. 9(a) and 9(b), all three
MBIs may contribute to the two-quantum coherence and its
rephasing. Comparing to the experimental 2D spectra, the
cocircular features are reproduced mostly by EIS but cannot
be reproduced without a small EID contribution to cause the
vertical stretching in the node of the real spectrum. Although
the phenomenological approach does not capture the many-
body interactions in the most sophisticated manner, it provides
important guidance to the origins of characteristic lineshapes
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FIG. 9. (Color online) Calculated cocircular two-quantum
rephasing real spectra using multiple MBI contributions; MBI values
given in the text. EIS is largely responsible for the feature in (a)
and (b) at the fluences of 1 μJ/cm2 and 11 μJ/cm2, respectively.
Including small amounts of EID reproduced the experimental spectra
better than including only the EIS interaction.
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in 2D spectra. Specifically, the calculated and observed line
shapes indicate that nonbinding Coulomb interactions that give
rise to two-exciton coherences result largely in phase shifts of
the coherences, evident in the dispersive nature of the peak.
The line shapes also indicate the relative magnitudes of the
EIS and EID effects.

Using the same phenomenological parameters, the peak
blueshifts and broadens at higher fluences because—as in the
experiment—the signal is not limited to fifth-order (in the
susceptibility) contributions; extra interactions from a single
beam (for example, +ki − ki) can contribute at high fluences.
The blue shift and the broadening of the UTC are reproduced
for high excitation powers in the phenomenological model.
Using the same parameters for γ ′ and ω′, 2D spectra calculated
at low and high excitation fluences produced the power depen-
dence of the excitation-induced energy shift and broadening, as
shown in Fig. 4. Both the experimental and theoretical results
indicate that higher-order susceptibility (beyond fifth-order
susceptibility) contributions are present in the signal at high
fluences. Because the phenomenological model is based on
the spatial expansion and not the perturbative sum-over-states
theory, the calculations are able to replicate qualitatively
the power dependence of the excitation-induced shifts and
broadening. However, since the phenomenological model does
not contain an absorption saturation mechanism arising from
the many-body interactions, the fluence-dependent results
cannot be reproduced quantitatively. The simulations show
that the fifth-order measurements provide sensitive indicators
of two-exciton interactions, and they add to the insights offered
by third-order spectroscopy.

V. CONCLUSIONS

In this study, we used the COLBERT spectrometer to
measure fifth-order rephasing of two-quantum signals in GaAs

quantum wells. We isolated biexciton coherences and mea-
sured the biexciton binding energy using cross-linear polarized
fields. The binding energy and two-quantum linewidth are
very similar to those measured using third-order signals at
fluences about an order of magnitude lower than those used
here.17,20 In contrast, an analysis of a series of spectra measured
using cocircular polarized fields indicated that the UTC
coherences dephase more rapidly and blueshift with increasing
carrier density. These variations are necessarily the result
of interactions above fifth order in the susceptibility. More
generally, any variation in the signal (other than a change of
amplitude) for a given phase-matching geometry is necessarily
the result of higher-order interactions than the minimum
order that results in signal in the phase-matched direction.
Removing the two-quantum inhomogeneous dephasing—
which was valuable in this work to isolate and study the
homogeneous dephasing characteristics of the UTC—is only
possible in measurements using at least five light-matter
interactions. Simulations showed that LFEs modified the
biexciton coherence and that the UTC coherence was largely
due to EIS. Comparison among the sum-over-states model,
the phenomenological model, and the experimental data
confirmed that many-body interactions play predominant roles
in this sample at the excitation conditions explored, and they
demonstrated that fifth-order 2D FTOPT spectral features are
highly sensitive to many-body interactions in semiconductor
nanostructures.
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