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We consider magnetotransport in high-mobility two-dimensional electron gas σxx � 1 in a nonquantizing
magnetic field. We employ a weakly chiral network model to test numerically the prediction of the scaling
theory that the transition from an Anderson to a quantum Hall insulator takes place when the Drude value of the
nondiagonal conductivity σxy is equal to 1/2 (in the units of e2/h). The weaker the magnetic field, the harder it is
to locate a delocalization transition using quantum simulations. The main idea of this study is that the position of
the transition does not change when a strong local inhomogeneity is introduced. Since the strong inhomogeneity
suppresses interference, transport reduces to classical percolation. We show that the corresponding percolation
problem is bond percolation over two sublattices coupled to each other by random bonds. Simulation of this
percolation allows us to access the domain of very weak magnetic fields. Simulation results confirm the criterion
σxy = 1/2 for values σxx ∼ 10, where they agree with earlier quantum simulation results. However, for larger
σxx , we find that the transition boundary is described by σxy ∼ σ κ

xx with κ ≈ 0.5, i.e., the transition takes place
at higher magnetic fields. The strong inhomogeneity limit of magnetotransport in the presence of a random
magnetic field, pertinent to composite fermions, corresponds to a different percolation problem. In this limit, we
find for the delocalization transition boundary σxy ∼ σ 0.6

xx .
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I. INTRODUCTION

Anderson localization is a single-particle phenomenon.
Nevertheless, the scaling theory of localization,1 which yields
a profound prediction, i.e., full localization of all states in two
dimensions, was formulated in terms of conductivity of elec-
tron gas σ . Similarly, the extension2 of the two-dimensional
(2D) scaling theory to a finite magnetic field is formulated in
terms of components σxx and σxy of the conductivity tensor
of electron gas. Scaling equations describing the evolution of
these components with the sample size L have the form

∂σxx

∂ ln L
= − 1

2π2σxx

− σ 2
xxDe−2πσxx cos(2πσxy), (1)

∂σxy

∂ ln L
= −σ 2

xxDe−2πσxx sin(2πσxy), (2)

where D is a dimensionless constant. Drude values of σxx and
σxy at size L of the order of mean-free path l are given by

σxx

∣∣
L∼l

= σ0

1 + (ωcτ )2
, σxy

∣∣
L∼l

= σ0 (ωcτ )

1 + (ωcτ )2
, (3)

where σ0 = kF l, kF is the Fermi wave vector, ωc is the
cyclotron frequency, and τ is the scattering time. These values
serve as initial conditions to Eqs. (1) and (2). Fixed points
σxy = n + 1/2, at which σxx is finite, determine the energies
of delocalized states

En = h̄ωc

(
n + 1

2

)[
1 + 1

(ωcτ )2

]
. (4)

The most nontrivial consequence of Eq. (4) is that it
predicts levitation of delocalized states in weak magnetic
fields ωcτ � 1 [see Fig. 1(a)]. In such fields, it takes the
form En = (n + 1

2 )h̄/ωcτ
2. In physical terms, this means that a

high-mobility electron gas with zero-field Drude conductivity

σxx = EFτ/h̄ � 1 exhibits a very strong sensitivity to a weak
magnetic field

ωcτ ∼ h̄/EFτ (5)

as the temperature is decreased and quantum interference
effects become important. The phenomenon of levitation was
predicted by Khmelnitskii3 even before Eqs. (1) and (2) were
put forward (see also Ref. 4). Subsequently, it was observed
experimentally by several groups.5–12 This discovery initiated
a number of theoretical studies,13–29 which, however, did not
demonstrate levitation in a truly weak-field limit ωcτ � 1.

A. Physical interpretation of Eq. (1)

The starting point in derivation of scaling equations (1)
and (2) was a σ model with topological term.2 It is desirable
to understand physical processes underlying these equations.
The first term in Eq. (1) comes from Aharonov-Bohm phase
action of the magnetic field. It describes that two paths
corresponding to the same scatterers but different sequences
of scattering events interfere even in the presence of the
Aharonov-Bohm phases. The interpretation of the second term
in Eq. (1) is transparent in the limit of classically strong
magnetic field ωcτ > 1, where cos(2πσxy) assumes the form
cos(2πEF/h̄ωc), which is simply the field-induced modulation
of the density of states. The origin of modulation is the
emergence of Landau levels. On the other hand, Landau levels
reflect the orbital action of the magnetic field, i.e., the fact that,
with a certain probability, an electron can complete a Larmour
circle with radius RL without being scattered away by disorder.
Thus, the interpretation of the right-hand side of Eq. (1) is that
the phase and orbital actions of the magnetic field compete
with each other.
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FIG. 1. (Color online) (a) Energy position of delocalized state E0

versus magnetic field ωc as predicted by Eq. (4). The curve E0(ωc)
separates the phases with quantized Hall conductivities σxy = 0
and σxy = 1. Cartoons illustrate electron trajectories with restricted
geometry in both phases; the red (gray) edge state is present in the
upper cartoon and absent in the lower cartoon. (b) The predicted
modification of the form of the flow diagram (Ref. 3) is illustrated
schematically.

Unlike strong fields, the interpretation of the cosine term
in Eq. (1) in weak fields ωcτ � 1 is much less transparent.
In this limit, we have σxy = σ0ωcτ in the argument of cosine.
The cosine term can be also rewritten as

cos[2π (kF l)(ωcτ )] = cos

(
2πl2

l2
B

)
= cos

(
2πBl2

�0

)
, (6)

where lB is the magnetic length and �0 is the flux quantum.
For comparison, in the strong-field limit, the cosine term can
be cast in the form

cos
(
2πBR2

L
/�0

)
. (7)

Comparing this expression to the last cosine in Eq. (6) suggests
that, in weak fields, the role of the Larmour radius is taken by
the mean-free path l. Note that l does not depend on magnetic
field. Then, the following question arises: What physics causes
the orbital action of the magnetic field to manifest itself in the
scaling equations in the weak-field limit? A possible way to
unveil the orbital action is to adopt a cartoon picture where
an electron moves not in a random potential but rather in a
periodic background, say, on a quadratic lattice, as in seminal
paper Ref. 30. Then, we have to assume that the lattice constant
l is set by disorder. In this cartoon, the orbital action will be
encoded into the structure of the Bloch wave functions of
electrons. It is the structure of the Bloch wave functions that
leads to edge states in the presence of boundaries.30 Note that
the structure of the Bloch wave functions in a magnetic field
depends crucially on the number of flux quanta through the
unit cell, which, upon identifying l with the lattice constant,
is the argument of the cosine in Eq. (6). Then, the factor
exp[−2πkF l] in front of the cosine in Eq. (1) has a meaning of
degree to which a realistic random potential can be viewed as a
periodic. Indeed, this factor can be interpreted as a probability
for a realistic diffusive electron to execute the same loop of
length ∼l more than once.

Obviously, a realistic disordered system does not have
any built-in spatial periodic structure. In view of the lack
of a transparent interpretation of topological term in the

weak-magnetic-field limit, it is important to check numerically
whether or not some discrete value of the magnetic field
of the order of B ∼ �0/l2 causes delocalization transition
and formation of edge state in a random potential. This
was a subject of the papers in Ref. 31. In these papers, a
network model describing a weakly chiral electron motion
was introduced. The position of the quantum delocalization
transition was established from the conventional transfer-
matrix simulation of the transmission of the network. It was
demonstrated that up to kF l ∼ 10, the above estimate for the
transition field applies. However, quantum simulations become
progressively complex in the limit of vanishing field.

B. Delocalization transition with strong spatial inhomogeneity

In this paper, we establish the position of delocalization
transition indirectly. The underlying idea of our approach is
that, when a strong spatial inhomogeneity is introduced into the
quantum network, interference effects become progressively
irrelevant in the sense that amplitudes of each two interfering
paths typically differ strongly. Then, the problem of the
transport through a network reduces to the classical perco-
lation. Most importantly, while the inhomogeneity-induced
suppression of quantum interference leads to a strong reduction
of the localization radius, the position of the transition remains
unchanged. At the same time, classical simulations can be
extended to a much weaker magnetic field. The main outcome
of our simulations is that, for very weak fields (very small ωcτ )
or high electron energies (very large kF l), the transition field
is higher than �0/l2, namely,

B ∼ �0

l2
(kF l)

κ , (8)

where κ is close to 1/2. In terms of the flow diagram of the
quantum Hall effect,3 the result Eq. (8) translates into the
prediction that, for σxx > 10, the vertical flow line in Fig. 1(b)
deviates from σxy = 1/2 to the right.

In this paper, we also study levitation of delocalized states
in a vanishing average magnetic field, but in the presence of a
strongly fluctuating random magnetic field. There is a notion
that electron density variations near the half-filling ν = 1/2 of
the lowest Landau level reduces to a random magnetic field
acting on composite fermions.32,33 It is also possible to realize
an inhomogeneous magnetic field, acting on 2D electrons,
artificially.34–42 Different aspects of electron motion in random
magnetic fields have been studied theoretically in Refs. 43–56.

Fractional quantum Hall transitions can be associated with
quantization of cyclotron orbits of composite fermions. In this
sense, fractional quantum Hall transitions are the counterparts
of delocalization transitions of electrons. Then, the question
arises as to whether a delocalization transition for electrons at
vanishing magnetic fields has its counterpart for composite
fermions at vanishing |ν − 1/2|. At such filling factors,
composite fermion ”feels” very weak average magnetic field.
On the other hand, local fluctuations of electron density
give rise to a very strong random magnetic field, acting
on composite fermion. For this situation, we reduce the
description of magnetotransport to a different percolation
problem. For critical values of filling factors, we obtain
|ν − 1/2| ∼ (kF l)−0.4.
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II. WEAKLY CHIRAL NETWORK MODEL

A. Description

For completeness, we remind the construction of the
network model introduced in Refs. 31 to describe quantum
electron motion in a weak magnetic field. This construction is
illustrated in Fig. 2 and consists of three steps.

(i) We restrict electron motion by introducing forbidden
regions Anm (gray areas in Fig. 2), which are not accessible for
electrons. Then, the electron moves in both directions along
the links, which are the white regions, separating Anm. The
links join each other at the nodes, shown in Fig. 2 with brown
full circles.

(ii) We forbid forward and backward scattering at the nodes.
This allows us to parametrize the node scattering matrix Sq by
a single parameter q as follows:⎛

⎜⎝
Z2

Z4

Z6

Z8

⎞
⎟⎠ =

⎛
⎜⎝

0 −√
1−q 0 −√

q
√

q 0 √
1−q 0

0 −√
q 0 √

1−q
√

1−q 0 −√
q 0

⎞
⎟⎠

⎛
⎜⎝

Z1

Z3

Z5

Z7

⎞
⎟⎠ , (9)

where Zi are the amplitudes of incoming and outgoing waves
(see Fig. 2).

(iii) We incorporate backscattering of an electron moving
along the link. The probability of backscattering is p, so that
the corresponding scattering matrix Sp has the form(

Z1

Z̃2

)
=

( √
1−p

√
p

−√
p

√
1−p

) (
Z̃1

Z2

)
, (10)

where Z̃1 and Z2 are amplitudes of incident waves, whereas
Z1 and Z̃2 are amplitudes of reflected waves (see Fig. 2).

B. Relation to observables: Parameter p

To establish a correspondence with physical parameters,
we identify the lattice constant with the mean-free path
l. Note that, even at p = 0 (without backscattering), the
classical electron would execute a diffusive motion over the
network Fig. 2 due to scattering at nodes. However, a specific
aspect of the diffusive motion with p = 0 is that it does not
allow quantum weak localization corrections. Indeed, weak
localization corrections originate from the trajectories on the
network for which an electron, starting from a certain link,

Z1
~

Z1

Z2
~

Z2

Z2 Z5

Z8 Z7

Z6

Z3 Z4

Z1

n+1,m

A n+1,m−1n,m−1

n,m AA

A

p

q q

FIG. 2. (Color online) Left: Restricted electron motion over point
contacts and bend junctions is illustrated; An,m are the centers of
forbidden regions. Green (gray) line shows a minimal loop that can be
traversed in clockwise and anticlockwise directions. Right: Scattering
matrices at the node and at the link.

returns to the same link with opposite direction of velocity
(coherent backscattering). At p = 0, the electron still can
return to the same link, e.g., by encircling one forbidden region,
but its velocity will be the same as the initial velocity. Finite p

gives rise to weak localization. An example of an elementary
loop providing coherent backscattering is shown in Fig. 2. The
probability of this loop is

P = p(1 − p)4[q(1 − q)]3. (11)

On the other hand, for a realistic electron, the return probability
is (kF l)−1. This allows us to identify the parameter p as

p = 1

kF l
= 1

σ0
. (12)

We emphasize that σ0 = 1/p is the Drude conductivity at
scales of the order of the mean-free path. This should not
be confused with conductance of the sample σxx , which is
the power transmission coefficient through the entire network.
While the latter can not exceed 1, σ0 can be arbitrarily big.

Additional justification for identifying Drude conductivity
with 1/p comes from zero-field scaling theory of localization.1

According to this theory, localization radius ξ depends
on Drude conductivity as ln ξ = πσ0/2 with time-reversal
symmetry, and ln ξ = π2σ 2

0 without time-reversal symmetry.
On the other hand, in Ref. 31, the dependence ln ξ versus p at
q = 1/2 has been studied for our model by means of quantum
simulations. The results presented in Fig. 15 of Ref. 31 are
in agreement with scaling theory predictions if p is identified
with 1/σ0.

C. Relation to observables: Parameter q

We will relate the parameter q to magnetic field in
two ways: quantum mechanically and classically. Quantum
mechanically, following Refs. 57–59, one can express the
Hall resistance of the node RH via the elements of matrix
Sq [Eq. (9)]:

RH = 2q − 1

q2 + (1 − q)2
. (13)

In the absence of magnetic field, RH vanishes, indicating that
(1/2 − q) is a measure of magnetic field, which is also the
degree of preferential scattering to the left over scattering to
the right. For a realistic electron moving a distance l in a
magnetic field, this degree is ωcτ , thus allowing the following
identification:

1
2 − q = ωcτ. (14)

Classical derivation of Eq. (14) emerges from the following
reasoning. The presence of two types of scattering processes,
on the links and at the nodes, makes the Boltzmann description
of transport more complex. To develop this description, we turn
to Fig. 3. It illustrates that the adequate variables to describe the
Boltzmann transport are the probabilities, ρi , i = 1, . . . ,8, to
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FIG. 3. (Color online) Boltzmann transport on the p-q network.
Rate equations (15) relate the probabilities ρi(m,n; t) to find an
electron on the corresponding half-link adjacent to the node with
coordinates (m,n) and at time instances t and t + τ .

find an electron on corresponding half-link. In these variables,
the closed set of rate equations reads as

ρ1(m,n; t + τ ) = [1 − p]ρ6(m − 1,n; t) + pρ2(m,n; t),

ρ2(m,n; t + τ ) = [1 − q]ρ3(m,n; t) + qρ7(m,n; t),

ρ3(m,n; t + τ ) = [1 − p]ρ8(m,n − 1; t) + pρ4(m,n; t),

ρ4(m,n; t + τ ) = [1 − q]ρ5(m,n; t) + qρ1(m,n; t),

ρ5(m,n; t + τ ) = [1 − p]ρ2(m + 1,n; t) + pρ6(m,n; t),

ρ6(m,n; t + τ ) = [1 − q]ρ7(m,n; t) + qρ3(m,n; t),

ρ7(m,n; t + τ ) = [1 − p]ρ4(m,n + 1; t) + pρ8(m,n; t),

ρ8(m,n; t + τ ) = [1 − q]ρ1(m,n; t) + qρ5(m,n; t). (15)

Performing Fourier transform in time and coordinate domains
and taking the limit of small momenta k and frequencies ωk ,
we find a diffusive mode −iωk = Dk2, where D is given by

D =
(

l2

4τ

)
1 − p

8

1 + (2q − 1)2(2p − 1)

1 + (2q − 1)2(2p − 1)2
. (16)

As discussed above, the diffusion coefficient is finite even
at p = 0, except in the “strong-field” limits q = 1 and q =
0, where the electron circulates around forbidden regions
clockwise and anticlockwise, respectively. In these limits, for
small p, the diffusion coefficient is proportional to p. From
Eq. (17), we also see that D → 0 in the strong-scattering limit
p → 1, as could be expected. In the limit of weak magnetic
field (1/2 − q) � 1 and high mobility p � 1, we have

D =
(

l2

32τ

) [
1 − p − 8

(
1

2
− q

)2
]

. (17)

The fact that the magnetic-field correction to D is ∼(ωcτ )2 is
generic for classical magnetotransport. On the other hand, the
negative classical correction to D due to finite p is model
specific, since p was incorporated to capture interference
effects. The meaning of the prefactor l2/τ , which emerges

from the system Eq. (15) in the course of Fourier transform,
is that the electron travels the distance of the mean-free
path l during scattering time τ . Correct, within a number,
prefactor and magnetic-field dependencies of D indicate that
the network model captures properly the magnetotransport in
high-mobility electron gas in the Boltzmann limit.

To conclude the construction of the quantum network, we
assume as usual that random phases are accumulated in the
course of propagation along the links. This convention is
nontrivial in the weak-field limit. Indeed, as we discussed
in the Introduction, the delocalization transition is expected
when the magnetic flux through a plaquette is of the order of
flux quantum �0. We will return to this point in Sec. IV D.

According to the scaling theory of localization, the knowl-
edge of the Boltzmann transport coefficient should be sufficient
to predict the position [Eq. (4)] of the quantum delocalization
transitions, which in the limit of weak fields takes the form
E0 ∼ h̄/ωcτ

2. In the language of the network model, this
translates into the linear dependence

p ∼ 1
2 − q. (18)

Whether or not this prediction is valid can be established only
by quantum numerical simulations. Especially important is
the limit q → 1/2, which corresponds to vanishing magnetic
fields where a strong levitation is expected. Unfortunately, this
limit is the hardest to simulate. This is because the localization
radius to the left and to the right of the delocalization transition
is huge, i.e., ln(ξ/ l) = π2σ 2

0 ∼ π2/p2. This was a limitation
of the quantum simulations reported in Ref. 31, where the
smallest value of p was p = 0.1.

D. From quantum delocalization to classical percolation

There is another, indirect, way to find the critical p-q
boundary, bypassing quantum simulations, namely, to take the
limit of strong disorder. By a limit of strong disorder, we mean
that local values pi and qi are strongly spread around averages
p and q with distributions

f (pi) = p δ(1 − pi) + (1 − p)δ(pi), (19)

f (qj ) = q δ(1 − qj ) + (1 − q)δ(qj ). (20)

Unlike the quantum case, where pi and qi were the same for
all links and nodes, with distribution, Eq. (19) scatterers on the
links reflect fully in p percent of the cases and transmit fully
in the rest in (1 − p) percent of cases. Similarly, according
to Eq. (20), the nodes deflect only to the right in q2 percent
of the cases, deflect only to the left in (1 − q)2 percent of
the cases; in the remaining 2q(1 − q) percent of the cases, the
deflection takes place both to the left and to the right depending
on the incoming channel (see Fig. 4). The advantage of the
strong-disorder limit is that the quantum interference effects
are irrelevant. The simplest way to see this is to turn to the
elementary interference process illustrated in Fig. 2. If return
to the origin is allowed for the clockwise direction, then it is
forbidden for the anticlockwise direction since qi(1 − qi) is
zero in the strong-disorder limit.

In the absence of interference, the transport reduces to
the classical bond percolation problem. The reduction is
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(b)(a)

(c) (d)

FIG. 4. (Color online) Definition of the q bonds. Scattering
scenarios (a), (b), (c), and (d) correspond to the absence of both
q bonds, presence of both q bonds, presence of one right-diagonal q

bond, and presence of one left-diagonal q bond, respectively.

achieved by replacing scattering matrices (9) and (10) by bonds
according to the following rules:

(i) The realization in which pi = 1 corresponds to quan-
tum mechanical reflection of incoming waves from all di-
rections. In the language of percolation, this configuration
corresponds to a bond installed between the neighboring
forbidden regions An,m and An+1,m, i.e., the horizontal
bond in Fig. 2. Below, we refer to this bond as a p

bond. For configurations with pi = 0, the p bond between
the neighboring forbidden regions An,m and An+1,m is
absent.

(ii) The scattering matrix Sq is replaced by a pair of
bonds (we refer to them as q bonds), installed between the
forbidden regions An,m and An±1,m±1, i.e., diagonal bonds
in Fig. 2. Both q bonds are absent [Fig. 4(a)] if the node
deflects only to the left. Probability of this realization is
Pa = (1 − q)2, as follows from Eq. (20). Deflection only to the
right corresponds to two crossed q bonds present [Fig. 4(b)].
This happens with probability Pb = q2. The situation when
right-diagonal q bond is present while the left-diagonal q bond
is absent corresponds to the scattering scenario in Fig. 4(c).
The opposite scattering scenario [Fig. 4(d)] translates into
left-diagonal q bond present and right-diagonal q bond absent.
The two latter bond configurations have equal probabilities
Pc = Pd = q(1 − q).

Quantum mechanical delocalization transition in the limit
of strong disorder corresponds to percolation over p and q

bonds (see Fig. 5). At the threshold of percolation, p and q

bonds form an infinite cluster. At the same point, the waves
propagating along the links in both directions and scattered
at the links and at the nodes form an edge state. Threshold
(q,p) values lie on a critical line of transitions on a q-p plane.
Crucial for us is the relation between the points of this line
and the positions of quantum delocalization transitions. In this
regard, it is important to relate the quantum matrix Sq to the
matrices describing the different classical scenarios shown in

Ap

p

p n+1,m

n,mA

q q q

FIG. 5. (Color online) Limit of strong disorder. The centers of
forbidden regions An,m and An,m−1 are connected by the p bond, while
the centers of forbidden regions An−1,m−1 and An,m are connected by
a q bond. The delocalization transition corresponds to the percolation
threshold on the lattice consisting of p and q bonds.

Fig. 4. Setting q = 0, we get

Sa =

⎛
⎜⎝

0 −1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎠ , (21)

which describes the scattering in Fig. 4(a). The scattering
scenario in Fig. 4(b) is described by the matrix

Sb =

⎛
⎜⎝

0 0 0 −1
1 0 0 0
0 −1 0 0
0 0 −1 0

⎞
⎟⎠ , (22)

which emerges upon setting q = 1 in Eq. (9). To get the matrix

Sc =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎠ , (23)

one has to set q = 0 in the first and third columns, and q = 1
in the second and fourth columns. Similarly, the matrix

Sd =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ , (24)

corresponding to Fig. 4(d), emerges upon setting q = 1 in the
first and third columns and q = 0 in the second and fourth
columns.

Matrices Sa and Sb provide nonzero Hall resistances Ra
H =

−1, Rb
H = 1, while for Sc and Sd , we have Rc

H = Rd
H = 0, i.e.,

the Hall resistances are zero. The net Hall resistance is thus
determined by

PaR
a
H + PbR

b
H = Pb − Pa, (25)

which should be proportional to the magnetic field (1/2 −
q). The other relations between the probabilities of different
scattering scenarios are normalization Pa + Pb + Pc + Pd =
1, and obvious symmetry Pc = Pd . These relations do not fix
all probabilities uniquely. There is a profound physical reason
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for this ambiguity. Indeed, the net Hall resistance can be zero
even if nodes locally deflect either to the left or to the right
provided that Pa = Pb. This corresponds to the situation when
a random magnetic field with zero average acts on electron, so
that the time-reversal symmetry is broken even in the absence
of an external field. Such a situation is generic for composite
fermions, as was discussed in the Introduction.

In addition to the probability assignment

Pa = (1 − q)2, Pb = q2, Pc = Pd = q(1 − q), (26)

dictated by Eq. (20) and described above, one can choose, e.g.,

Pa = 1 − q, Pb = q, Pc = Pd = 0, (27)

when the electron scatters only to the left or only to the
right from all incident channels. Obviously, for the latter
assignment, the magnitude of the random magnetic field is
stronger than for assignment Eq. (26). Finally, the physical
situation when the time-reversal symmetry is preserved in zero
external magnetic field corresponds to

Pa = 1 − 2q, Pb = 0, Pc = Pd = q. (28)

Three variants Eqs. (26)–(28) define three different percolation
models, which we denote as A, B, and C, respectively. Results
of numerical simulations of these models are reported in the
next section.

In conclusion of this section, we would like to draw a
contrast between the classical limits of 4 × 4 scattering matrix
Sq and of 2 × 2 scattering matrix Sp [Eq. (10)]. Unlike
the scattering matrix Sq , there is no ambiguity in taking
the strong-disorder limit of the 2 × 2 link matrix Sp because
this limit corresponds to the presence or absence of a single
bond. In this regard, note that, in a fully chiral network
model by Chalker and Coddington,60 scattering at the nodes
is also described by a 2 × 2 scattering matrix. The limit
of strong disorder corresponds to the presence or absence
of a single bond between the centers of the squares An,m.
Taking a strong-disorder limit in the Chalker-Coddington
model reduces the quantum problem to conventional bond
percolation on a square lattice. The position of the percolation
threshold and the quantum delocalization transition certainly
coincide, while the localization length in the strong-disorder
limit is smaller.61

III. SIMULATION PROCEDURE AND RESULTS

In simulations performed, disorder realizations correspond
to the presence or absence of p and q bonds. In each
realization, probabilities of p and q bonds are specified by
the rules formulated above. Convention for the p bonds,
connecting counterpropagating links of n + m odd and n + m

even sublattices is the same for all three models. Conventions
for q bonds are different for the models A, B, and C. These
conventions are specified by Eqs. (26)–(28), respectively.
The main peculiarity of the simulations that complicates the
trajectories stems from arrangement of pairs of q bonds at
the nodes. Namely, for different directions of approach to the
given node, the outcomes of passage are correlated. These
correlations are illustrated in Fig. 5. The models A, B, and C

differ by the weights with which different outcomes a, b, c, or
d (Fig. 5) are allowed.

The size L of the samples used ranged between 500 and
10 000, where our unit of distance is half a link. For the largest
system, we average over 106 disorder realizations. This number
increases with decreasing size so that we keep a roughly
constant CPU effort per size. To locate the position of the
percolation threshold, we searched for trajectories connecting
two opposite faces of a square sample (periodic boundary
conditions were imposed in the perpendicular direction). As in
Ref. 62, for a given realization, the two-terminal conductance
between the opposite open faces was identified with the
number of such spanning trajectories. Different disorder
realizations generate the conductivity distribution with average
σ (q,p,L).

A. Phase diagrams

To determine the critical boundary for each of the three
models considered, pA(q), pB(q), and pC(q), we select a set
of values of the turning probability q and then scan for many
values of the probability p. For each size L, we represent the
conductance as a function of p on a logarithmic scale and fit the
points near the maximum of the conductance by a Gaussian.
We then plot the position of the peak as a function of L−1

and extrapolate to infinite size. We found empirically that this
fitting procedure is of high quality for the three models.

In Fig. 6, we represent the critical lines obtained for the
three models: the upper curve corresponds to model B, the
curve in the middle to model A, and the lower curve to model
C. The straight line corresponds to p = 1/2 − q. The solid
dots are the results of the quantum simulations in Ref. 31. The
inset shows the same critical lines as in the main panel at larger
scale near the point (1/2,0).

We note that the curves tend to the point (1/2,0) as a power
law with power higher than linear. To gain further insight,

FIG. 6. (Color online) Critical lines for the three models consid-
ered:A (red, middle curve),B (blue, upper curve), and C (green, lower
curve). The dots are the results of quantum simulations (Ref. 31). Inset
shows the same three critical curves at at higher scale near the point
(1/2,0).
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FIG. 7. (Color online) Critical lines for the three models consid-
ered: A (red, middle curve), B (blue, upper curve), and C (green,
lower curve) on a double logarithmic scale near the point (1/2,0).

we analyze in detail the shape of the phase boundary at small
probabilities p. In this regime, qc is close to 1/2 and we expect
a relation of the form

p ∝ ∣∣q − 1
2

∣∣γ . (29)

In Fig. 7, we show p versus q − 1/2 on a double logarithmic
scale for the three models A (middle set of points), B (upper
set), and C (lower set). The straight lines are linear fits to the
corresponding points. Their slopes are γA = 1.994 ± 0.001,
γB = 2.464 ± 0.001, and γC = 2.286 ± 0.001. The errors
quoted are the statistical errors; systematic errors are also
present since it is impossible to include all finite-size effects.

B. Conventional percolation behavior away from q = 1/2

Quantum simulations in Ref. 31 demonstrated that the
delocalization transition along the boundary p(q) belongs
to the quantum Hall universality class. In particular, it was
demonstrated that, for the first three black dots in Fig. 6,
which correspond to q < 0.3, the critical exponent is close
to 7/3. Introducing strong disorder suppresses the quantum
interference. We expect that quantum percolation at a given
(q,p) reduces to classical percolation and the critical exponent
ν = 7/3 is replaced by its classical value ν = 4/3. For the
Chalker-Coddington model, in which the position of delocal-
ization is fixed at average value of the disorder potential, the
crossover from 7/3 to 4/3 was tested in Ref. 61. In this section,
we demonstrate that, away from the point p = 0, q = 1/2, the
p(q) boundary established above indeed corresponds to the
divergence of the localization length with exponent ν = 4/3.

The determination of the critical exponent is based on the
fact that near (q,p) = (qc,pc), the conductance is a function of
a single argument (p − pc)L1/ν (vertical scan) or (q − qc)L1/ν

(horizontal scan). Exactly at (qc,pc), the conductivity assumes
the universal value σ0 = 0.361 404 . . . found by Cardy,63

which should be the same for the entire boundary.
The scaling analysis was performed for all three models. In

Fig. 8, we present results for the modelA at a particular critical
point (0.3,0.23392). Overall, the scaling confirms that ν = 4/3
both for vertical and horizontal scans. A particular feature
about the scaling data is that the widths of scaling functions
are slightly different for the vertical and horizontal scans. We

FIG. 8. (Color online) Scaled conductivity as a function of the
probability difference with the critical point multiplied by L3/4. The
solid symbols correspond to vertical scans and the empty symbols to
horizontal scans crossing the critical point (0.3,0.23392) of model A.
The lateral sample sizes are 500 (cyan diamonds), 1000 (blue down
triangles), 2000 (green up triangles), and 4000 (red circles).

have also found that there is a small size effect precisely at the
boundary, which is well described by the expression

σL = σ0 + a

L3/4
, (30)

where a is a constant.

C. Behavior of the localization length at zero field:
Models A and C.

We now turn to the behavior of the localization length ξ at
zero magnetic field q = 1/2. For each model, the dependence
ξ (p) at small p is determined by a peculiar behavior of
the corresponding delocalization boundary established in
Sec. III A. It is also very important that ξ (p) is equally
affected by the second, complementary, boundary in the
domain q > 1/2, which is the mirror image of the boundary
in Fig. 6.

For moderate p, when the boundaries were straight lines,31

the presence of the second boundary leads to the enhancement
of ξ . On the contrary, we will see that, in the limit p → 0,
the fact that both boundaries for a given model are almost
horizontal leads to a shortening of ξ .

In Fig. 9, we plot the conductivity for model A as a function
of p for q = 1/2 and for several values of the system size: 500
(diamonds), 1000 (down triangles), 2000 (up triangles), 4000
(circles), and 8000 (squares). It is seen that the curves σ (p)
for different system sizes have similar shapes and are even
spaced along the logarithmic horizontal axis. Thus, we expect
scaling and behavior ξ ∼ p−νA as a consequence. A practical
procedure to infer νA from the data in Fig. 9 is based on
the dependence pL versus L, where pL is the position of the
maximum of the conductivity for a given L. In the inset of
Fig. 9, we plot pL(L) in a double logarithmic scale. We see
that pL follows the dependence

pL = bL−β, (31)

where b and β are model-dependent constants. For model A,
we found βA = 1.51 ± 0.02 and b = 4.1 ± 0.8. Equation (31)
and the fact that βA is very close to 3/2 suggest that, to achieve
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FIG. 9. (Color online) Conductivity as a function of p for model
A along the line q = 1/2. The lateral sample sizes are 500 (cyan
diamonds), 1000 (blue down triangles), 2000 (green up triangles),
4000 (red circles), and 8000 (black squares). Inset shows the position
of the peaks as a function of L on a double logarithmic scale.

scaling, the data in Fig. 9 should be replotted versus pL3/2. The
result of this replotting is shown in Fig. 10. It is seen that the
overlap is excellent, yielding the critical exponent νA = 2/3.
This should be contrasted to the behavior ξ (p) ∝ (p − pc)−4/3

at any nonzero pc. We conclude that, at pc = 0, the divergence
of the localization length with p is much slower.

Finally, for the model C, the plots σ (p) as a function of p do
not exhibit maxima. As shown in Fig. 11, where we plot σ (p)
versus pL7/4, a very good overlap is achieved for νC = 4/7.

In conclusion of this section, we note that the conductivity
for all three models tends to 2σ0 = 0.722 808 . . . as p → 0.
The reason is that the value σ = σ0 at the threshold is the
property of a single critical point.63 By contrast, in our case,
two critical lines merge at the point q = 1/2, p = 0.

D. Behavior of the localization length at zero field: Model B
Scaling analysis of the data for model B reveals slightly

different behaviors for the domains of moderate p > 10−4 and
truly critical p < 10−4. For the first domain, from the position
of peaks, we find βB = 1.77 ± 0.04. This suggests that νB =
1/βB ≈ 4/7. Note, however, that replotting the conductivity

FIG. 10. (Color online) Conductivity as a function of pL3/2 on a
logarithmic scale for model A along the line q = 1/2. The sample
sizes are 500 (cyan), 1000 (blue), 2000 (green), 4000 (red), and 8000
(black).

FIG. 11. (Color online) Conductivity as a function of pL7/4 on
a logarithmic scale for model C along the line q = 1/2. The sample
sizes are 500 (cyan), 1000 (blue), 2000 (green), 4000 (red), and 8000
(black).

versus pL7/4 (see Fig. 12) does not lead to overlap as good as
for the model A. Moreover, in the second domain p < 10−4,
a good overlap is achieved for the exponent 2/3, i.e., the same
as in the model A. This is illustrated in the inset of Fig. 12.
This indicates that, for the model B, the true critical region is
quite narrow. Such a delicate behavior of ξ (p) for the model
B might indicate that the critical boundary p(q) in this model
also changes the behavior in the truly critical region p � 10−4.

IV. DISCUSSION

A. Position of boundaries

It is seen from Fig. 6 that the boundaries pA(q) and pC(q)
almost coincide in the entire domain 0 < q < 1/2. Overall,
these boundaries are in agreement with the results of quantum
simulation Ref. 31 shown with black dots. It is also seen that
the boundary pB(q) goes significantly higher. In particular,
at q = 0.25, pB exceeds pC almost twice. On the physical
level, this means that, for a given average magnetic field, the
formation of edge states requires a longer zero-field mean-free
path l for model C than for model B. In other words, formation

FIG. 12. (Color online) Conductivity as a function of pL7/4 along
the line q = 1/2 on a logarithmic scale for model B. The sample sizes
are 1000 (blue), 2000 (green), 4000 (red), 6000 (cyan), 8000 (black),
and 10 000 (magenta). Inset: The same as main plot with low-p data
included; conductivity is plotted versus pL3/2.
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of edge states happens easier when a random magnetic field
is present. To gain a physical insight as to why this is so,
consider electron motion in a random magnetic field. Local
value of the field changes its sign in space, while the average
field (1/2 − q) is much smaller than the absolute value of
the local field. Then, electron trajectories are either circles
inside the regions where the field maintains its sign, or snake
states, propagating along the boundaries of these regions, i.e.,
along the contours with zero local field. Then, it is apparent
that a weak disorder does not affect this picture. If, on the
other hand, the magnetic field (1/2 − q) is uniform, electron
trajectories are big circles. Then, a weak disorder will have a
strong effect by deflecting an electron before it completes a
circle. The above two situations correspond to the models B
and C, respectively, and explain why pB(q) > pC(q). In model
A, a random component of a magnetic field is present, but
is weaker than in model B. In this regard, the fact that the
boundary pA(q) lies between pB(q) and pC(q) also finds its
explanation.

Five quantum data points of Ref. 31 shown in Fig. 6
cover the range p � 0.1 and follow pC(q) within the accuracy
of quantum simulations. The fact that these points follow
the straight line p = 1/2 − q confirms the scaling theory
[Eqs. (1) and (2)] for σxx < 10. The full confirmation of the
scaling theory would be the linearity of the critical percolation
boundary at q → 1/2 [see Eq. (18)].

The most important outcome of the present simulation is
the inset in Fig. 6. It is seen that at really small p ∼ 0.01
and q close to 1/2, the behaviors of all three boundaries
change dramatically compared to their bodies, namely, they
become almost horizontal. All three boundaries have the form
p ∼ (1/2 − q)γ with γ � 2. This is in stark contrast to the
prediction of scaling theory [Eq. (18)], which corresponds to
γ = 1. In other words, percolation results suggest that instead
of the condition σxy = 1/2, the delocalization boundary is
described by

σxy ∼ σ
1− 1

γ

xx . (32)

The latter condition can be also cast in the form Eq. (8) with
κ = 1 − 1/γ . We note that the crossover from σxy = 1/2 to
Eq. (32) takes place at large σxx ∼ 10. In terms of the flow
diagram of the quantum Hall effect,3 this means that the upper
part of the vertical flow line is bent to the right, as it is illustrated
in Fig. 1(b).

B. Semianalytical consideration

To specify the distinct behavior of percolation boundaries
in vanishing average magnetic field, they are plotted in Fig. 7 in
the log-log scale. From the slopes, we deduce the values γA =
1.994, γB = 2.464, and γC = 2.286. To get a feeling why all
γ values are close to 2, below we present some semianalytical
arguments. We first turn to Fig. 5 and set p = 0. Then, the
lattice breaks into two quadratic sublattices with n + m even
and n + m odd, which are completely disconnected. None
of them percolates if q, the percentage of bonds present in
each sublattice, is less than 1/2. Finite p = pc(q) allows
percolation for q < 1/2 since p bonds couple clusters from
different sublattices. It is apparent that coupling of clusters
by p bonds is relevant if the typical distance 1/

√
p between

two p bonds becomes smaller than the localization length
ξ (q) = (1/2 − q)−4/3. This yields a constraint that γ < 8/3.
This constraint is insensitive to the mutual correlations of q

bonds on the two sublattices. In fact, this correlation is absent
in model A. Indeed, as follows from Eq. (26), at q = 1/2 for
model A, we have Pa = Pb = Pc = Pd = 1/4. By contrast,
for model B, the probabilities at q = 1/2 are Pa = Pb = 1/2,
Pc = Pd = 0. This suggests that q bonds on two sublattices
are strongly (and positively) correlated. Namely, if there is a q

bond connecting two n + m even plaquettes at a given node,
then there must be a q bond connecting n + m odd plaquettes
at the same node. On the other hand, the correlation of q

bonds at a node in model C is negative: the presence of one q

bond excludes the presence of the other. This is apparent from
Fig. 4.

As p bonds are switched on, clusters include sites from both
sublattices (see Fig. 13). In Ref. 31 where the model A was
considered, it was argued that γ = 1. The argument was based
on the following picture of the cluster growth upon increasing
q: it was assumed that critical q clusters on a given sublattice
grow by getting connected via additional q bonds. Since the
growth of clusters due to p bonds takes place by connecting
critical clusters from different sublattices, it was concluded that
p and q bonds play equal roles in the growth of clusters, which
immediately leads to γ = 1. Present simulations suggest that,
in the close proximity of q = 1/2, this picture fails, and the
role of p and q bonds in approaching the percolation threshold
is completely different, namely, the growth due to p bonds is
more efficient. This growth proceeds by p bonds connecting
the hulls of critical clusters from two sublattices, as illustrated
in Fig. 13. For a given q, the length of the hull is

L(q) = ξ 7/4(q) = (
1
2 − q

)−7/3
. (33)

FIG. 13. (Color online) Vicinity of the point p = 0, q = 1/2 of
the phase diagram Fig. 7. A q cluster of n + m odd sublattice (upper)
and a q cluster of n + m even sublattice (lower) overlap. A joint
trajectory (thin blue line) is formed upon installing of a single p bond.
The blowup illustrates hybridization of trajectories on a microscopic
level.
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For the model A, to achieve a percolation by adding p bonds,
one should take into account that the hulls on two sublattices
are uncorrelated. Then, a p bond with one end on a hull from an
even sublattice will have the other end on the hull from an odd
sublattice with probability L/ξ 2. As a result, the percolation
condition reads as

(L/ξ 2)(pL) = 1, (34)

where the second factor is the probability that there is at least
one p bond with one end on the critical hull from, say, the odd
sublattice. Equation (34) yields γA = 2, which coincides with
the simulation result.

Correlation of q bonds at the nodes for models B and C
leads to the conclusion that corresponding critical clusters in
two sublattices are also correlated. One consequence of this
correlation is that it takes less p bonds than in model A to
connect critical hulls from two sublattices. As a result, γB,
γC � γA = 2. On the other hand, the picture of percolation by
connecting the critical clusters imposes the upper boundary
γ � 7/3 for both models B and C. This follows from the
condition that there should be at least one p bond per critical
hull, i.e., pL � 1. Note that the constraint γ � 7/3 is stricter
than the constraint γ < 8/3 established above.

Beyond the estimate 2 � γB, γC � 7/3, we can not come
up with more accurate analytical values for these indices. We
are not even able to establish which of them is bigger. This is
because strong correlation between the hulls in both models B
and C simplifies connectivity upon switching on p bonds. On
the other hand, this correlation prevents the expansion of the
resulting cluster.

As it was established in the previous section, in the domain
of p � 10−4, behavior of ξ (p) at q = 1/2 in the model B
exhibits crossover from the critical exponent 4/7 to 2/3. To
relate this peculiar behavior with the shape of the percolation
boundary pB(q) = (1/2 − q)γB , we invoke the argument of
Ref. 64, which, in application to the p-q model, goes as
follows. If the divergence of ξ at the point q = 1/2, p = 0 is
characterized by ξ ∼ (1/2 − q)−νq along the q direction and
ξ ∼ p−νp along the p direction, then the shape of the critical
boundary is p ∼ (1/2 − q)νq/νp , i.e., γ = νq/νp. Following
this argument, crossover in the model B from νp = νB = 4/7
to νB = 2/3 suggests that γB and γA merge in a truly critical
region.

Overall, our numerical results suggest that, in the truly criti-
cal domain, where γA ≈ γB ≈ 2 and γC ≈ 7/3, the divergence
of ξ (p) for all three models is well described by the relation

ξ ∼ p−4/(3γ ). (35)

With regard to the argument of Ref. 64, this means that, for all
three models, the exponent νq is equal to 4/3, i.e., the same as
for q away from 1/2.

C. Relation to Ref. 62

In Ref. 62, spin quantum Hall effect in bilayer and
trilayer systems was studied numerically in order to trace the
emergence of macroscopic metallic phase upon adding the
third dimension.65 The authors made use of the fact that, in
a strictly 2D system, there is a mapping between the spin

quantum Hall transition and classical bond percolation.66,67

For bilayer systems, the corresponding classical percolation
is bond percolation on each layer (bonds connect the centers
of plaquettes), complemented with the possibility to switch
layers with a probability p1 while passing each side of each
plaquette. Physically, in spin quantum Hall effect, an electron
travels on each layer of the network in the same direction. In
our consideration of the weak-field quantum Hall effect, an
electron stays within a plane, but each link of the square lattice
represents two counterpropagating channels. For this reason,
there is a mapping between the simulation in Ref. 62 and
treatment of the model A in this paper. Namely, p1 in Ref. 62
should be identified with the backscattering probability p in
this paper, while the probability that the given bond is present in
Ref. 62, i.e., p, should be identified with our parameter q. Due
to this mapping, critical behavior p1(p) for small p1 in Ref. 62
is the same as the behavior of critical line p ∝ (1/2 − q)γA

for small p in our model A. Also, the above semianalytical
calculation of γA is the same as proposed in Ref. 62. However,
it should be noted that mapping between the network of Ref. 62
and model A applies only for small p1. For larger p1, the
position of the boundary in Ref. 62 differs dramatically from
that of the model A.

D. Copropagating versus counterpropagating networks

Simulations reported in this paper pertain to the system
representing two coupled Chalker-Coddington (CC) networks.
Studies of transport in two coupled CC networks were also
reported earlier (see Refs. 44,45,62,64,68). For example, in
Refs. 44 and 45, two CC networks represented two projections
of spin, whereas the coupling represented their mixing due to
the spin-orbit interaction. In all previous studies, the result
of coupling was the lifting of degeneracy of delocalized
states. One can ask to what extent the scaling of the splitting
magnitude with the coupling strength is universal.

We would like to emphasize that the above scaling is not
universal at all and depends strongly on the particular way
of coupling of the CC networks. To support this statement,
we return to Fig. 2. Suppose that direction of propagation
in one of the subnetworks is reversed. Then, the model
considered in this paper transforms into the random-magnetic-
field network studied in Refs. 44 and 45 with a dramatically
different outcome. Namely, the latter network does not exhibit
delocalization at all. This illustrates how different the splitting
is in coupled networks that are copropagating or counterprop-
agating. By translating into physical terms, the two transitions
at q − 1/2 = ±p1/γ in our model can be viewed as splitting
of magnetic fields B and −B for a given energy, at which two
delocalization transitions take place. This is certainly different
from the splitting of energies of delocalized states in a given
magnetic field, described by the copropagating networks of
Refs. 44 and 45.

Even if two networks are counterpropagating, differences
in the details of coupling leads to different scaling of splitting.
As an example, we refer to Ref. 68. It differs from our model in
the structure of scattering matrices both at the link and nodes.
As a result of these differences, the model in Ref. 68 possesses
a metallic phase.
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E. Phases with higher σx y

In fact, scaling theory predicts that all Landau levels n in
Eq. (4) eventually levitate to En → ∞, as the magnetic field is
lowered. Our simulations do not capture low-field transitions
for n � 1. This is because we restricted our consideration to a
network with one channel per link. Within this description, we
were able to capture the Drude conductivity tensor of electron
gas in a weak field and weak localization effects. On the other
hand, this description does not allow us, in principle, to capture
the phases with quantized σxy higher than 1.

As a final remark, we can underscore the difference of
the scaling theory and our results as follows. The scaling
theory predicts that electron gas experiences a delocalization
transition in a magnetic field at which flux into the area l2

is of the order of the flux quantum �0. We find that, in the
limit of kF l > 10, the interplay of orbital and phase actions
of magnetic field causes the transition when this flux is much
larger than �0.
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