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Quantum kinetics of squeezed lattice displacement generated by phonon down conversion
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We study the fluctuation properties of longitudinal acoustic (LA) phonons generated by the anharmonic decay
of coherent longitudinal optical phonons in a bulk semiconductor and a quantum dot. This process is comparable
to the down conversion of photons, which is well known to generate squeezed photons. We use a quantum kinetic
model to calculate the fluctuations of lattice displacement and momentum. This allows us to analyze the strength
and the spatial distribution of the fluctuations. It is shown that the fluctuations may fall below their vacuum
value, i.e., squeezing occurs. The squeezing only persists for short times due to fast dephasing of the different
LA phonon modes and the increasing LA phonon population. In the quantum dot case, it is found that although
LA phonon wave packets travel out of the quantum dot, the squeezing does not leave the vicinity of the dot but
remains confined.
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I. INTRODUCTION

Squeezed states of bosonic systems have attracted much
interest due to their interesting quantum-mechanical prop-
erties. In addition to the case of photons, where the study
of squeezed states has a long tradition,1–4 other bosonic
particles or quasiparticles have recently been investigated, such
as atomic Bose-Einstein condensates,5 surface plasmons,6

magnons,7 and in particular phonons in various systems.8–16

From elementary quantum mechanics, it is known that the
fluctuations of quantum-mechanical variables are governed
by the Heisenberg uncertainty principle, which provides a
lower limit for the product of the fluctuations of two conjugate
variables. For a crystal lattice, two such conjugate variables
are the lattice displacement and the corresponding momentum.
Even in the phonon vacuum, i.e., when the lattice is in its
ground state, the fluctuations are nonvanishing. In a squeezed
state, the fluctuations of one of these variables is for some
period of time reduced below its vacuum level at the cost of
an increased uncertainty for the other variable.

Different approaches have been taken to investigate the
fluctuations of phonon systems. In Ref. 8, the transmission
change of a probe pulse was studied, which in that case, being
caused by a Raman process of second order, was sensitive
to the mean-square displacement of the atomic positions and
therefore allowed the authors to draw conclusions about the
atomic fluctuations. In Ref. 9, the intensity of the x-ray
diffraction signal was measured, which is determined by the
Debye-Waller factor and therefore again carries information
about the mean-square displacement. In other studies, the
atomic positions have been measured repeatedly by observing
the reflection of a probe pulse,11 and the fluctuation properties
have been extracted from a statistical analysis.

In quantum optics, a well-established tool to create
squeezed photons is parametric down conversion,17 in which
a nonlinear crystal converts a single incoming photon into
an entangled pair of photons. By this process, the photon
system evolves into a two-mode squeezed state. For phonons,
a similar mechanism is the decay of longitudinal optical (LO)
phonons into pairs of longitudinal acoustic (LA) phonons due
to anharmonic contributions in the lattice potential. Indeed,

in the case of a strictly energy-conserving decay into two
fixed LA phonon modes and for a coherent LO phonon state
that is unperturbed by the decay, it has been shown that
this process may generate LA phonon states in which the
two-mode quadrature operators are squeezed.13 In this paper,
we present quantum kinetic calculations of the anharmonic
decay process based on a microscopic model, which allows
us to analyze quantitatively the fluctuation properties of the
lattice displacement itself. Two systems are discussed: a bulk
semiconductor and a quantum dot structure. While in the
bulk case the LO phonons and thus also the LA phonons
are generated spatially homogeneously, in the quantum dot
structure the LO phonons are generated inside the dot. The
LA phonons that are created in the decay process have a
nonvanishing group velocity and therefore may leave the dot
region. The choice of these two cases will thus allow us to
compare the purely temporal dynamics in the bulk system
with the spatiotemporal dynamics in the quantum dot case.

The paper is organized as follows: In Sec. II, we start with
a presentation of the theoretical background. We introduce the
model Hamiltonian and briefly review the appearance of two-
mode squeezing (Sec. II A), then we introduce the variables
describing the fluctuations of the lattice displacement and the
momentum (Sec. II B), and finally we derive the equations of
motion for the relevant phonon variables (Sec. II C). In the
following section, the results are presented both for the case of
a bulk semiconductor (Sec. III A) and a quantum dot structure
(Sec. III B). The paper finishes with some concluding remarks
(Sec. IV).

II. THEORY

A. Squeezing induced by anharmonic decay

Lattice dynamics are typically described within a harmonic
approximation of the binding potential. This allows for the
introduction of phonons as quasiparticles and leads to the free
phonon Hamiltonian H0. Here we are particularly interested
in LO and LA phonons. We denote the corresponding creation
operators as a

†
k and b

†
q, respectively, where k and q refer to the

phonon wave vectors. Beyond this harmonic approximation,
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cubic terms in the phonon operators appear in the Hamiltonian,
which give rise to phonon-phonon interactions, e.g., phonon
scattering and decay of phonons into other modes. In this
paper, we will concentrate on the latter process, in particular
on the decay of an LO phonon into a pair of LA phonons.

The free phonon Hamiltonian and the Hamiltonian of the
anharmonic decay read

H0 =
∑

k

h̄ωLO(k)a†
kak +

∑
q

h̄ωLA(q)b†qbq, (1)

Hanh =
∑
k,q

(λq,ka
†
kbk−qbq + λ∗

q,kakb
†
k−qb

†
q), (2)

where λq,k is the phonon-phonon coupling matrix element
while ωLO(k) and ωLA(q) are the dispersion relations of LO
and LA phonons. The decay of LO phonons into pairs of
LA phonons has been shown to be strong in a number of
semiconductor crystals, such as GaAs, GaP, and InP.18,19

By means of an optical excitation with a short laser pulse,
the LO phonons can be driven into a coherent state.20 In
a homogeneous system, for symmetry reasons only k = 0
coherent phonons are excited.21 Therefore, let us start by
looking at the simple case in which initially the k = 0 LO
phonon mode is in a coherent state with 〈a0〉 = α0(t). If the
LO phonons are treated on a mean-field level and only a decay
into a single pair of LA phonon modes with wave vectors ±q0
is considered, we obtain the effective Hamiltonian

H ′
anh = λq0,0α

∗
0 (t)b−q0

bq0
+ λ∗

q0,0α0(t)b†−q0
b†q0

. (3)

This Hamiltonian describes a decay similar to the photon down
conversion.17 It has been shown by Hu and Nori13 that in this
case the time evolution operator U (t,t0) for the LA phonon
subsystem can be approximated by

U (t,t0) = exp [−i(t − t0)H0/h̄]

× exp[ρ∗(t,t0)b−q0
bq0

− ρ(t,t0)b†−q0
b†q0

],

with ρ(t,t0) = iλq0,0

h̄

∫ t

t0

α0(τ )ei[ωLA(q0)+ωLA(−q0)]τ dτ, (4)

which becomes exact either in the case of impulsive driving
with α0(t) ∼ δ(t) or if the phonon modes involved fulfill en-
ergy conservation with h̄ωLO = h̄ωLA(q0) + h̄ωLA(−q0) and
α0(t) ∼ e−iωLOt . The second term of U (t,t0) is formally equiv-
alent to a two-mode squeeze operator.17,22 Hence, if the LA
subsystem is initially either in the vacuum state or in a coherent
state, the expectation values of the conjugate two-mode
quadrature operators of displacement X±q0 = 2−3/2(bq0 +
b
†
q0 + b−q0

+ b
†
−q0

) and momentum P±q0 = −i2−3/2(bq0 −
b
†
q0 + b−q0

− b
†
−q0

) are squeezed, i.e., their variances fall below
their vacuum values in turn.

Instead of studying the two-mode quadrature operators, in
this paper we will investigate the fluctuation properties of the
lattice displacement and lattice momentum themselves. The
squeezing of the two-mode quadratures suggests that these
variables could be squeezed as well, although there are crucial
differences, as will become apparent. We present quantum-
kinetic calculations based directly on the Hamiltonian Hanh.
Therefore, decay processes into a quasicontinuum of LA
phonon modes and effects of the decay on the dynamics of

the LO phonon subsystem are included. Within our model,
the approach yields quantitative results for the strength of the
fluctuations as well as for their time dependence and, in the
spatially inhomogeneous case, for their spatial distribution.

B. Fluctuations of lattice displacement and momentum

In the continuum limit, the operators for the lattice
displacement u(r) and the lattice momentum π (r) caused by
LA phonons can be expressed by

u(r) = i
∑

q

√
h̄

2MNωLA(q)
(b−q + b†q)

q
q

e−iq·r, (5)

π (r) =
∑

q

√
h̄MωLA(q)

2N
(b−q − b†q)

q
q

e−iq·r, (6)

where N is the number of unit cells in the system volume and
M is the overall mass of the atoms in a cell. The operators
describe the center-of-mass motion of the unit cells, as we
study acoustic phonons.

The fluctuations of the displacement are

(�u)2 = 〈u(r) · u(r)〉 − 〈u(r)〉2, (7)

and analogously for the momentum. This defines a scalar that
gives the sum over the fluctuations in the different spatial
directions, i.e., (�u)2 = ∑

j (�uj )2. Displacement u(r) and
momentum π (r) are conjugate variables and therefore have to
satisfy the Heisenberg uncertainty relation

(�u)2(�π)2 � 1

4

∑
j,l

|〈[uj ,πl]〉|2 = h̄2

4
. (8)

Note that the total minimum uncertainty product for the
center-of-mass motion is in fact three times the value given
here because the two transverse phonon branches each carry
the same contribution to the minimum uncertainty as the
longitudinal branch. However, in our case transverse phonons
are not excited and therefore they only give rise to an ad-
ditional, time-independent background of vacuum or thermal
fluctuation and will not be considered here.

The vacuum uncertainties of the LA phonons are given by

(�u)2
vac = h̄

2MN

∑
q

1

ωLA(q)
, (9a)

(�π)2
vac = h̄M

2N

∑
q

ωLA(q). (9b)

For a constant dispersion relation, which is a good ap-
proximation for an optical branch, the product of the vacuum
uncertainties reduces to the minimum value h̄2

4 . In contrast, for
the LA phonon branch assuming a linear isotropic dispersion
relation ωLA(q) = ωq = vsq up to the Debye frequency with
vs being the speed of sound, the uncertainty product in the
vacuum state is (�u)2

vac(�π)2
vac = 9

8
h̄2

4 , thus exceeding the
minimal uncertainty value.

In a squeezed state, the fluctuations of one of the conjugate
variables, displacement u(r) or momentum π(r), are reduced
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below their vacuum value. Therefore, we introduce the
dimensionless variables

Su = (�u)2 − (�u)2
vac

(�u)2
vac

, (10)

Sπ = (�π)2 − (�π)2
vac

(�π)2
vac

, (11)

which become negative in the presence of squeezing. For the
LA phonon branch in the absence of coherent phonons, i.e.,
〈bq〉 = 0, Su can be expressed by

Su(r) = h̄

MN (�u)2
vac

∑
q1,q2

1√
ωq1ωq2

q1

q1
· q2

q2

× Re[(〈bq1
b−q2

〉 + 〈b†q1
bq2

〉)ei(q1−q2)r], (12)

involving the generalized phonon occupation 〈b†q1bq2〉 and the
two-phonon coherence 〈bq1b−q2

〉. For Sπ , a similar relation
holds. The values of Su can be best compared to the fluctuations
of a thermal state, which are constant in time and independent
of position. For example, for the GaAs parameters given in
Sec. III, in a thermal state Su has a value of 3.5 × 10−3 at 10 K
and at room temperature it is of the order of 1. The vacuum
value of the fluctuations of the displacement is |(�u)vac| ≈
4 × 10−3a, where a is the lattice constant.

C. Modeling the phonon dynamics

For a full modeling of the dynamics in the coupled LO-LA–
phonon system, the excitation process of LO phonons has to
be included. The complete model Hamiltonian is then given by

H = H0 + Hanh + HLOgen. (13)

HLOgen models an impulsive, optical excitation of the
semiconductor, by which coherent LO phonons are generated.
It depends on whether a bulk or a quantum dot system is
considered and therefore will be discussed later.

The dynamics of the system is calculated within the
density-matrix formalism. To determine the fluctuations of
lattice displacement and momentum, the LA phonon variables
〈bq〉,〈bq1bq2〉, and 〈b†q1bq2〉 are needed. If the system is initially
in a state without a coherent LA amplitude 〈bq〉, this quantity
remains zero as the model Hamiltonian only consists of terms
with an even number of LA creation/annihilation operators.
Therefore, only expectation values of terms with an even
number of LA operators can become nonzero. We have already
seen this characteristic in Sec. II A, where the system evolves
into a two-mode squeezed vacuum state without a coherent
amplitude. For the LA phonon variables 〈bq1bq2〉 and 〈b†q1bq2〉,
the equations of motion can be derived from the Hamiltonian
H . Due to the many-body nature of this problem, an infinite
hierarchy of equations of motion builds up, which we truncate
by the factorization of all density matrices that contain three
or more phonon operators.23 The equations of motion are then
given by

ih̄
d

dt
〈b†q1

bq2
〉 = h̄(ωq2 − ωq1 )〈b†q1

bq2
〉 + 2

∑
k

(λq2,k〈ak〉

× 〈b†q1
b
†
k−q2

〉 − λq1,k〈a†
k〉〈bq2

bk−q1〉), (14)

ih̄
d

dt
〈bq1

bq2
〉

= h̄(ωq1 + ωq2 )〈bq1
bq2

〉 + 2
∑

k

(λq2,k〈ak〉〈b†k−q2
bq1

〉

+ λq1,k〈ak〉〈b†k−q1
bq2

〉) + λq1,q1+q2
〈aq1+q2

〉. (15)

Here the fact that 〈bq〉 ≡ 0 has been used. We note that the
density matrices 〈b†q1bq2〉 are only indirectly driven via the
two-phonon coherences 〈bq1bq2〉, which in turn are directly
driven by the coherent LO phonon amplitude 〈ak〉. For weak
coupling, this means that if either the coupling constant or the
LO phonon amplitude is multiplied by a constant factor, the
latter matrices change linearly with this factor, whereas
the former change quadratically.

III. RESULTS

In our calculations, we have used material parameters for
GaAs. It is still under discussion whether the decay into two
LA phonons is the dominant decay channel for LO phonons
in this material;18,19,24 however, our general findings are not
affected by the specific choice of the material parameters and
should be applicable to any similar system in which the decay
into two LA phonons is strong, such as, e.g., GaP or InP.
We restrict our model to the LA and LO phonon branches
coupled by the anharmonic decay process. The dispersion
relation of the LA phonons is assumed to be linear with
ωq = vsq (vs = 5110 m/s) up to the Debye frequency. The
k dependence of the LO phonon energy is neglected and
h̄ωLO = 36.4 meV is taken. This is a good approximation
near the center of the Brillouin zone, which is where the LO
phonons will be generated. The coupling constant λq,k of the
decay depends on the phonon wave vector involved and can

be approximated by λq,k+q = 4h̄
ω2

LO
(πv5

s

τV
)1/2√qk, where τ is the

lifetime of the LO phonons.25,26 The lifetime τ is about 7–10 ps
at low temperatures in bulk GaAs,27 and between 6 and 8 ps
in GaAs QD’s.28 For better comparability, we have assumed a
value of τ = 7 ps in both cases.

A. Results: Bulk

We will first consider a GaAs bulk semiconductor. The
LO phonons are indirectly generated by an optical excitation
of the electronic degrees of freedom. The optical excitation
creates electron-hole pairs, which then interact with the LO
phonons via a polar or nonpolar electron-phonon interaction.
Independent of the exact type of interaction, the coupling
between carriers and LO phonons in a two-band model can
be described by the Hamiltonian23

HLOgen =
∑
k′,k

(
Me

k′,kak + Me∗
k′,−ka

†
−k

)
c
†
k′+k

ck′

−
∑
k′,k

(
Mh

k′,kak + Mh∗
k′,−ka

†
−k

)
d
†
k′+k

dk′ , (16)

where c
†
k and ck (d†

k and dk) are the creation and annihilation
operators for an electron (hole) with wave vector k, and
M

e/h

k,k′ is the coupling matrix element. The equation of motion
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for the coherent LO phonon amplitude, including the optical
excitation and the anharmonic decay, is

ih̄
d

dt
〈ak〉 = h̄ωLO〈ak〉 +

∑
q

λq,k〈bqbk−q〉

+
∑

k′

(
Me∗

k′,k〈c†k′−kck′ 〉 − Mh∗
k′,k〈d†

k′−kdk′ 〉
)
.

(17)

We assume an optical excitation near the band gap with an
ultrafast laser pulse and a pulse duration shorter than the time
scale of phonon dynamics. Therefore, the δ-pulse limit with a
steplike time dependence of the electronic density matrices is
applicable, which leads to a displacive excitation of coherent
phonons (DECP).29,30 Furthermore, the matrices are diagonal
due to spatial homogeneity,21 which means that only LO
phonons with k = 0 are generated.

Coherent LO phonons correspond to an oscillation of the
relative position of the ions in a unit cell. The magnitude of
the excited carrier density and the coupling constants M

e/h

k,k′
determine the initial amplitude ALO of this oscillation. As
only this amplitude is important for the phonon dynamics, we
will use ALO as a parameter.

Similar to Eq. (16), a direct coupling between carriers
and LA phonons could be included, which in principle could
cause a coherent LA phonon amplitude 〈bq〉. However, the
same restriction to q = 0 applies, which in the case of LA
phonons would signify a translation of the crystal as a whole.
Furthermore, the phonons that appear as final states of the
decay of LO phonons are well separated in momentum space
from phonons with q = 0 and do not interfere with the latter.
Therefore, direct couplings between carriers and LA phonons
are not considered here as the phonons generated by the LO
phonon decay are the focus of the present study.

The anharmonic decay process consumes LO phonons and
thereby dampens the oscillation. Each LO phonon decays
into a pair of LA phonons as sketched in Fig. 1(a) . In a
semiclassical picture, momentum and energy conservation
require that in each pair both LA phonons carry half of the LO
phonon energy, h̄ωLA(q0) = h̄ωLO/2 = 18.2 meV, and have
opposite momenta ±q0. A quantum kinetic calculation of
the LA phonon population 〈b†qbq〉 resulting from the decay
is shown in Fig. 1(b); due to the assumed isotropy of the
system, 〈b†qbq〉 only depends on the absolute value q. We see
that indeed with increasing time a peak at q0 builds up. The

momentum q (nm-1)

tim
e (ps)

<
b+ q

b q>
 

(a
rb

. u
ni

ts
) 

FIG. 1. (Color online) (a) Sketch of the phonon dispersions
ωj (kx) and the anharmonic decay for the bulk system. (b) Resulting
population of the LA phonons 〈b†

qbq〉 as a function of time.

peak is broadened by the energy-time uncertainty, which is
also reflected in the small side peaks.

Let us now turn to the fluctuation properties of the generated
LA phonons. In the bulk case, the fluctuations Su can be
simplified to

Su = h̄

MN (�u)2
vac

∑
q

1

ωq

Re(〈b†qbq〉 + 〈bqb−q〉). (18)

Here each spatial direction contributes equally to the fluctua-
tions. Due to spatial homogeneity, Su does not depend on r.
While the phonon populations 〈b†qbq〉 are always positive, the
real part of the coherences 〈bqb−q〉 can become negative and
therefore may yield squeezing.

Figure 2(a) shows the fluctuations Su as a function of
time for an initial amplitude of the lattice oscillation of
ALO = 10−4a. Phonon squeezing is clearly visible, as Su
becomes negative for certain times. Su oscillates with twice
the LA phonon frequency ωLA(q0), which is the same as
the LO phonon frequency 2ωLA(q0) = ωLO. Note that a
double frequency oscillation of the fluctuations is a necessary
condition for a squeezed state, but it is not a sufficient
one.10,22,31 The fluctuations of the momentum π(r) behave
analogously, but oscillate phase-shifted with respect to Su, and
thus the Heisenberg uncertainty principle is satisfied for all
times.

In contrast to the LA phonon population, which increases
with time [cf. Fig. 1(b)], the amplitude of the oscillation
of Su is almost constant with time [Fig. 2(a)] and for
longer times even decreases [Fig. 2(b)]. This is because the
coherences 〈bqb−q〉 for phonon modes with different wave
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FIG. 2. (Color online) Fluctuations of the lattice displacement Su

as a function of time for ALO = 10−4a (a) for short times in units
of TLO ≈ 0.11 ps and (b) the long-time behavior in picoseconds.
(c) Su for ALO ≈ 5.7 × 10−4a, which corresponds to a coupling

Me/h = Ce/h
√

h̄

2MNωLO
with Ch − Ce = 109 eV/cm and an excitation

density of 1019 cm−3, cf. Ref. 21. (d) Su for ALO = 10−3a in
picoseconds. Also shown: envelope and center of the oscillation.
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vectors q each oscillate with an individual frequency and
therefore quickly acquire independent phases. The oscillation
amplitude of Su, therefore, does not increase with time but
follows adiabatically the strength of the LO oscillation. For
longer times, the amplitude 〈ak〉 decays exponentially with
a decay time of 2τ = 14 ps. Since this is the driving term
for the two-phonon coherences 〈bqb−q〉, the squeezing is
reduced in the same way. In Fig. 2(b), the rising LA phonon
population also contributes noticeably to the fluctuations by
shifting the oscillation upward. Therefore, also the product of
the fluctuations of displacement and momentum (�u)(�π),
which equals the product of the vacuum uncertainties in the
beginning, increases with time.

The different time dependencies of the contributions to
the fluctuations resulting from the phonon populations 〈b†qbq〉
and the two-phonon coherences 〈bqb−q〉 are closely related to
the energy-time uncertainty inherent in our quantum kinetic
approach. The uncertainty causes a range of different phonon
modes to be excited for both expectation values, which is
getting narrower with time. Indeed, solving Eqs. (14) and (15)
to the lowest order in the coupling matrix element λq,0, we
obtain as dominant terms around the resonant transition for
the modulus of the two-phonon coherence

|〈bqb−q〉| ∼
∣∣∣∣∣λq,0ALO

h̄

sin �ωqt

2

�ωq

∣∣∣∣∣ (19)

and for the phonon population

〈b†qbq〉 ∼
∣∣∣∣λq,0ALO

h̄

∣∣∣∣
2 sin2 �ωqt

2

(�ωq)2
, (20)

where we have introduced the detuning of the transition from
resonance �ωq = ωLO − 2ωLA(q). Thus, while the energy
uncertainty, i.e., the width of the central peak, decreases
in both cases ∼ 1/t , the resonant phonon population rises
quadratically while the modulus of the coherence grows only
linearly with time. Therefore, their overall contributions to
Su [cf. Eq. (18)] are linearly rising and constant with time,
respectively.

Interestingly, the behavior of Su is completely different
from previous findings for the two-mode quadrature operators
P±q0 and X±q0 (cf. Sec. II A) that have been studied accounting
only for energy-conserving decay processes and disregarding
changes in the LO phonon system.13 In these studies, the
amplitudes of the fluctuations of P±q0 and X±q0 are rising
constantly. There are two main reasons for this significant
difference in the behavior: On the one hand, in the previous
studies no dephasing occurs, as all the phonon operators that
enter P±q0 and X±q0 develop in time with the same frequency
ωLA(q0). On the other hand, the coherent LO phonon amplitude
does not decay with time, since the influence of the decay
process on the LO phonon subsystem has been neglected.

The oscillation amplitude and the shift of Su depend
strongly on the initial LO phonon amplitude ALO. This is
demonstrated in Figs. 2(c) and 2(d), where Su is plotted
for larger values of ALO. The oscillation amplitude of the
fluctuations scales linearly with ALO, because in lowest order
the coherences 〈bqb−q〉 depend linearly on the coherent LO

phonon amplitude 〈aq〉 [cf. Eq. (15)]. At the same time, the

shift of Su increases quadratically with ALO, because the LA
phonon population after a fixed time is proportional to the
initial LO phonon population, which increases quadratically
with ALO. Thus for a larger initial amplitude ALO the squeezing
is more pronounced in the beginning, but vanishes faster.

B. Results: Quantum dot

Let us now turn to the case of a quantum dot structure. We
consider a spherical GaAs QD with a parabolic confinement
potential in the strong confinement limit. The dot has a
diameter of 10 nm, where the diameter is defined as the full
width at half-maximum of the electron density in the exciton
ground state. The electronic states are modeled by a two-level
system. As in the bulk case, we restrict ourselves to the
coupling of the carriers to LO phonons, which is modeled here
in terms of the Fröhlich interaction. It should be mentioned that
in this case the direct coupling to acoustic phonons leads to the
generation of coherent LA phonons with nonvanishing wave
vectors. However, these coherent LA phonons involve modes
with small wave vectors and are therefore well separated
in reciprocal space from those created in the decay of LO
phonons. Furthermore, for an excitation by a π pulse, as will
be studied here, those phonons are in a purely coherent state32

and therefore do not give rise to additional fluctuations.17

Therefore, direct couplings between carriers and LA phonons
can be disregarded here as in the bulk case.

The Hamiltonian describing the interaction of carriers and
LO phonons is23

HLOgen =
∑

k

(
ge

kak + ge∗
k a

†
k

)
c†c

−
∑

k

(
gh

kak + gh∗
k a

†
k

)
d†d , (21)

where c†c and d†d are the electron and hole number operators
of the lowest conduction- and highest valence-band state,
respectively. The coupling matrix elements g

e/h

k depend on
the localized wave functions of electron ψe(r) and hole ψh(r)
of the exciton according to

g
e/h

k = gk

∫
ψ∗

e/h(r)eik·rψe/h(r)d3r. (22)

The prefactor is the bulk Fröhlich coupling constant given

by gk = 1
k

√
e2h̄ωLO
2ε0V

( 1
ε∞

− 1
εs

), where ε∞ and εs are the high-
and low-frequency dielectric constants, respectively, and ε0

is the vacuum permittivity. The overall interaction vanishes
for identical carrier wave functions and is more effective
for electron and hole wave functions, which are localized
differently. The equation of motion for the coherent LO phonon
amplitude is given by

ih̄
d

dt
〈ak〉 = h̄ωLO〈ak〉 +

∑
q

λq,k〈bqbk−q〉

+ ge∗
k 〈c†c 〉 − gh∗

k 〈d†d 〉. (23)

Again, the optical excitation is assumed to be on a shorter time
scale than the phonon dynamics so that the δ-pulse limit is
applicable.32,33 A π pulse abruptly inverts the exciton system,
i.e., it changes the electron and hole occupations from zero to
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FIG. 3. (Color online) (a) Radial LO phonon lattice displacement
uLO(r) · er as a function of distance to the dot center and time.
(b) Sketch of the phonon dispersions ωj (k) and the decay for a QD
system.

one. A radiative recombination of the exciton typically occurs
on a time scale of nanoseconds and is therefore not taken into
account. Here the electronic system is confined, which leads to
a localized generation of LO phonons. Hence, the equations of
motion for the coherent LO phonon amplitudes 〈ak〉 are similar
to Eq. (17), but in contrast to the bulk case now a continuum
of phonon modes with different wave vectors k is excited.

The localization of the LO phonons can be seen in Fig. 3(a)
, where the radial LO phonon lattice displacement uLO(r) ·
er is shown as a function of the distance to the dot center
and time. In contrast to the acoustic phonons, here the lattice
displacement describes a relative motion of the ions in a unit
cell. As a function of the distance, the amplitude of the lattice
displacement has a clear maximum at 5 nm, which coincides
with the radius of the QD, and decreases rapidly for larger
distances. In time, we find a sinusoidal oscillation of the lattice
displacement with the LO phonon frequency.

The LO phonon amplitude in k space is sketched in the
upper part of Fig. 3(b). Due to the spherical symmetry, only
the absolute values of the wave vectors are important. Again,
the arrows indicate which decay processes into pairs of LA
phonons are allowed by energy and momentum conservation.
Because now the LO phonon wave vector k is nonvanishing,
the absolute value of the LA phonon wave vector has a range
of possible values. The numerical results for the distribution
of LA phonons in k space are shown in Fig. 4(a) . A single
peak around q0 appears, which indeed is broader than in the
bulk case. A comparison for t = 2 ps is shown in the inset.
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FIG. 4. (Color online) (a) Resulting population of the LA
phonons 〈b†

qbq〉 as a function of time. Inset: comparison of the
distributions of a bulk (solid line) and a QD (dotted line) system
at t = 2 ps. (b) Energy density ρE(r,t)r2 vs. time and distance to the
center of the QD time-averaged over the LO phonon period.

We now analyze the spatial evolution of the LA phonons
in real space. For this purpose, we consider the energy density
ρE(r,t) of the LA phonons, which gives rise to the phonon
contribution to heat transport, and is given by34

ρE(r,t) = h̄

2V

∑
q1,q2

√
ωq1ωq2

(
1 + q1

q1
· q2

q2

)

× Re[〈b†q1
bq2

〉ei(q1−q2)r + 〈bq1
bq2

〉ei(q1+q2)r].

(24)

By integrating over the system volume V , this gives the total
LA phonon energy ELA = ∑

q h̄ωq〈b†qbq〉. In the present case,
ρE(r,t) only depends on the distance r to the quantum dot
center due to symmetry. The QD acts as a source for LA
phonons that travel out of the dot into the surrounding solid
and thus provide heat transport. Superimposed on this spatial
expansion are fast oscillations of ρE in time and space that
result from the coherences 〈bq1bq2〉, which tend to dominate
the behavior of ρE on a time scale shorter than the LO phonon
period. In order to make the expansion more clearly visible, the
energy density can be time-averaged over a full LO period. The
resulting average of ρE(r,t) · r2 is shown in Fig. 4(b), where
the factor r2 compensates the spatial decay due to the spherical
expansion of the wave packet. Here we see that the generation
of the LA phonons takes place within the area of the quantum
dot, to which the LO phonons are confined. Constantly new
LA phonons are generated and propagate away from the dot
with the sound velocity vs .

The fluctuations Su of the generated LA phonon displace-
ment field are shown in Fig. 5(a) . We find that the lattice
displacement is squeezed as Su is negative for certain time
intervals. As a function of time, the fluctuations oscillate
around zero with the frequency 2ωLA(q0) = ωLO. As in the
bulk case, the oscillation amplitude does not increase with
time due to the fast dephasing of the two-phonon coherences.
The long-time behavior is very similar to the bulk case and
not explicitly shown here. The spatial distribution shows
an interesting behavior. Even for longer times, Su becomes
negative only in the area of the dot. The squeezing does not
travel out of the dot together with the LA phonon energy
density; a squeezed lattice displacement is generated within
the dot, but only the LA phonon population, which leads to an
overall increase of the fluctuations, leaves the dot.

This effect can be explained by an analytically tractable
approximation for Su. We evaluate the model only up to the
lowest order of the phonon-phonon coupling λq,k (where k is
the LO and q is the LA phonon wave vector). In this case,
there is no LA phonon population and Su is solely determined
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FIG. 5. (Color online) (a) Lattice fluctuation Su vs time and
distance to the center of the QD. (b) Su at t = 2TLO for different
radii R of the QD.
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by the coherences 〈b k
2 +q

b k
2 −q

〉, whose equations of motion

can now be solved analytically. For the anharmonic decay
processes considered in this paper, the LO phonon wave vector
k is small compared to the wave vector of the generated LA
phonons q. Therefore, we assume that k2/(4q2) is negligibly
small compared to 1. This leads to the analytical expression

Su = C Re

{∫ qmax

0

(
ge∗

k − gh∗
k

) sin(kr)

r
k dk

×
∫ qmax

0

e−iωLOt − e−2iωq t

ωLO − 2ωq

q2dq

}
, (25)

with a real constant C and qmax being the maximum phonon
wave vector. In this approximation of Su, we see that the
spatial dependence of the fluctuations, described by the first
integral, is time-independent and localized around r = 0. This
means that the squeezing is confined to the dot for all times.
The essential point in this approximation is the assumption
k2/(4q2) � 1, which implies that phonon coherences 〈bqbq′ 〉
with q ≈ −q′ are generated. If, in turn, coherences with
q ≈ q′ were generated, as in the degenerate parametric down
conversion of photons, the fluctuations would be traveling like
the phonon population.

Figure 5(b) demonstrates the effect of different dot sizes.
Shown is the spatial dependence of the fluctuations for
different sizes of the QD at a fixed time of t = 2TLO, when
the oscillation has an extremum. As expected, the spatial
confinement of Su scales with the size of the QD. We also
see that the oscillation amplitude is larger for smaller dots;
this is because the coupling between carriers and LO phonons
is stronger for smaller dots and therefore more LO phonons
are generated.

IV. CONCLUSIONS

We have studied the fluctuation properties of LA phonons
generated by the anharmonic decay of LO phonons in two
different systems, a bulk semiconductor and a semiconductor
quantum dot. In both systems, the time behavior of the

fluctuations of the lattice displacement are similar. The
fluctuations oscillate with twice the frequency of the resonantly
generated LA phonons and for small times repeatedly fall
below their vacuum value, i.e., the system is in a squeezed
state with respect to the variables of lattice displacement and
momentum. The squeezing disappears with increasing time
due to the dephasing of the different LA phonon modes and
the rising of the LA phonon population, which increases the
fluctuations. Hence, a larger coherent LO amplitude initially
causes stronger squeezing, but the effect vanishes faster. In
the bulk system, the fluctuations of the lattice displacement
are spatially homogeneous due to symmetry. In contrast, in
the quantum dot case a spatial structure is imprinted on the
system and the LA phonons are created locally at the dot.
Although LA phonon wave packets leave the dot, the squeezing
effect is confined to the vicinity of the dot. This is clearly
different from the otherwise similar case of the degenerate
parametric down conversion of photons. The difference is
caused by the fact that by the anharmonic decay of phonons,
predominantly coherences 〈bqbq′ 〉 with q ≈ −q′ are generated,
while in degenerate photon down conversion q ≈ q′.

For our present calculations, we have assumed a decay
of the LO phonons into a pair of LA phonons, the so
called Klemens channel.25 Since the appearance of two-mode
squeezing is related to the structure of the anharmonic Hamil-
tonian, squeezing in the corresponding two-mode quadrature
operators should be expected also for other decay channels.24

Our results for the fluctuations of the lattice displacement and
the momentum, however, depend on the specific modes and
the dispersion relation of the phonons into which the decay
occurs. Therefore, they cannot directly be transferred to other
decay channels. Nevertheless, comparable effects seem likely
due to the formal similarity of the Hamiltonian.
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