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We develop the theory of the scaling of the anomalous Hall effect (AHE) in the insulating regime, which is
observed in experiments to relate the anomalous Hall and diagonal conductivities by σ AH

xy ∝ σ 1.40∼1.75
xx for a large

range of materials. This scaling is qualitatively different from that observed in metals. Basing our theory on the
phonon-assisted hopping mechanism and percolation theory in random networks, we derive a general formula for
the anomalous Hall conductivity, in which the percolation theory averaging of the random-linked triad clusters is
a key aspect that captures the correct observed physics. We show that it scales with the longitudinal conductivity
as σ AH

xy ∼ σ γ
xx with γ predicted to be 1.33 � γ � 1.76, quantitatively in agreement with the experimental

observations. Our theory predicts that this scaling remains similar regardless of whether the hopping process is
of long-range (variable-range hopping) or short-range type (activation hopping), or is influenced by interactions,
i.e., the Efros-Shklovskii regime. Our theory completes the understanding of the AHE phase diagram in the
insulating regime.
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I. INTRODUCTION

The anomalous Hall effect (AHE) is a central topic in the
study of ferromagnetic materials.1 It exhibits the empirical
relation ρxy = R0Bz + RSMz between the total Hall resistivity
and the magnetization Mz and external magnetic field Bz.
Here, R0 and RS are, respectively, the ordinary and anoma-
lous Hall coefficients. In experiment, the anomalous Hall
resistivity (AHR) is usually observed to follow a power-law
form versus the longitudinal resistivity ρAH

xy ∼ ρ
β
xx , with ρxx

varied by changing the temperature T , disorder scattering,
or density of states (DOS) around the Fermi surface. When
transformed to the anomalous Hall conductivity (AHC) σ AH

xy ,

the scaling relation takes the form σ AH
xy ≈ ρAH

xy /σ 2
xx ∼ σ

2−β
xx .

Three regimes are observed with respect to their dependence
on the diagonal conductivity σxx .1 In the metallic regime, the
AHC σ AH

xy is observed to be linearly proportional to σxx for the
highest metallic systems (σxx > 106 �−1 cm−1) and roughly
constant for the rest of the metallic regime. This dependence
indicates the different dominant mechanisms in ferromagnetic
metals. These are understood to be the skew scattering, side
jump scattering, and intrinsic deflection mechanisms. The
intrinsic contribution is induced by a momentum-space Berry
phase linked to the electronic structure of the multiband
spin-orbit (SO) coupled system.1,2 The side jump scattering
mechanism gives the same scaling relation as the intrinsic
contribution, i.e., σ

AH-sj
xy ∝ σ 0

xx , and the skew scattering is
linear in the longitudinal conductivity σ AH-sk

xy ∝ σxx . While
these mechanisms are now better understood, the maximum
scaling exponent of the AHC can not exceed unity in the
metallic regime.1

On the other hand, experiments in the insulating regime
exhibit an unexpected scaling relation of the AHC: σ AH

xy ∝
σ 1.40∼1.75

xx with the scaling exponent generically larger than
unity.3–14 Earlier experiments on AHE in this regime were done
in magnetite Fe3O4

3, and the recent experimental observations
of this scaling are reported in a large range of materials
including granular Fe/SiO2 films, magnetite epitaxial thin

films, dilute magnetic semiconductor (DMS) Ga1−xMnxAs,
and ferromagnetic semiconductor anatase Ti1−xCoxO2−δ . The
observed scaling in the insulating regime has remained
unexplained and a major challenge in understanding fully the
phase diagram of the AHE.

The hopping transport regime prevails when a system
is in the disordered insulating regime, with the impurity
on-site energies randomly distributed. At low temperature
(T � E0/kB with E0 the ionization energy of the bound
states), the charge transport in such a system will be dominated
by the phonon-assisted hopping of electrons and holes between
impurity sites.16,17

To capture the Hall effect, one requires the hopping process
between impurity sites (Fig. 1) to break the time-reversal
(TR) symmetry. The two-site direct hopping preserves TR
symmetry, and contributes only to the longitudinal charge
transport. The hopping through triads (three sites) is the
minimum requirement to model theoretically the Hall effect.18

The total hopping amplitude is obtained by adding the direct
and indirect (through the intermediate k site) hopping terms
from i to j sites. The two hopping paths give rise to
an interference term for the transition rate that breaks TR
symmetry and is responsible for the Hall current in the hopping
regime. For the ordinary Hall effect (OHE), the interference is
a reflection of the Aharonov-Bohm phase, and for the AHE, it
reflects the Berry phase due to SO coupling.

While the hopping through triads reveals the minimum
element contributing to the AHE in the hopping conduction
regime, the crucial step to understand the insulating AHE and
the observed scaling relation is hidden in the evaluation of
the AHC within percolation theory. In the hopping conduction
regime, the charge transport is not dominated by the whole
impurity system but by specific percolation clusters, which
span the whole material, but cover only part of the impurity
sites. To correctly evaluate the AHC, one must address a highly
nontrivial issue: how to average the AHC over the percolation
clusters with triads.

The few previous studies of the AHE in this regime have
been focused on manganites and Ga1−xMnxAs by employing
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FIG. 1. (Color online) AHE in the insulating regime. In this
regime, charge transport occurs via hopping between impurity sites.

Holstein’s theory in the anomalous Hall system. In manganites,
a nonuniform magnetic system, the AHC is determined only
by optimal triads and, therefore, this material does not exhibit
the scaling observed in the typical disordered insulators.19,20

On the other hand, the studies on insulating Ga1−xMnxAs did
not appreciate the central aspect of the hopping conduction
that the AHC should be averaged over percolation cluster,
and thus failed in explaining the observed scaling.21,22 A
numerical study of the AHE using metallic theory observed
a scaling in a disordered metallic regime, but both the AHC
and σxx remained metallic in this study, while the scaling
was only present for a particular sign of the impurities.1,15

The AHE theory in the metallic regime is generally based
on the perturbation expansion in terms of small parameter
1/(kF l). Here, kF is the magnitude of the Fermi wave
vector and l is the length of mean-free path. Hence, the
available microscopic theories of metals fail in the insulating
regime since the condition kF l � 1 is no longer satisfied for
disordered insulators by its own construction.1,15

In this paper, we develop a theoretical approach to study
the scaling of the AHE in the insulating strongly disordered
amorphous regime. The AHC in this regime is correctly
formulated and exactly calculated by averaging over the
percolation cluster. In light of the fact that the charge transport
is dominated by the percolation cluster, we derive rigorously
a new configuration averaging formula for the AHC, with
the key physics that the Hall currents are averaged over
percolation cluster containing triads completely considered.
With our formalism, we calculate the upper and lower limits of
the AHC, which correspond to different extreme situations for
the triad spatial distribution, and show that they scale with σxx

as σ AH
xy ∼ σ

γ
xx , where γ is predicted to be 1.33 � γ � 1.76

with only a slightly quantitative dependence on the specific
hopping types. Namely, the scaling remains similar in
the Mott variable-range hopping (VRH), Efros-Shkolvskii
(E-S) regime, and in activation E3 hopping regime. This
matches the experimental observation that the scaling is seen
in many types of insulators with different hopping types
dominating.

II. THE MODEL

Our theory is based on a minimal tight-binding Hamilto-
nian. With the particle-phonon coupling considered, the total

Hamiltonian H = Hp + Hc + Hph, with

Hp =
∑
iα

εi ĉ
†
iαĉiα −

∑
iα,jβ

tiα,jβ ĉ
†
iαĉjβ +

∑
iαβ

M · ταβ ĉ
†
iαĉiβ ,

Hc = iη
∑
iαλ

(�qλ · �eλ)ω−1/2
λ (bλe

i �qλ·�r − b
†
λe

−i �qλ·�r )ĉ†iαĉiα,

Hph =
∑

λ

ωλb
†
λbλ.

Here, Hp describes localized states, Hc gives the particle-
phonon coupling with η the coupling constant, Hph is the
phonon Hamiltonian, α is the local on-site total angular mo-
mentum index, and εi is the energy measured from the Fermi
level. Here, we consider that the magnetization is saturated
and thus assume M = Mêz. We rewrite the Hamiltonian Hp

in the diagonal basis of the exchange term and obtain

Hp =
∑

α

εiαĉ
†
iαĉiα −

∑
iα,jβ

tiα,jβ ĉ
†
iαĉjβ, (1)

where εiα = εi + Mταα . The hopping matrix tij is generally
off diagonal due to SO coupling. For example, for the dilute
Ga1−xMnxAs, the matrix tiα,jβ describes the hopping of the
holes localized on the Mn impurities. Under the spherical ap-
proximation, tiα,jβ can be obtained based on a unitary rotation
U (Rij ) from the êz direction to the hopping direction i →
j .23 We thus have tiα,jβ = [U †(Rij )tdiagU (Rij )]αβ with tdiag =
diag[t3/2,t1/2,t−1/2,t−3/2] representing the situation that the
hopping direction is along the z axis. Another example is for
the localized s-orbital electrons. In this case, the hopping ma-
trix is given by tij = U †(Rij )[t̃ij (1 + i�vij · �σ )]U (Rij ).20 Here,

t̃ij = diag[t1/2,t−1/2] and �vij = α
h̄

∫ �rj

�ri
[∇V (r) × d�r ′] with V (r)

including the ion and external potentials, the SO coupling
coefficient α = h̄/(4m2c2), and m the effective mass of the
electron. The localization regime has the condition |tiα,jβ | �
|εi − εj | in average. The specific forms of the relevant
parameters (tij , M , spin operator ταβ ) are material dependent
and do not affect the scaling relation between σ AH

xy and σxx .
Considering the dominant contributions to the longitudinal

and Hall transports, which include the one- and two-real-
phonon processes through triads (Fig. 2),18 we obtain the

FIG. 2. (Color online) The hopping processes through triads with
up to two real phonons absorbed or emitted. (Top) Typical diagrams of
the two-phonon direct and indirect hopping processes. (Bottom) One-
phonon direct process and typical three-phonon (one real phonon)
indirect hopping processes.
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charge current between i and j sites in a single triad with
applied voltages21:

Iij = GijVij + Gijk(Vik + Vjk), (2)

where the direct conductance

Gij = 2λ0e
2

kBT

∑
αβ

|tiα,jβ |2T (2)
ij , (3)

with T
(2)
ij = |�ij |e− 1

2 β(|εiα |+|εjβ |+|εiα−εjβ |), �ij = εiα − εjβ ,
εiα = εi + Mταα , and the constant λ0 ∝ η2.18 The second term
in Iij is responsible for the Hall transport and

Gijk = 4λ2
0e

2

kBT

∑
αβγ

[
Im(tiα,jβ tjβ,kγ tkγ,iα)T (3)

ijk

]
, (4)

where T
(3)
ijk = T

(3)
i,jk + T

(3)
k,ij + T

(3)
j,ki , with T

(3)
i,jk = |�ij�ik|

e− 1
2 β(|εjβ |+|εkγ |+|εiα−εkγ |+|εiα−εjβ |). The function Im(tiα,jβ

tjβ,kγ tkγ,iα) gives a geometric phase term corresponding to
the closed-path hopping i → j → k → i. The formula of
Iij gives the microscopic conductance in any single triad. To
evaluate the macroscopic AHC, one shall properly average it
over all triads in the random system. This is achieved with the
aid of percolation theory, a fundamental tool to understand
the hopping transport.

III. PERCOLATION THEORY

We first map the random impurity system to a random
resistor network by introducing the connectivity between
impurity sites with the help of a cutoff Gc(T ). When the
conductance between two impurity sites satisfies Gij � Gc,
we consider that the i,j sites are connected with a finite resistor
Zij = 1/Gij . Otherwise, they are treated as disconnected, i.e.,
Gij → 0. The Hall effect will be treated as a perturbation to the
obtained resistor network. The cutoff Gc should be properly
chosen so that the long-range critical percolation paths and
clusters appear and span the whole material and dominate
the charge transport in the hopping regime. The macroscopic
physical quantities will finally be obtained by averaging over
the percolation path and cluster.

The hopping coefficient generally has the form
tiα,jβ = t

(0)
iα,jβe−aRij , with a−1 the localization length and

Rij = |Ri − Rj |. The direct conductance holds the form
Gij = G0(T )e−2aRij − 1

2 β(|εiα |+|εjβ |+|εiα−εjβ |), and then the cutoff
can be introduced by Gc = G0e

−βξc(T ).24 Here, βξc is a
decreasing function of T , indicating the material in the
insulating regime. The number of impurity sites connected
to a specific site i with energy εi can be calculated by

n(εi,ξc) =
∫

dεj

∫
d3 �Rijρ(εj , �Ri)�(Gij − Gc). (5)

Here, �(x) is the step function and the DOS ρ(ε, �Ri) ≈
1
V

∑
i δ(ε − εi) is approximated to be spatially homoge-

neous. The number n(εi,ξc) can also be given by n(εi,ξc) =∑
n Pn(εi,ξc), with Pn(εi,ξc) being the probability that the nth

smallest resistor connected to the site i has the resistance less
than 1/Gc. The function Pn reads25 as

Pn(εi,ξc) = 1

(n − 1)!

∫ n(εi )

0
e−xxn−1dx, (6)

which can be derived according to the Poisson distribution.
The percolation path and cluster appear when the average
connections per impurity site n̄ = 〈n(εi)〉c reach the critical
value n̄c, where the definition of 〈. . .〉c is given in Eq. (7).
Suppose a physical quantity F (ε1, . . . ,εm; �r1, . . . ,�rm) is an m-
site function, requiring the ith site to have at least ηi sites
connected to it. The averaging of F (ε; �r) reads as

〈F (ε; �r)〉c = 1

NF

∫
dε1 . . .

∫
dεm

∫
d3�r12 . . .

∫
d3�rm−1,m

×
m∏

i=1

Pηi
(εi)F (ε1, . . . ,εm; �r1, . . . ,�rm), (7)

whereNF is a normalization factor and the probability function
Pηi

(εi) = ρ(εi)
∑

k�ηi
Pk(εi). The term

∑
k�ηi

Pk(εi) entering
the probability function has an important physical reason.
The configuration averaging is not conducted over the whole
impurity system, but over the percolation cluster, which covers
only a portion of the impurity sites. Therefore, the probability
that an impurity site belongs to the percolation cluster must be
taken into account for the probability function. Moreover, this
probability function also distinguishes the physical origins of
the AHC and σxx . For σ AH

xy , one has ηi = 3, and for σxx , one has
ηi = 2. This indicates the averaging of σxx is performed along
the one-dimensional (1D) percolation path, while for AHE,
which is a two-dimensional (2D) effect, one shall evaluate
AHC over all triads connected in the 2D percolation cluster.

IV. CONFIGURATION AVERAGING OF THE
ANOMALOUS HALL CONDUCTIVITY

According to the formula (7), the average value of
the one-site function n(εi,ξc) in the percolation cluster is
calculated by

n̄ =
∫

dεin(εi)ρ(εi)n(εi)∫
dεin(εi)ρ(εi)

. (8)

When the DOS ρ(εi) = ρ0 is a constant, the number n(εi) is
given by n(εi) = 2π

3
ρ0

(2akBT )3 (ξc − |εi |)2(ξ 2
c − |εi |2). Then, we

have n̄ = 0.406π
ρ0

(2akBT )3 ξ
4
c . The hopping conduction occurs

when the average value n̄ reaches the critical value n̄c. We
obtain then the cutoff value ξc by ξc(T ) =[ (2akBT )3n̄c

0.406πρ0

]1/4
. Thus,

it gives

βξc =
(

T0

T

)1/4

, T0 = 16
a3n̄c

kBρ0
, (9)

which is the Mott law.17 Accordingly, if we assume the density
of states ρ(ε) ∼ ε2, we obtain straightforwardly the E-S law
βξc = ( T0

T
)1/2.26,27

Numerical solutions show that the critical site connectivity
is n̄c = 2.6 ∼ 2.7 for the appearance of a percolation path and
cluster in three-dimensional (3D) materials.28,29 This indicates
that the triads are sparsely distributed in the percolation cluster,
as shown in Fig. 3. The AHC can be derived by examining
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FIG. 3. (Color online) Typical resistor network in the material.
The present situation indicates V H

N−2 and V H
N in the region from

x − �x to x + �x are zero, where no triads form.

the transverse voltage V H
y (along the y axis) induced by the

applied longitudinal current I0. We denote by N (x) the number
of triads distributed along the y axis in the region around
position x. (Note that M is along the z axis, hence, we assume
the system in this direction to be uniform.) The transverse
voltage equals the summation over the voltage drops of the
N (x) triads:

V H
y (x) =

N(x)∑
l=1

V H
l . (10)

For the general situation, we allow some V H
i ’s to be zero

(see Fig. 3). In that case, no triad forms for the incoming
current Ii under the condition that all direct conductances in
a triad must be no less than Gc. To calculate V H

i , the voltage
contributed by the ith triad, we employ perturbation theory
to the equation30 Iij = GijVij + ∑

k Gijk(Vik + Vjk). First, in
the zeroth order, we consider only the normal current, namely,
the Hall current is zero and, thus,

∑
j Iij = ∑

j GijV
(0)
ij = 0,

with which one can determine the voltage V
(0)
i at each site.

Then, for the first-order perturbation, we have
∑

j Iij =∑
j GijVij + ∑

j J
(H )
ij = 0, which leads to J

(H )
i = ∑

j J
(H )
ij =∑

j

∑
k Gijk(V (0)

jk + V
(0)
ik ) = −∑

j GijVij . The current J
(H )
i

can also be written as

J
(H )
i = 3

2

∑
jk

GijkV
(0)
jk . (11)

For the hopping regime, the triads are dilutedly distributed,
and the Hall voltages induced by different triads are considered
to be uncorrelated. Therefore, we obtain the Hall voltage of
the ith triad from the transformation indicated in Fig. 4 that

V
(H )
i = 3IiG(i)

i1i2i3

Gi1i2Gi2i3 + Gi1i3Gi2i3 + Gi3i1Gi1i2

. (12)

FIG. 4. (Color online) Resistor network transformation.

From the resistor network configuration, one can see∑N(x)
i Ii = 2I0. For convenience, we denote Ii = 2I0λi(x)

with
∑

i λi = 1. For a macroscopic system, one has N (x) →
∞. Furthermore, we consider that, at the position x for each
λi , there are ni(x) triads that have such same current fraction
λi . Then, the average transverse voltage reads as

V̄ H
y = 6I0

1

Lx

∫
dx

∑
{ni }

λi

×
ni�1∑
j=1

G(j )
j1j2j3

Gj1j2Gj2j3 + Gj1j3Gj2j3 + Gj3j1Gj1j2

. (13)

To simplify this formula, we extend the current distribu-
tion {λi} for the region between x − �x and x + �x to
the whole space along the x direction, and then we can
exchange the order of the integral and the first summa-
tion: 1

Lx

∫
dx

∑
{ni } λi

∑ni�1
j=1 → ∑

{λi } λi
1
Lx

∫
dx

∑ni (x)
j=1 . In

the limit N (x) → ∞ and when the length Lx is much
larger than the typical length L of the triad, the calculation

1
Lx

∫
dx

∑ni (x)
j=1 gives the average of all possible configurations

of the triads through the percolating cluster. This leads to

V̄ H
y = 6I0

∑
{λi }

n̄iλi

〈
G(i)

i1i2i3

Gi1i2Gi2i3 + Gi1i3Gi2i3 + Gi3i1Gi1i2

〉
c

,

with n̄i = (1/Lx)
∫

dx ni(x) the average number of triads with
ingoing and outgoing current Ii . Note the identity

∑
i niλi =

1 is independent of position x and, therefore, we have also∑
i n̄iλi = 1. For this, we obtain the AHC

σ AH
xy = 3Lσ 2

xx

kBT

e2

〈∑
αβγ

[
Im(tiα,jβ tjβ,kγ tkγ,iα)T (3)

ijk

]
∑

i↔j↔k |tij tjk|2T (2)
ij T

(2)
jk

〉
c

,

(14)

where L is the correlation length of the network. Note that the
configuration integral given by Eq. (7) is derived for the AHC
in this paper. This is an essential difference from the former
theory by Burkov et al., 21 where the configuration averaging
applies to the whole system rather than to 2D percolation
cluster. With our formalism, the key physics that Hall currents
are averaged over percolation clusters can be studied, which
is a crucial step to understanding the insulating regime of the
AHE phase diagram. The above configuration integral can not
be solved analytically. In the following, we study the upper and
lower limits of the AHC with Eq. (14) by considering different
extreme situations for the triad distribution, with which the
range of the scaling relation between σ AH

xy and σxx can be
determined.

Before proceeding further, we would like to present a few
remarks on Eq. (14). First of all, this formula is generally
valid for the disordered insulating regime, as long as the triads
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are sparsely distributed in the percolation cluster. Second, for
different types of hopping regimes (Mott, ES, and activation
E3 hopping regimes), the functions of the DOS ρ(ε) and
connectivity n(εi) in the configuration integral are different.

V. SCALING RELATION BETWEEN ANOMALOUS HALL
CONDUCTIVITY AND LONGITUDINAL

CONDUCTIVITY

The lower (upper) limit of the AHC can be formulated by
keeping only the maximum (minimum) term in the denomi-
nator and the minimum (maximum) term in the numerator. In
this section, we shall study the scaling relation in the Mott,
ES, and activation E3 hopping regimes, respectively.

A. Mott variable-range hopping regime

In this regime, we first approximate the DOS to be
constant although this approximation is relaxed later. Under
this condition, one obtains straightforwardly the probability
Pn(εi) from the number n(εi). Note in the hopping conduction
mechanism that dependence of the conductivities is dominated
by exponential functions. It can then be expected that the
scaling relation between σ AH

xy and σxx will be governed by the
exponential functions in Gijk and Gij . To focus on the scaling
relation, we first drop off the summation of the spin states.
This procedure ignores an important physical consequence that
the summation over spin-up and spin-down states contributes
oppositely to the AHE (we shall return to this discussion later),
but keeps the central result of the scaling relation unchanged
between σ AH

xy and σxx . As a result, with further simplification,
we find

{
σ AH

xy

}
min
max

� 3Lσ 2
xx

kBT

e2t
(0)
max/min

〈
R

min
max
ijk

〉
c

〈
ε

min
max
ijk

〉
c
,

(15)

where 〈Rmin
ijk 〉c = ea〈Rij +Rjk−Rik〉c |Rij ,Rjk<Rik

,〈εmin
ijk 〉c =

e0.5β〈|εi |+|εj |+|εj −εk |−|εi−εk |〉c ||εi |<|εj |<|εk |, 〈Rmax
ijk 〉c and 〈εmax

ijk 〉c
hold the same form for the calculation, but the restrictions
change to be Rij ,Rjk > Rik , and |εi | > |εj | > |εk|,
respectively. The coefficient t

(0)
max/min represents the

maximum/minimum element in the matrix t
(0)
ij . In obtaining

Eq. (15), we have approximated the configuration averaging
of the exponential functions to be the configuration averaging
of the exponents. This approximation loses the information of
the power-law dependence of the AHC on the temperature,
and it requires that the dominant temperature dependence of
the AHC should be in the exponential form. In the hopping
conduction regime, this condition is satisfied.

It is instructive to point out the underlying physics of the
two limits. In the hopping regime, charge transport may prefer
a short and straight path in the forward direction with larger
resistance than a long and meandrous path with somewhat
smaller resistance.16,25 This picture introduces an additional
restriction complementary to the percolation theory for charge
transport. The bonds in a triad that play the major role for the
current flowing through it are determined by the optimization
of the resistance magnitudes and spatial configuration of
the three bonds. A quantitative description can be obtained

by phenomenologically introducing an additional probability
factor to restrict the charge transport.16,25 Here, we only need
to adopt this picture to present the two extreme situations
corresponding to {σ AH

xy }min/max. To get the upper limit, we
assume that for each triad of the percolation cluster the two
bonds with smaller direct conductance dominate the charge
transport, i.e., the product of the two smallest conductances
minimize the denominator and take the maximum value for the
numerator of Eq. (14). For the opposite limit, the situation that
the two bonds with larger conductances in each triad dominate
the charge transport corresponds to the lower limit of the AHC.

We study first the lower limit of the AHC. For convenience,
we neglect the spin indices. According to Eq. (7), we know
the configuration averaging 〈Rij + Rjk − Rik〉c|Rij ,Rjk<Rik

is a nine-dimensional (9D) integral over the position∫
d3 �Rij

∫
d3 �Rjk and the on-site energies

∫
dεidεjdεk . We

shall first perform the integral over position. Denote by
�R1 = �Rij , �R2 = �Rjk for convenience, and then R3 = Rik =

(R2
1 + R2

2 − 2R1R2 cos θ )1/2. We then study the integral I =
1
Nr

∫
d3 �R1

∫
d3 �R2(R1 + R2 − R3) with Nr = ∫

d3 �R1
∫

d3 �R2.
Note that, in the configuration integral, we have the restrictions
Ri � Ri,max and R1,R2 � R3, with Ri,max determined through
2aRmax

ij + 1
2β(|εi | + |εj | + |εi − εj |) = βξc (from the condi-

tion Gmin
ij = Gc or Zmax

ij = 1/Gc). For this, we can show that
the integral satisfies

I � 1

Nr

8π2
∫ R2max

0
dR2R

2
2

[ ∫ π

π/2
dθ

∫ R1max

0
dR1R

2
1 sin θ

× (
R1 + R2 −

√
R2

1 + R2
2 − 2R1R2 cos θ

)
+

∫ π/2

π/3
dθ

∫ R1max

2R2 cos θ

dR1R
2
1 sin θ

× (
R1 + R2 −

√
R2

1 + R2
2 − 2R1R2 cos θ

)]
, (16)

where Nr = 8
3π2R3

2max

∫ π

π/2 dθ
∫ R1max

0 dR1R
2
1 sin θ +

8π2
∫ R2max

0 dR2R
2
2

∫ π/2
π/3 dθ

∫ R1max

2R2 cos θ
dR1R

2
1 sin θ . By a straight-

forward calculation, we obtain further

I � 0.424π2R7
max/Nr , (17)

with the normalization factor Nr = 23
18π2R6

max. Here, Rmax =
max{R1max,R2max}. We should emphasize that, to this step,
we can not cancel the function R7

max in the numerator of the
Eq. (17) by the normalization factor Nr . This is because both
of them are only part of the original configuration averaging
〈Rij + Rjk − Rik〉c. The final result needs to further integrate
over on-site energies, and gives that

ln
〈
Rmin

ijk

〉
c
� 0.156βξc. (18)

Now, we evaluate the configuration averaging 〈ε min
ijk 〉c,

which corresponds to a 3D integral over on-site energies.
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Similarly, the formula is given by

ln
〈
ε

min
ijk

〉
c
= 0.5β

∫
dεidεjdεkρ(εi)

∑
l�3 Pl(εi)ρ(εi)

∑
l�3 Pl(εj )ρ(εk)

∑
l�3 Pl(εk)(|εi | + |εj | + |εj − εk| − |εi − εk|)∫

dεidεjdεkρ(εi)
∑

l�3 Pl(εi)ρ(εi)
∑

l�3 Pl(εj )ρ(εk)
∑

l�3 Pl(εk)
. (19)

To simplify the above integral, we check |εj − εk| − |εi − εk|
with the restriction |εi | < |εj | < |εk|. For the case (i) sgn(εi) =
sgn(εj ) = sgn(εk) = ±1, we have |εj − εk| − |εi − εk| =
−|εi − εj |; for (ii) sgn(εi) = sgn(εj ) = −sgn(εk) = ±1, we
have |εj − εk| − |εi − εk| = −|εi − εj |; for (iii) sgn(εi) =
sgn(εk) = −sgn(εj ) = ±1, we have |εj − εk| − |εi − εk| =
−|εi − εj |; and for (iv) sgn(εj ) = sgn(εk) = −sgn(εi) = ±1,
we have |εj − εk| − |εi − εk| = |εi − εj |. For this, we ob-
tain that 〈|εi | + |εj | + |εj − εk| − |εi − εk|〉c � 〈|εi | + |εj | −
1
2 |εi − εj |〉c. Then, by a straightforward calculation, one can
verify that

ln
〈
ε

min
ijk

〉
c
= 0.086βξc. (20)

Together with the results in Eqs. (18) and (20), we get〈
Rmin

ijk

〉
c

〈
εmin
ijk

〉
c
� e0.242βξc . (21)

The lower limit of the AHC is then obtained by{
σ AH

xy

}
min = 3Lσ 2

xx

kBT

e2

1

t
(0)
max

e0.242βξc . (22)

Note the longitudinal conductivity σxx is calculated based on
the two-site function of Gij , which should be no less than Gc

in a percolation path. The evaluation of σxx with percolation
theory has been well studied in the published literatures.16,24,25

It can be shown that the result of σxx equals Gc divided by the
correlation length of the network and takes the form σxx =
σ0(T )e−βξc , where σ0(T ) gives at most a power law on T .24,25

Comparing this form with the lower limit of the AHC obtained
above, we reach that{

σ AH
xy

}
min = 3Lσ 0.242

0
kBT

e2

1

t
(0)
max

σ 1.758
xx . (23)

The upper limit can be studied in the same way.
Considering the different restrictions, we obtain 〈Rij +
Rjk − Rik〉c|Rij ,Rjk<Rik

= 0.483βξc/a and 〈|εi | + |εj | + |εj −
εk| − |εi − εk|〉c||εi |>|εj |>|εk | = 0.275ξc. For this, we obtain
〈Rmax

ijk 〉c � e0.483βξc , 〈εmax
ijk 〉c � e0.138βξc , and the upper limit of

the AHC by{
σ AH

xy

}
max = 3Lσ 0.621

0
kBT

e2t
(0)
min

σ 1.379
xx ∝ σγ

xx. (24)

Comparing the above results with the AHC, we reach
{σ AH

xy }min/max ∼ σ
2−γa/b

0 σ
γa/b

xx with γa = 1.76 and γb = 1.38.
This leads to the scaling relation between σ AH

xy and σxx of
the AHE in the Mott VRH regime:

σ AH
xy ∝ σγ

xx, 1.38 < γ < 1.76. (25)

The maximum (minimum) of the AHC corresponds to the
smaller (larger) power index γb (γa). This scaling range
can be confirmed with a numerical calculation of Eq. (15).

Furthermore, a direct numerical study for the configuration
integral (14) gives the scaling exponent γ ≈ 1.62, which is
consistent with the analytical prediction of the lower and upper
limits.

It is noteworthy that the configuration averaging over
the position 〈Rijk〉c undergoes a relatively large change in
magnitude between the upper and lower limits. This result
reflects an important property of the (variable-range) hopping
conduction regime presented below. In the VRH, the hopping
process allows us to go beyond between nearest-neighbor
impurity sites to minimize the resistivity. The optimization
of the typical hopping length plays a major role in determining
the scaling of the conductivities with respect to temperature.17

The lower and upper limits correspond to the opposite
extreme situations of the triad distribution, which have distinct
influences on the optimization of the hopping distances for the
Hall transport and, thus, lead to very different results for the
AHC after spatial averaging. We should emphasize that this
remarkable difference between 〈Rmax

ijk 〉c and 〈Rmin
ijk 〉c is obtained

in the case of a constant DOS around Fermi energy. One can
expect this effect will be suppressed in the E-S hopping regime
where the DOS is a parabolic function of the on-site energy
and the difference between configuration integrals with respect
to energies become more important (refer to the discussion in
the next section).

We make a further remark here to compare our results with
those obtained by Burkov et al.21 In the final result of the
AHC in Ref. 17, the configuration averaging was actually not
performed but simply replaced by the maximum value of the
integrand in their formalism. This procedure, not surprisingly,
can not predict the correct scaling relation. Here, we have
performed the exact calculation of the lower and upper limits of
the AHC based on the correct configuration averaging formula.
With our procedure, the key physics that the Hall currents are
averaged over percolation cluster is completely considered and
reflected in our evaluation.

So far, in the calculation we have assumed a constant DOS.
This approximation is applicable for the ferromagnetic system
with strong exchange interaction between local magnetic
moments and charge carriers (e.g., oxides, magnetites) and
half metals in general. In this case, we do not need to sum over
spin-up and spin-down states, which contribute oppositely to
the AHE, and the previous results are valid.

However, when the Fermi energy crosses both spin-up and
-down impurity states, a symmetric DOS with ρ(ε) = ρ(−ε)
leads to zero AHC. This is because under the transformation
εl,σ → −εl,−σ (l = i,j,k), Gijk changes sign, while Gij is
invariant. Thus, the averaging for AHC over all spin states and
on-site energies cancels.21 We relax the previous simplifying
restriction by expanding the DOS by ρ(ε) = ∑

n
1
n!

dnρ0

dεn
F

εn,
where we consider ρ0 = ρ(εF ) is finite and has only a
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FIG. 5. (Color online) Scaling relation between the AHC and
longitudinal conductivity. The theoretical results are compared with
the experimental observations.

relatively small variation in the range |ε| < ξc. Substituting this
expansion into Eq. (14) yields σ AH

xy = ∑∞
n=0 σ (n)

xy , with the first

and second nonzero terms, respectively, proportional to dρ0

dεF

and d3ρ0

dε3
F

. We can similarly evaluate the lower and upper limits

of σ AH
xy as before. The first two nonzero terms in the expansion

are {σ (1)
xy }min/max ∼ M

dρ0

dεF
ξc(T )σ

2−γa/b

0 σ
γa/b

xx and {σ (2)
xy }min/max ∼

0.002M
d3ρ0

dε3
F

ξ 3
c (T )σ

2−γa/b

0 σ
γa/b

xx . The appearance of M is due to

the summation over the spin-up and -down states. We have also
employed the result 〈|ε|〉c = 0.112ξc. Note that σ (1)

xy and σ (2)
xy

have different physical meanings. The term σ (1)
xy dominates

when the DOS varies monotonically versus ε. Furthermore,
when the DOS has a local minimum at the Fermi level,
which may be obtained due to particle-particle interaction
(Coulomb interaction), we have dρ/dεF = 0. Then, the term
σ (1)

xy varnishes and σ (2)
xy dominates the AHE. The result that

the AHC σ AH
xy proportional to dρ0/dεF (when the DOS varies

monotonically with respect to energy around Fermi energy) or
d3ρ0/dε3

F (when the DOS has a local minimum at Fermi level)
indicates an interesting property that the AHC may change
sign when the first- or third-order derivative of DOS with
respect to energy changes sign. This result is consistent with
the observation by Allen et al.7

Figure 5 shows that our theoretical prediction is consistent
with the experimental observations of the scaling relation in
this regime, hence completing the understanding of the phase
diagram of the AHE.

B. Efros-Shkolvskii regime

In the case with strong Coulomb interaction, the DOS may
be greatly reduced around the Fermi energy in disordered

insulators.26,27 In this case, the assumption in the preceding
section that the DOS has a small variation relative to ρ0 is not
valid. The limit situation is that both the DOS and the first
derivative at Fermi level vanish (i.e., the E-S hopping regime),
which corresponds to the appearance of a gap due to Coulomb
interaction. In this case, ρ0 = 0 and dρ/dεF = 0, and thus

ρ(ε) � 1

2

d2ρ0

dε2
ε2 + 1

6

d3ρ0

dε3
ε3. (26)

The E-S hopping regime is different from the cases discussed
in the previous section since, around the Fermi energy, DOS
is not dominated by a constant but by a parabolic function of
on-site energy. This may lead to a quantitative variation of the
probability function in the configuration averaging, and finally
affect the quantitative but not qualitative result of the scaling
relation. The formula of the connectivity n(εi,ξc) is now
given by

n(εi,ξc) = 1

(2akBT )3

2π

3

d2ρ0

dε2

(
1

30
ξ 6
c − 1

10
ξ 5
c |εi | +

+ 1

4
ξ 4
c |εi |2 − 1

3
|εi |3ξ 3

c + 3

10
|εi |5ξc − 3

20
|εi |6

)
.

(27)

The configuration averaging of AHC can be calculated
following a similar procedure. Specifically, for the lower limit,
we obtain 〈

Rmin
ijk

〉
c
� e0.092βξc ,

〈
εmin
ijk

〉
c
� e0.29βξc . (28)

Comparing the above results with those obtained in the Mott
VRH regime with a constant DOS, we can see that the magni-
tude of energy averaging in the E-S hopping regime increases,
while the magnitude of position averaging decreases. This is
reasonable since the DOS varies as a function of ε2, which
increases the contribution to the Hall effect from the impurity
states with energies far away from the Fermi energy and,
accordingly, decreases the contribution from hopping between
impurity sites with large distances. The lower limit of the AHC
is then obtained by

{
σ AH

xy

}
min � 0.059Lσ 0.38

0 (T )
M0

e2

1

t
(0)
max

d3ρ0

dε3
F

ξ 3
c (T )σ 1.62

xx . (29)

For the upper limit of AHC, we get 〈Rmax
ijk 〉c � e0.29βξc and

〈εmax
ijk 〉c � e0.38βξc . This leads to the scaling relation in the upper

limit

{
σ AH

xy

}
max � 0.026Lσ 0.67

0 (T )
M0

e2

1

t
(0)
min

d3ρ0

dε3
F

ξ 3
c (T )σ 1.33

xx . (30)

Therefore, in the E-S hopping regime, the scaling relation
between anomalous Hall and longitudinal conductivities be-
comes σ AH

xy ∝ σ
γ
xx with 1.33 � γ � 1.62, which has a small

quantitative shift relative to the scaling obtained in the case
with a constant DOS. This result is consistent with the
observations in the experiments by Aronzon et al.4 and by
Allen et al.,7 who found the scaling relation as 1.4 � γ � 1.6
for the E-S hopping conduction regime. Again, the AHC
in the E-S regime σ AH

xy is proportional to d3ρ0/dε3
F , and
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thus may change sign when the third-order derivative of
DOS with respect to energy changes sign. Finally, it can
be expected that the general situation with a reduced DOS
(not necessarily zero) at Fermi level will be associated with a
scaling falling in-between the E-S hopping regime and the case
with a constant DOS. This confirms that the scaling relation
between σ AH

xy and σxx is insensitive to which types of hopping
conduction the material belongs to, and is therefore generic
for the disordered insulating regime.

C. Activation E3 hopping regime

Finally, we present a brief study on the AHE in the activation
E3 hopping regime, which dominates the charge transport
in the disordered insulating system when the temperature
T > T0. Here, T0 is given by Eq. (9). In the activation
E3 hopping regime, the hopping between nearest-neighbor
impurity sites dominates the charge transport.27,31 In this case,
the hopping configuration in the position space is not affected
by temperature. Thus, the configuration averaging over po-
sition space is independent of temperature. The temperature
dependence of the conductivities is solely determined by the
energy configuration integral. Again, we consider that the
impurity sites are homogeneously distributed in position space.
Then, connectivity n(εi) for a specific impurity site with on-site
energy εi is given by

n(εi) = 4πR3
c

3

∫
dεjρ(εj )�

(
E3 − |εi | + |εj | + |εi − εj |

2

)
,

(31)

where E3 is the cutoff for on-site energy and Rc represents
the typical distance between the neighbor impurity sites. For
a constant DOS, one has

n(εi) = 4
3πR3

c ρ0(2E3 − |εi |), (32)

with |ε| � E3. It can be seen that, for the present regime,
n(E3) = 4

3πR3
c ρ0E3 > 0. This is different from the situation

in the VRH regime considered in previous sections. By
substituting the above formula into Eq. (8), one can calculate
the relation between the cutoff E3 and n̄ straightforwardly,
with which one can verify that E3 is a constant independent of
temperature and E3 ∝ 1/(ρ0R

3
c ).31 The longitudinal conduc-

tivity is then given by

σxx = σ0e
−E3/kBT . (33)

The AHC is still given by Eq. (14) with the function of
n(εi) given by Eq. (31), but now the configuration integral
over position is unrelated to that over on-site energies and,

thus, does not affect the temperature dependence of σ AH
xy . For

this, we obtain the upper and lower limits of the AHC that

{
σ AH

xy

}
min
max

� 3Lσ 2
xx

kBT eaRc

e2t
(0)
max/min

〈
ε

min
max
ijk

〉
c
. (34)

By a direct numerical evaluation we obtain that 〈εmax
ijk 〉c ≈

e0.61βE3 , 〈εmin
ijk 〉c ≈ e0.34βE3 , with which we obtain the scaling

relation σ AH
xy ∝ σ

γ
xx , where 1.39 � γ � 1.66. With this result,

we conclude that the scaling in the activation E3 hopping
regime has only a quantitative small shift relative to the scaling
in the VRH hopping regimes.

VI. CONCLUSIONS

We have developed a theory based on the phonon-assisted
hopping mechanism and percolation theory to study the
anomalous Hall effect (AHE) in the disordered insulating
regime. A general formula for the anomalous Hall conductivity
(AHC) has been derived for the hopping conduction regime,
with the key physics that the Hall currents are averaged
over percolation cluster being completely considered. We
calculated the lower and upper limits of the AHC and show
that it scales with the longitudinal conductivity as σ AH

xy ∼
σ

γ
xx with γ predicted to be 1.33 � γ � 1.76. The predicted

scaling only slightly depends on the specific hopping types,
and is quantitatively in agreement with the experimental
observations.

From our theory, the scaling relation in the insulating
AHE is fully determined by the microscopic origin: phonon-
assisted hopping conduction mechanism, and by the fact
that the AHC is dominated by the percolation clusters. It
is clear that these two aspects are generic for the hopping
conduction regime of the disordered insulators, and, therefore,
the obtained scaling in this regime is qualitatively generic in the
disordered insulating AHE. We have shown that this scaling
remains similar regardless of whether the hopping process
is Mott variable-range hopping, influenced by interactions,
or activation E3 hopping (nearest-neighbor hopping) regime.
Our results explain naturally how the scaling between the two
quantities remain true even when the diagonal conductivity
crosses regimes and why this type of scaling is so prevalent in
the insulating regime. Our theory completes the understanding
of the AHE phase diagram in the insulating regime.

ACKNOWLEDGMENT

This work was supported by NSF under Grants No.
DMR-1105512, No. NSF-MRSEC DMR-0820414, NHARP,
and by SWAN-NRI, and the Research Corporation for the
Advancement of Science.

1N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and P. Ong,
Rev. Mod. Phys. 82, 1539 (2010).

2R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
3J. S.-Y. Feng, R. D. Pashleyz, and M.-A. Nicolet, J. Phys. C 8, 1010
(1975).

4B. A. Aronzon, D. Yu. Kovalev, A. N. Lagar’kov, E. Z. Meilikhov,
V. V. Ryl’kov, M. A. Sedova, N. Negre, M. Goiran, and J. Leotin,
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