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Influence of strain on anisotropic thermoelectric transport in Bi2Te3 and Sb2Te3
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On the basis of detailed first-principles calculations and semiclassical Boltzmann transport, the anisotropic
thermoelectric transport properties of Bi2Te3 and Sb2Te3 under strain were investigated. It was found that due to
compensation effects of the strain-dependent thermopower and electrical conductivity, the related power factor
will decrease under applied in-plane strain for Bi2Te3, while being stable for Sb2Te3. A clear preference for
thermoelectric transport under hole doping, as well as for the in-plane transport direction was found for both
tellurides. In contrast to the electrical conductivity anisotropy, the anisotropy of the thermopower was almost
robust under applied strain. The assumption of an anisotropic relaxation time for Bi2Te3 suggests that already in
the single crystalline system strong anisotropic scattering effects should play a role.
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I. INTRODUCTION

Thermoelectric (TE) materials are used as solid-state en-
ergy devices that convert waste heat into electricity or electrical
power directly into cooling or heating.1–3 Telluride-based
thermoelectrics, e.g., the bulk materials bismuth (Bi2Te3),
antimony telluride (Sb2Te3), and their related alloys, dominate
efficient TE energy conversion at room temperature for the last
60 years.4,5 The materials TE efficiency is quantified by the
figure of merit

ZT = σS2

κel + κph
T , (1)

where σ is the electrical conductivity, S the thermopower,
κel and κph are the electronic and phononic contributions
to the thermal conductivity, respectively. From Eq. (1) it
is obvious that a higher ZT is obtained by decreasing the
denominator or by increasing the numerator, the latter being
called the power factor PF = σS2. While bulk Bi2Te3and
Sb2Te3 show ZT values smaller than one and applications
have been limited to niche areas, a breaktrough experiment
of Venkatasubramanian et al. showed a remarkable ZT =
2.4/1.5 for p-type/n-type superlattices (SLs) composed of
the two bulk tellurides.5–7 With the availability of high-ZT

materials, many new applications will emerge.2 The idea
of thermoelectric SL follows the idea of phonon blocking
and electron transmitting at the same time. It suggests that
cross-plane transport along the direction perpendicular to the
artificial interfaces of the SL reduces phonon heat conduction
while maintaining or even enhancing the electron transport.3

While some effort in experimental research was done,8–13 only
a few theoretical works discuss the possible transport across
such SL structures.14,15 While Park et al.14 discussed the effect
of volume change on the in-plane thermoelectric transport
properties of Bi2Te3, Sb2Te3, and their related compounds, Li
et al.15 focussed on the calculation of the electronic structure
for a Bi2Te3/Sb2Te3 SL, stating changes of the mobility
anisotropy estimated from effective masses.

Superlattices are anisotropic by definition and even the
telluride bulk materials show intrinsic anisotropic struc-
tural and electronic properties. However, investigations of

Venkatasubramanian et al. found a strong decrease for the
mobility anisotropy and the thermoelectric properties for the
Bi2Te3/Sb2Te3 SLs at certain periods. The reason for this
behavior is still under debate and could be related to strain
effects, which are induced by the epitaxial growth of the
Bi2Te3/Sb2Te3 SLs. To extend previous works16–18 and to
clarify the open question on the reduced anisotropy, we
are going to discuss in this paper the anisotropic electronic
transport in bulk Bi2Te3 and Sb2Te3 and the possible influence
of strain in epitaxially grown SL on the TE properties.

For this purpose, the paper will be organized as follows. In
Sect. II, we introduce our first-principles electronic structure
calculations based on density functional theory and the
semiclassical transport calculations based on the solution of
the linearized Boltzmann equation. With this, we discuss
the thermoelectric transport properties, that is, electrical
conductivity, thermopower, and the related power factor of
unstrained Bi2Te3 and Sb2Te3with a focus on their directional
anisotropies. While in epitaxially grown the atoms near the
interfaces may be shifted from their bulk positions due to
the lattice mismatch and the changed local environment, we
modeled Bi2Te3 with the experimental lattice parameters and
interatomic distances of Sb2Te3 and vice versa. We assume that
from these two limiting cases, one could estimate the effect of
the interface relaxation on the electronic and transport proper-
ties in Bi2Te3/Sb2Te3 SLs. With these structural data we first
analyze in Sec. III, the anisotropic thermoelectric properties of
the unstrained bulk systems, while in Sec. IV, a detailed view
on the influence of strain, which may occur in Bi2Te3/Sb2Te3

SLs, on the electronic transport of these tellurides is given.
Throughout the paper we quote Bi2Te3(Sb2Te3) as strained, if
it is considered in the lattice structure of Sb2Te3(Bi2Te3). As
in the SL, p type as well as n type transport was reported, we
discuss the concentration dependence for both types of carriers
on the transport properties.

II. METHODOLOGY

For both bismuth and antimony telluride, we used the
experimental lattice parameters and relaxed atomic positions19

as provided for the rhombohedral crystal structure with five
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atoms, i.e., one formula unit, per unit cell belonging to
the space group D5

3d (R3̄m). The related layered hexagonal
structure is composed out of three formula units and has the
lattice parameters ahex

BiTe = 4.384 Å, chex
BiTe = 30.487 Å, and

ahex
SbTe = 4.264 Å, chex

SbTe = 30.458 Å, for Bi2Te3 and Sb2Te3,
respectively. In fact, the main difference between the lattices of
Bi2Te3 and Sb2Te3 is a decrease of the in-plane lattice constant
with an accompanied decrease in the cell volume. So, a change
between the two lattice constants can be related to either
compressive or tensile in-plane strain. This is very similar
to the approach by Park et al.14 while omitting computational
relaxation of internal atomic positions.

Our electronic structure calculations are performed in two
steps. In a first step, the detailed band structures of the
strained and unstrained Bi2Te3and Sb2Te3 were obtained
(see Fig. 1) by first-principles density functional theory
calculations (DFT), as implemented in the fully relativistic
screened Korringa-Kohn-Rostoker Greens-function method
(KKR).20 Within this approach, the Dirac equation is solved
self-consistently and with the spin-orbit coupling included.
Exchange and correlation effects were accounted for by the
local density approximation (LDA) parametrized by Vosco,
Wilk, and Nusair.21 A detailed discussion on the influence of
strain on the band structure topology of Bi2Te3 and Sb2Te3 is
recently published.22

With the well-converged results from the first step, we
obtain the thermoelectric transport properties by solving
the linearized Boltzmann equation in relaxation time ap-
proximation (RTA) within an in-house developed Boltzmann
transport code.23–25 Boltzmann transport calculations for
thermoelectrics have been carried out for quite a long time and
show reliable results for metals26–28 as well as for wide- and
narrow-gap semiconductors.25,29–32 TE transport calculations
for bulk Bi2Te3

14,18,33,34 and Sb2Te3
14,17,35 were presented

before. Here, the relaxation time τ is assumed to be constant
with respect to wave vector k and energy on the scale of kBT .
This assumption is widely accepted for metals and highly
doped semiconductors. Most of the presented results are in this
high-doping regime. Within the RTA, the transport distribution
function L(0)

⊥,‖(μ,0) (TDF)36 and with this the generalized

conductance moments L(n)
⊥,‖(μ,T ) are defined as

L(n)
⊥,‖(μ,T ) = τ‖,⊥

(2π )3

∑
ν

∫
d3k

(
vν

k,(⊥,‖)

)2

× (
Eν

k − μ
)n

(
−∂f(μ,T )

∂E

)
E=Eν

k

. (2)

vν
k,(‖) and vν

k,(⊥) denote the group velocities in the directions in
the hexagonal basal plane and perpendicular to it, respectively.
Within, the group velocities were obtained as derivatives along
the lines of the Blöchl mesh in the whole Brillouin zone.22

A detailed discussion on implications and difficulties of the
numerical determination of the group velocities in highly
anisotropic materials is currently published elsewhere.37 As
can be seen straightforwardly, the in- and cross-plane electrical
conductivity σ is then given by

σ⊥,‖ = 2e2L(0)
⊥,‖(μ,T ) (3)

FIG. 1. (Color online) Band structures of (a) Bi2Te3 and
(b) Sb2Te3 along symmetry lines for both unstrained (black solid
lines) and strained (red dashed lines) lattices. Energies are given
relative to the valence band maximum.

and the temperature- and doping-dependent thermopower
states as

S⊥,‖ = 1

eT

L(1)
⊥,‖(μ,T )

L(0)
⊥,‖(μ,T )

(4)

for given chemical potential μ at temperature T and extrinsic
carrier concentration N determined by an integration over the
density of states n(E):

N =
∫ VBmax

μ−�E

dE n(E)[f(μ,T ) − 1] +
∫ μ+�E

CBmin
dE n(E)f(μ,T ),

(5)
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where CBmin is the conduction band minimum and VBmax is the
valence band maximum (VBM). The energy range �E has to
be taken sufficiently large to cover the tails of the Fermi-Dirac
distribution function f(μ,T ) and to ensure convergence of the
integrals in Eqs. (2) and (5).25 The k-space integration of
Eq. (2) for a system with an intrinsic anisotropic texture
is quite demanding. In previous publications,22,37 we stated
on the relevance of adaptive integration methods needed to
reach convergence of the energy-dependent TDF. Especially
in regions close to the band edges, the anisotropy of the TDF
requires a high density of the k mesh. Here, convergence tests
for the transport properties showed that at least 150 000 k
points in the entire BZ had to be included for sufficient high
doping rates (N � 1 × 1019 cm−3), while for energies near
the band edges, even more than 56 million k points were
required to reach the analytical values for the conductivity
anisotropies at the band edges. (The analytical value of the
ratio σ‖/σ⊥ at the band edges was obtained by scanning
the energy landscape near the conduction band minimum
and valence band maximum fitting the dispersion relation in
terms of an effective mass tensor. A detailed description is
given in a recent publication by Ref. 22.) Within the RTA,
from comparison of the calculated electrical conductivities
[Eq. (3)] with experiment it is possible to conclude on the
directional anisotropy of τ . For the thermopower S [Eq. (4)],
the dependence of the TDF on the energy is essential. That
is, not only the slope of the TDF, moreover, the overall
functional behavior of the TDF on the considered energy
scale has to change to observe an impact on the thermopower.
The calculations in this paper aim to cover band structure
effects and not scattering-specific impacts by an energy- and
state-dependent relaxation time.

III. ANISOTROPIC THERMOELECTRIC PROPERTIES OF
UNSTRAINED Bi2Te3 AND Sb2Te3

In order to understand the experimental findings on the
in-plane and cross-plane transport of the Bi2Te3/Sb2Te3 SLs,
in the following section, the anisotropies of the electrical
conductivity, the thermopower, and the related power factor
of bulk Bi2Te3 and Sb2Te3 are discussed. Even though the
behavior of Sb2Te3 is strongly p type with an extrinsic carrier
concentration of N = 1–10 × 1020 cm−3,38 we also discuss the
related n-doped case, as in Bi2Te3/Sb2Te3 SLs, n as well as p
dopings were reported. Bulk Bi2Te3 is known to be inherent
electron conducting, while hole doping is experimentally
achievable for bulk systems.4,39–41

Figure 2 shows the variation of the anisotropic thermopower
for unstrained Bi2Te3 and Sb2Te3 in a wide temperature
range. The extrinsic charge carrier concentration of Bi2Te3

and Sb2Te3 was fixed to N = 1 × 1019 cm−3 and N =
1 × 1020 cm−3, respectively. As a reference, experimental
values for both single crystalline materials at the same doping
conditions are given and an excellent agreement can be
stated. It is worth noting that within Eq. (4), the calculation
of the thermopower is completely free of parameters. For
Bi2Te3, the in-plane thermopower reaches a maximum of
S‖ ∼ −200 μV/K at 300 K, while the maximum for the
hole-doped case is shifted to slightly higher temperatures of
350 K with a maximum value of S‖ ∼ 225 μV/K. We note,

FIG. 2. (Color online) Anisotropic thermopower for bulk
(a) Bi2Te3 and (b) Sb2Te3 in their unstrained bulk lattice constants.
Electron doping refers to the blue (thick) lines in the lower part of
the figure, while red (thin) lines refer to hole doping and positive
values of the thermopower. Solid lines show the in-plane part
S‖ of the thermopower, while dashed lines show the cross-plane
part S⊥ . The extrinsic charge carrier concentration of Bi2Te3 and
Sb2Te3 was fixed to N = 1 × 1019 cm−3 and N = 1 × 1020 cm−3,
respectively. Experimental data (squares, diamonds, circles, triangles)
from Refs. 41–43 are given for comparison.

that the temperature of the maximum is slightly overestimated.
This might be caused by the missing temperature dependence
of the energy gap, which was determined as Eg = 105 meV
for unstrained Bi2Te3. The anisotropy of the thermopower is
more pronounced for the p-doped case. Here, the cross-plane
thermopower S⊥ is, for the given doping, always larger than

the in-plane part S‖ . The anisotropy
S‖
S⊥

is about 0.64 at

100 K, evolving to S‖/S⊥ ∼ 0.79 and S‖/S⊥ ∼ 0.55 at 300
and 500 K, respectively. The sole available experimental
data show no noticeable anisotropy for the thermopower
in the hole-doped case.42 For the electron-doped case, the
situation is more sophisticated. While up to 340 K the
overall anisotropy is rather small, with values S‖/S⊥ ∼ 0.9,
a considerable decrease of S⊥at higher temperatures leads to
high values of S‖/S⊥ for temperatures above 400 K. This
tendency could also be revealed by experiments.44,45 The
crossing point of S‖and S⊥near room temperature could explain
the fact of varying measured anisotropies for the thermopower
at 300 K. Here, anisotropy ratios of S‖/S⊥ = 0.97–1.10 were
reported.41,45 The maximum peak of the thermopower near
room temperature can be explained by the position of the
chemical potential μ as a function of temperature at a fixed
carrier concentration. For T much smaller than 300 K, the
chemical potential is located in either the conduction or
valence band with the tails of the Fermi-Dirac distribution in
Eq. (2) only playing a subsidiary role. For rising temperatures,
the chemical potential shifts toward the band edges, and S

maximizes. At these conditions, the conduction is mainly
unipolar. For higher temperatures, the chemical potential
shifts into the band gap and conduction becomes bipolar
leading to a reduced thermopower. For the case of Sb2Te3,
shown in Fig. 2(b), the situation is different. Due to the
ten-times-higher inherent doping and the smaller energy gap of
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Eg = 90 meV, the chemical potential is located deeply in the
bands for the whole relevant temperature range. Therefore the
functional behavior can be understood in terms of the well-
known Mott relation, where Eq. (4) qualitatively coincides
with S ∝ T d ln σ (E)

dE
|E=μ for the thermopower in RTA.46 With

increasing temperature, the thermopower increases almost lin-
early, showing values of S‖ ∼ 87 μV/K and S‖ ∼ −72 μV/K
at 300 K for p and n doping, respectively. The anisotropy
of the thermopower for the hole-doped case is around
S‖/S⊥ = 0.91, almost temperature independent and slightly
underestimates the available experimental values.47,48 While
for the electron-doped case the absolute values of the in-plane
thermopower are comparable to those of the hole-doped case,
the anisotropies are rather large. The anisotropy varies only
weakly on temperature, showing S‖/S⊥ = 0.48–0.52 over the
hole temperature range. While bulk Sb2Te3 states have a strong
p character due to inherent defects, we note here again, that n
doping is available in heterostructures combining Bi2Te3 and
Sb2Te3.5

A strongly enhanced cross-plane thermopower S⊥could
lead to a strongly enhanced power factor PF⊥ , if the cross-
plane electrical conductivity σ⊥ is maintained at the bulk
value.

For this purpose, the anisotropy of the electrical conductiv-
ity in dependence on the in-plane conductivity σ‖for unstrained
Bi2Te3 and Sb2Te3 is shown in Fig. 3. The temperature is fixed
at 300 K, blue and red lines refer to electron and hole doping,
respectively. From comparison with experimental data, the
in-plane relaxation time is determined to be τ‖ = 1.1 × 10−14

and 1.2 × 10−14 s for Bi2Te3 and Sb2Te3, respectively. (The
calculated dependencies of the electrical conductivity on the
thermopower and on the applied doping were matched to fit
experiments from Refs. 4, 39, and 48.) With that, we find
strong anisotropies for the electrical conductivity σ‖/σ⊥ � 1,
clearly preferring the in-plane transport in both bulk tellurides.
For the strongly suppressed cross-plane conduction, p-type
conduction is more favored than n type. For Bi2Te3, the pure
band structure effects [solid lines in Fig. 3(a)] overestimate
the measured anisotropy ratio39 of the electrical conductivity.
With an assumed anisotropy of the relaxation time of τ‖/τ⊥ =
0.47, the experimental values are reproduced very well. This
means that scattering effects strongly affect the transport,
and electrons traveling along the basal plane direction are
scattered stronger than electrons traveling perpendicular to
the basal plane. The origin of this assumed anisotropy has
to be examined by defect calculations, resulting microscopic
transition probabilities, and state-dependent mean free path
vectors. It is well known that in Bi2Te3, mainly antisite
defects lead to the inherent conduction behavior.38,45,50 We
have shown elsewhere37 that the integration of the transport
integrals (2) in anisotropic k space requires large numerical
effort. Tiny regions in k space close to the band gap have
to be scanned very carefully, and the texture in k space has a
drastic influence on the obtained anisotropy values, if integrals
are not converged with respect to the k-point density. As
shown, some integration methods tend for the given k-space
symmetry to underestimate the ratio σ‖/σ⊥ in a systematic
manner, and therefore would shift anisotropy closer to the
experimental observed values, without representing the real

FIG. 3. (Color online) Ratio σ‖/σ⊥ of the electrical conductivites
at 300 K for unstrained bulk (a) Bi2Te3 and (b) Sb2Te3. Electron
doping refers to blue lines, while red lines refer to hole doping.
The dashed lines in panel (a) present the ratio obtained with an
anisotropic relaxation time τxx/τzz = 0.47, while all other results
are obtained with an isotropic relaxation time. Experimental data
(circles and triangles) from Refs. 39, 49, and 48 are given for
comparison.

band structure effects. For unstrained Bi2Te3, the electrical
conductivity anisotropy is the highest for low values of σ‖ , i.e.,
small amounts of doping and bipolar conduction. For larger
charge carrier concentrations, i.e., the chemical potential shifts
deeper into either conduction or valence band, the in-plane
conductivity σ‖ increases and the ratio σ‖/σ⊥ decreases. Values
for σ‖/σ⊥ will lower from seven to two for p-type conduction
and nine to three for n-type conduction. However, cross-plane
electrical transport is always more suppressed for n-type
carrier conduction, which also holds for unstrained Sb2Te3.
As shown in Fig. 3(b), σ‖/σ⊥ is almost doping independent
for hole doping, showing an anisotropy of around 2.7 in very
good agreement with experiment (circle and triangles in Fig. 3
from Refs. 47–49). In this case, no anisotropic relaxation times
had to be assumed. For electron doping, the ratio σ‖/σ⊥ is
clearly higher, evolving values of 3.5 to 6 for rising in-plane
conductivity. The dependence of the anisotropy ratio on the
applied doping, i.e., changing σ‖ , can be directly linked to the
functional behaviour of the TDF near band edges, which is
crucially influenced by the topology of the band structure.22
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IV. ANISOTROPIC THERMOELECTRIC PROPERTIES OF
STRAINED Bi2Te3 AND Sb2Te3

Before the influence of in-plane strain on the resulting
power factor will be discussed, we will first note on the strain-
induced changes of the components electrical conductivity
and thermopower. In Fig. 4, the anisotropy of the electrical
conductivity σ‖/σ⊥ is shown for both Bi2Te3 in the lattice
constant of Sb2Te3, i.e., under biaxial compressive in-plane
strain [Fig. 4(a)], and Sb2Te3 in the lattice constant of Bi2Te3,
i.e., under biaxial tensile in-plane strain [Fig. 4(b)].

For Bi2Te3, the compressive in-plane strain causes an
increase of the the band gap by around 23% yielding
Eg = 129 meV. While the anisotropy σ‖/σ⊥ for hole dop-
ing [red lines in Fig. 4(a)] decreases to around four and
is almost constant under varying doping level, the ratio
rises considerably under electron doping to values up to
13 for σ‖ ∼ 100–1000 (	 cm)−1, corresponding to electron
charge carrier concentrations of N = 3–30 × 1019 cm−3. This
concludes, that the cross-plane electrical conductivity of
Bi2Te3 under compressive in-plane strain will be noticeably
enhanced for p doping, but drastically suppressed for n doping.
Such a compressive in-plane strain could be introduced by
either a substrate with smaller in-plane lattice constant, e.g.,

FIG. 4. (Color online) Conductivity ratio σ‖/σ⊥ of the electrical
conductivites at 300 K for bulk (a) Bi2Te3 in the Sb2Te3 structure
and (b) Sb2Te3 in the Bi2Te3 structure. Electron doping refers to blue
lines, while red lines refer to hole doping. Isotropic relaxation times
of τ = 1.1 × 10−14 and 1.2 × 10−14 s for σ‖ and σ⊥ are assumed for
Bi2Te3 and Sb2Te3, respectively.

GaAs-[111] with a = 3.997 Å, or by a considerable amount of
Sb2Te3 in the Bi2Te3/Sb2Te3 SLs. For tensile in-plane strained
Sb2Te3, the impact on the electrical conductivity ratio σ‖/σ⊥ is
less prominent. As shown in Fig. 4(b), at hole doping, σ‖/σ⊥ ∼
2.5 is only marginally altered compared to the unstrained case
[compare Fig. 3(b)]. Meanwhile σ‖/σ⊥decreases noticeably
for n-type doping yielding about three at low σ‖and low
electron charge carrier concentrations, and slightly higher
values of σ‖/σ⊥ ∼ 4 for higher doping. Overall, the tensile
strain reduces the electrical conductivity anisotropy by a
factor of about 1.5, directly leading to an enhanced electrical
conductivity along the z axis of single-crystal Sb2Te3. We
note that tensile in-plane strain opens the gap remarkably
by around 56% compared to the unstrained case to a value
of Eg = 140 meV. Furthermore, such tensile strain could be
incorporated by using either a substrate with larger in-plane
lattice constant, e.g., PbTe-[111] with a = 4.567 Å, or a higher
fractional amount of Bi2Te3 in Bi2Te3/Sb2Te3 SLs.

In Fig. 5(a) and 5(d) [5(b) and 5(c)], the doping-dependent
anisotropic thermopower of unstrained (strained) Bi2Te3 and
Sb2Te3 at room temperature are shown, respectively. Blue
thick (red thin) solid lines represent the in-plane thermopower
S‖under electron doping (hole doping). The corresponding
cross-plane thermopower S⊥ is shown as a dashed line. The
black dashed-dotted lines in Fig. 5(d) emphasize the expected
doping-dependent behavior of the thermopower for parabolic
bands, following the Pisarenko relation.52 For both tellurides,
we found that the anisotropy of the thermopower shows a
weak dependence on the strain state. However, for strained
Bi2Te3 [see Fig. 5(b)], the thermopower anisotropy under hole
doping almost vanishes, leading to S‖ ∼ S⊥ . It is worth noting
that the anisotropy of the thermopower is less pronounced for
hole doping, than for electron doping for Bi2Te3 and Sb2Te3

in both strain states. As shown by the black dashed-dotted
lines in Fig. 5(d), the dependence of the thermopower on
the charge carrier concentration differs from the Pisarenko
relation52 under sufficient high electron doping. This indicates
that the nonparabolicity of the energy bands has a noticeable
impact in the investigated doping regime and should not be
omitted by applying parabolic band models.

Actually, changes for the absolute values of the ther-
mopower can be found for both telluride systems under applied
strain. In Fig. 6, the relative change for the in-plane component
S‖ for both tellurides under in-plane strain is given. To compare
the changes with the lattice constant, we relate the in-plane
thermopower S‖ at the smaller lattice constant aSbTe to the value
at the larger lattice constant aBiTe for both compounds. The
doping was fixed to N = 1 × 1019 cm−3 for Bi2Te3 and N =
1 × 1020 cm−3 for Sb2Te3 as done for Fig. 2. Figure 6(a) shows
that in the relevant temperature range between 350 and 450 K,
the thermopower increases for Bi2Te3 under compressive strain
for both p and n doping by about 15–20%. For Sb2Te3, a
decrease is expected under tensile strain at electron doping
and nearly no change under hole doping [see Fig. 6(b)].
With nearly all values above one for Bi2Te3 as well as for
Sb2Te3 it is obvious that higher values of the thermopower
require a smaller unit cell volume. One can expect that the
volume decrease causes a larger density of states and thus
a shift of the chemical potential toward the corresponding
band edge, connected with an increase of the thermopower S.
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FIG. 5. (Color online) In-plane (solid lines) and cross-plane
(dashed lines) doping-dependent thermopower at 300 K for (a) Bi2Te3

in the Bi2Te3, (b) Bi2Te3 in the Sb2Te3, (c) Sb2Te3 in the Bi2Te3,
and (d) Sb2Te3 in the Sb2Te3 structures. Electron (hole) doping is
presented as blue thick (red thin) line. The black (dashed-dotted)
line in panel (d) shows the Pisarenko dependence of the thermopower
expected for parabolic bands. Experimental data (circles) from Ref. 51
are given for comparison. The charge carrier concentration is stated
in units of electron per unit cell (e/uc) (1/cm3) at the bottom (top) x
axis.

However, Park et al.14 reported an unexpected increase of 16%
for the in-plane thermopower S‖ of Sb2Te3 under p doping
(T = 300 K and N = 1.32 × 1019 cm−3) if the material is
strained into the Bi2Te3 structure. In the same doping and
temperature regime, we find a slight decrease of 4% for S‖ .

Comprising the statements on the electrical conductivity
and the thermopower, the related power factor for both
tellurides in their bulk lattice and in the strained state are
compared in Fig. 7. It is well known that optimizing the power
factor σS2 of a thermoelectric always involves a compromise
on the electrical conductivity σ and the thermopower S.53

Due to the interdependence of σ and S, it is not advisable to
optimize the power factor by optimizing its parts.

In Figs. 7(a) and 7(d), the doping-dependent anisotropic
power factor of unstrained Bi2Te3 and Sb2Te3 at room
temperature is shown, respectively. Blue thick (red thin)
solid lines represent the in-plane power factor PF‖ under
electron doping (hole doping). The corresponding cross-plane
power factor PF⊥ is shown as a dashed line. Under p

FIG. 6. (Color online) Change of the in-plane thermopower S‖
under applied strain for (a) Bi2Te3 and (b) Sb2Te3. Given is the ratio
of S‖ in the “smaller” lattice of Sb2Te3 divided by S‖ in the “larger”
lattice of Bi2Te3. The doping was fixed to N = 1 × 1019 cm−3 for
Bi2Te3 and N = 1 × 1020 cm−3 for Sb2Te3. Solid blue (dashed red)
lines refer to electron (hole) doping, respectively.

doping, both unstrained materials show a maximum power
factor near carrier concentrations of N ∼ 4 × 1019 cm−3.
Absolute values of 35 and 33 μW/cm K2 were found for
unstrained Bi2Te3 and Sb2Te3, respectively, which is in good
agreement with experimental and theoretical findings.9,14,51

Under electron doping, the absolute values of PF‖(thick blue
lines in Fig. 7) were found to be distinctly smaller. This
is due to smaller absolute values of the thermopower for
electron doping compared to hole doping (see Fig. 2) and
apparently smaller in-plane electrical conductivities σ‖at fixed
carrier concentrations. As a result, a power factor of 18 and
8 μW/cm K2 can be stated for unstrained Bi2Te3 and Sb2Te3,
respectively, under optimal electron doping. We notice that the
power factor for unstrained Sb2Te3 is monotonically increasing
for electron carrier concentrations of N ∼ 6–30 × 1019 cm−3.
This behavior can be linked to a deviation of S‖ from
the Pisarenko relation under electron doping. While it is
expected that the thermopower will decrease for increasing
carrier concentration, S‖ was found to be almost constant
in an electron doping range of N ∼ 6–30 × 1019 cm−3 [see
Fig. 5(d)]. For the investigated electron doping range of
N ∼ 6–30 × 1019 cm−3, the chemical potential μ at 300 K
is located around 300–450 meV above the VBM. As can
be seen from the band structure for unstrained Sb2Te3 in
Fig. 1(b) (black, solid lines), flat nonparabolic bands near the
high-symmetry point Z dominate in this energy region and
most likely lead to an increased thermopower. This feature
is more pronounced for unstrained Sb2Te3 than for strained
Sb2Te3 [red, dashed lines in Fig. 1(b)]. Similar statements can
be done for strained and unstrained Bi2Te3 [see Fig. 1(a)].
We note, even though this picture is convincing, that it is
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FIG. 7. (Color online) In-plane (solid lines) and cross-plane
(dashed lines) doping-dependent power factor at 300 K for
(a) Bi2Te3 in the Bi2Te3, (b) Bi2Te3 in the Sb2Te3, (c) Sb2Te3 in
the Bi2Te3, and (d) Sb2Te3 in the Sb2Te3 structures. Electron (hole)
doping is presented as blue thick (red thin) line. The charge carrier
concentration is stated in units of electron per unit cell (e/uc) (1/cm3)
at the bottom (top) x axis.

difficult to link such specific anomalies to the band structure
on high-symmetry lines, as the underlying TDF is an integral
quantity over all occupied states in the BZ.

Under applied in-plane compressive strain for Bi2Te3 [see
Fig. 7(b)] and tensile strain for Sb2Te3 [see Fig. 7(c)] the
obtained changes in the power factor are noticeably different
for both tellurides. While for Bi2Te3 a decrease of the maximal
power factor PF‖ of about 27% and 23% for n and p doping,
respectively, was found, the strain shows nearly no influence
on the power factor for Sb2Te3. At a carrier concentration of
about N ∼ 3 × 1019 cm−3, the decrease in PF‖ for Bi2Te3 is
about 17% and 28% for n and p doping, respectively, while in
the work of Park et al.,14 a slight increase of PF‖ under strain
and hole doping is reported. Obviously, this tendency has to
be understood by analyzing the constituent parts σ‖and S‖ . For
compressively strained Bi2Te3, at a hole carrier concentration
of about N ∼ 3 × 1019 cm−3, the electrical conductivity
decreases by about 39% to 330 (	 cm s)−1. At the same time,
S‖ increases by about 9%, as shown in Fig. 6(a). This results
in the overall decrease of about 28% for PF‖ . Under electron
doping of N ∼ 3 × 1019 cm−3, no influence of strain could
be found for S‖ at room temperature [see solid blue lines in
Fig. 6(a)]. Thus the decrease of PF‖ under electron doping can
be largely related to a decrease of the electrical conductivity
under applied compressive strain. By detailed evaluation of

the effective mass eigenvalues and eigenvectors, we found a
decrease of about 15% for the in-plane electrical conductivity
of Bi2Te3 under applied strain in the low-temperature and
low-doping limit.22,37 The discussion can be made in the same
manner for Sb2Te3.22,37 The fact that strain-induced effects in
σ and S tend to compensate each other was already reported
for the case of silicon.25

As mentioned before (summarized in Figs. 3 and 4), we
found a strong anisotropy in the electrical conductivity with
σ‖/σ⊥ � 1. The clearly preferred in-plane transport in both
bulk tellurides is also reflected in the cross-plane power factor
PF⊥(dashed lines in Fig. 7), which is clearly suppressed for
all strain states. It is obvious that PF⊥ is more suppressed for
electron than for hole doping.

Nonetheless, we want to include experimental findings
for the thermal conductivity to our calculations, to give an
estimation for the figure of merit ZT in plane and cross
plane. In Ref. 49, κ‖ = 2.2 W/m K, κ⊥ = 1.0 W/m K and
κ‖ = 7.5 W/m K, κ⊥ = 1.6 W/m K for unstrained Bi2Te3 and
Sb2Te3 are given, respectively. With this, we find maximal
values for the figure of merit at room temperature and optimal
hole doping of ZT‖ ∼ 0.48 and ZT⊥ ∼ 0.41 for unstrained
Bi2Te3 and ZT‖ ∼ 0.13 and ZT⊥ ∼ 0.23 for unstrained
Sb2Te3. We note that the figure of merit ZT maximizes at
slightly lower carrier concentration than the power factor σS2

shown in Fig. 7. This can be linked directly to an increasing
electronic part of the thermal conductivity κel with increasing
carrier concentration.25,53

V. CONCLUSION

In the present paper, the influence of in-plane strain on
the thermoelectric transport properties of Bi2Te3 and Sb2Te3

is investigated. A focused view on the influence of strain on
the anisotropy of the electrical conductivity σ , thermopower
S, and the related power factor σS2 could help to understand
in-plane and cross-plane thermoelectric transport in nanos-
tructured Bi2Te3/Sb2Te3 superlattices. Based on detailed ab
initio calculations, we focused mainly on band structure effects
and their influence on the thermoelectric transport. For both
tellurides, no reasonable decrease of the anisotropy for σ

and S could be found under strain, while, in principle, the
anisotropy for σ and S is more pronounced under electron
doping than at hole doping. Thus a favored thermoelectric
transport along the z direction of Bi2Te3/Sb2Te3 heterostruc-
tures due to superlattice-induced in-plane strain effects can
be ruled out and a clear preference of p-type thermoelectric
transport can be stated for Bi2Te3, Sb2Te3, and their related
epitaxial heterostructures. The absolute value of the in-plane
thermopower S‖ was increased under reduced cell volume,
which is in contrast to recent findings by Park et al.14

We found that even if thermopower or electrical conductiv-
ity are enhanced or decreased via applied strain, they tend to
compensate each other suppressing more distinct changes of
the power factor under strain. We found the thermoelectrically
optimal doping to be in the range of N ∼ 3–6 × 1019 cm−3

for all considered systems. Our assumption of an anisotropic
relaxation time for Bi2Te3, states that already in the single
crystalline system, strong anisotropic scattering effects should
play a role.
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