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Quasiparticle band structure of Zn-IV-N2 compounds
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Electronic energy-band structures of the Zn-IV-N2 compounds, with IV equal to Si, Ge, and Sn calculated
in the quasiparticle self-consistent GW approximation and using the full-potential linearized muffin-tin orbital
approach, are presented. A comparison is made with local-density approximation results. The bands near the
gap are fitted to an effective Kohn-Luttinger-type Hamiltonian appropriate for the orthorhombic symmetry, and
conduction-band effective masses are presented. Exciton binding energies and zero-point motion corrections to
the gaps are estimated. While ZnSiN2 is found to be an indirect gap semiconductor, ZnGeN2 and ZnSnN2 are
direct gap semiconductors. The gaps range from the orange-red to deep UV. The valence-band maximum is split
in three levels of different symmetry, even in the absence of spin-orbit coupling, and should show transitions
to the conduction band, each for a separate polarization. Spin-orbit effects are found to be surprisingly small,
indicating almost exact compensation of the N-2p and Zn-3d contributions.
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I. INTRODUCTION

The II-IV-N2 compounds are closely related to the group-
III-N semiconductors. They are obtained by replacing the
group-III element alternately by a group II, such as Zn,
and a group IV, such as Si, Ge, and Sn. While this type
of chemical substitution is well known for other group-V
semiconductors and transforms the zincblende structure in
the chalcopyrite structure, a similar substitution can also
be done in the wurtzite structure, commonly found as the
lowest-energy crystal structure for the group-III nitrides. As in
the chalcopyrite case, it leads to a well-defined ordered crystal
structure, with in this case orthorhombic symmetry. This
should be contrasted with the substitution of different group-III
elements, which usually leads to disordered alloys. We thus call
the new compounds heterovalent ternary compounds. Because
of their close relation to the group-III-nitrides, one may expect
similar but not identical properties. This provides an alternative
opportunity for band-structure and other property engineering
to the usual III-N alloys.

Nitride compounds of this type have been known since the
1970s but the literature on them is still rather sparse. The
earliest report on the synthesis of ZnGeN2 is by Maunaye and
Lang in 19701 and used a reaction of NH3 with Zn2GeO4, the
latter being separately obtained from reacting GeO2 with ZnO.
The initial reports on the crystal structure showed it to have a
structure related to that of wurtzite but with a lower, monoclinic
symmetry. Because of the closeness in electron density and
hence x-ray and electron-scattering factors between Zn and
Ge, it was impossible using x-ray diffraction to determine
whether the Zn and Ge atoms were ordered or disordered on
the cation lattice. A neutron-diffraction study2 determined the
ordering of the Zn and Ge atoms and thus established the
orthorhombic structure explained in more detail below.

Larson et al.3 used a vapor growth method for ZnGeN2

starting from elemental Zn and Ge in NH3 and reported an ab-
sorption onset at 2.67 eV, which is probably an underestimate
resulting from defects. High-pressure synthesis of ZnGeN2

and ZnSiN2 starting from mixtures of Zn3N2 and Si3N4 or
Ge3N4 was reported by Endo et al.4 They reported a band
gap of 3.64 eV for ZnSiN2 based on the optical-absorption
onset.

Metal-organic chemical vapor deposition (MOCVD) was
used by Zhu et al.5 to synthesize thin films of ZnGeN2.
The same group also reported ZnSiN2 growth and alloy
growth of ZnSi1−xGexN2 growth, and these materials were
investigated by a number of other collaborators determining
optical properties,6,7 transistor devices on SiC,8 and even
their suitability as magnetic semiconductor hosts by implan-
tation of Mn.9 Muth et al.6 determined band gaps from
optical-absorption data as a function of alloy composition in
ZnSi1−xGexN2 and found it to vary between 3.1 − 3.2 eV for
ZnGeN2 and 4.4 eV in ZnSiN2. Cook et al.7 determined the
indices of refraction and Mintairov et al.10 determined the
infrared reflection relating to the vibrational spectrum.

Misaki et al.11–13 used remote plasma-enhanced MOCVD
for thin-film growth of ZnGeN2 and reported a band gap of
3.3 eV. They also reported optical reflectivity in the UV up to
20 eV. Most of this work used r-plane sapphire as the substrate.
Cloitre et al. reported ZnSiN2 growth by Metal-organic vapor
phase epitaxy on c-plane sapphire.14 Kikkawa and Morisaka15

reported Radio Frequency (RF)-sputter deposition of ZnGeN2

thin films on Si and glass substrates and estimated the gap to be
about 3.1 eV. Viennois et al.16 performed the first Raman spec-
troscopy study on powder samples of ZnGeN2, synthesized by
a similar approach to that used by Maunaye and Lang.

Recently a vapor-liquid-solid-synthesis method was used
by Du et al.17 using pure Zn and Ge, and NH3, at growth
temperatures between 750 and 900 ◦C. Photoluminescence on
these materials indicates a gap of 3.40 ± 0.01 eV and a high
ratio of band-gap versus defect luminescence.

The first band-structure calculations of ZnGeN2 were
presented in 1999 by Limpijumnong et al.18 using the
local-density approximation and linearized muffin-tin orbital
method. They also investigated the linear and nonlinear
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optical properties such as the index of refraction and second-
harmonic generation coefficient. Other groups also presented
band-structure calculations with pseudopotential plane-wave
approaches19,20 and included some other members of this
family of II-IV-N2 compounds.

Recently, Lambrecht et al.21–25 presented a series of
papers mainly focusing on the lattice dynamics of ZnSiN2,
ZnGeN2, and ZnSnN2. As part of this work, the electronic
band structures were also calculated using a pseudopotential
plane-wave approach.26 All of these previous works on the
band structure, however, suffer from the limitations of the
local-density approximation. Although some earlier estimates
of the band gaps going beyond LDA were mentioned in Paudel
and Lambrecht,24 there is still considerable uncertainty on the
band structures both from the theoretical and experimental
point of view.

In this paper we present quasiparticle self-consistent GW
(QSGW) calculations of the band structures of ZnSiN2,
ZnGeN2, and ZnSnN2. The QSGW method has been shown
to provide reliable predictions of the band gaps of a large
variety of semiconductors.27 The calculations are performed
using an accurate full-potential linearized muffin-tin orbital
method.28,29 The crystal structure and symmetry are discussed
first. We re-optimized crystal structure parameters using the
full-potential linearized muffin-tin orbital (FP-LMTO) method
in the local density approximation before proceeding with the
GW calculations. After a discussion of the differences between
local-density approximation (LDA) and GW and the atomic-
orbital character of the energy bands over a wide energy
range, we focus on the region near the band gap. Besides
the band gaps, it is of interest to determine some details of the
valence-band maximum splittings and the effective masses. We
present a generalization of the Kohn-Luttinger Hamiltonian
suitable for crystals of orthorhombic symmetry based on
the method of invariants and determine the relevant inverse
effective mass parameters in this model. We also include and
discuss the spin-orbit splittings of the valence-band maximum
(VBM). We use our calculated effective masses to estimate
exciton binding energies and estimate other corrections to
the band gaps such as the zero-point motion electron-phonon
renormalization correction.

II. CRYSTAL STRUCTURE

The prototype for the crystal structure of the II-IV-N2 com-
pounds is β-NaFeO2, which is actually a I-III-VI2 compound
but is related in a similar way to the wurtzite structure of a
II-VI compound. This crystal structure can be viewed as a
2 × √

3 superlattice of wurtzite along orthohexagonal axes as
illustrated in Fig. 1 showing a projection on the c plane. It
has 16 atoms per unit cell. The b/a and c/a can both adjust
as well as the internal positions x,y,z of each of the four
types of atoms—the group-II, group-IV, and two inequivalent
N positions—NII being on top of the group-II element and NIV

being on top of the group-IV element. We choose the a axis
to be 2aw and b ≈ √

3aw, unlike the commonly found choice
in the crystallography literature, which interchanges a and b

from ours.
The space group is Pbn21 (space group No. 33, or C9

2v),
meaning that there is a two-fold screw axis along the z direction

2
1

n

b

N IV

N II

II IV

FIG. 1. (Color online) Projection of crystal structure of Zn-IV-N2

compounds on c plane with symmetry elements. Large open circles
indicate cations in the bottom plane, small open circles indicate
cations in the top plane, and filled circles are N atoms above them as
indicated. The symmetry elements are indicated and chosen so that
the 21 axis passes through the origin.

with translation 1/2c, a diagonal glide plane n perpendicular
to b with translations 1/2(a + c), and an axial glide plane
perpendicular to the a axis with translation 1/2b. These
symmetry elements are indicated in the figure.

The point group is thus C2v . The character table for this
group was given in Ref. 23. We here just note that the a1, b1,
and b2 irreducible representations correspond to z, x, and y

basis functions with x along a, y along b, and z along the c axes.
The a2 irreducible representation is even under the two-fold
rotation but odd under both mirror planes and corresponds to
an xy basis function.

III. COMPUTATIONAL METHOD

Density-functional theory in the local-density approxima-
tion (LDA) as well as the generalized gradient approximation
(GGA)30 is used to optimize the lattice constants and atomic
positions inside the unit cell. These calculations are carried out
using a full-potential linearized muffin-tin orbital (FP-LMTO)
method.28,29

We use a 4 × 4 × 4 k-point sampling for the Brillouin-zone
integration in the self-consistent LDA or GGA calculations.
The basis set contains two sets of smoothed Hankel function
decay parameters κ and smoothing radii Rsm and includes spd

functions in the first and the second set for Zn and includes
spd functions in the first and sp in the second set for Si, Ge,
Sn, and N. In addition we add Zn-4d as local orbitals.

The quasiparticle band structure is calculated using the
quasiparticle self-consistent GW approach implemented in the
same FP-LMTO method as described in Refs. 27,31 and 32.
In this approach, Hedin’s GW approximation33,34 (GWA)
for the self-energy, schematically �(12) = iG(12)W (1+2),
with G(12) the one-electron Green’s function and W (1+2)
the screened Coulomb interaction—written in position, spin,
and time coordinates 1 = {r1,σ1,t1}, with 1+ = t1 + δ—is
applied not as a single-shot correction to LDA, as is usual,
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but starting from a self-consistently determined static (but
nonlocal) exchange-correlation potential:

V QSGW
xc = 1

2

∑
nm

|�n〉�[�nm(En) + �nm(Em)]〈�m|, (1)

Here �n are the one-electron Kohn Sham eigenstates and �
means taking the Hermitian part. This approach is designed so
that the eigenvalues of the Kohn-Sham independent-particle
equations εnk approach the quasiparticle energies Enk in the
GWA. W is calculated as W = (1 − v	)−1v and 	(12) =
−iG(12)G(21) in the random-phase approximation (RPA).
A mixed plane-wave and product basis set35 is used to express
all two-particle operators. For details, we refer the reader to
the above mentioned papers by the van Schilfgaarde group.
Let us here just remark that this method provides very accurate
results for a wide range of solids, including all standard III-V
and II-VI semiconductors.31 Most important, the method has
highly systematic small remaining errors: it gives a slight
overestimate of the gaps compared with the experiment.
This remaining discrepancy is thought to arise from the
underscreening by the RPA. It can be corrected by scaling
the final 
Vxc = V QSGW

xc − V LDA
xc by about 80% as obtained

empirically by comparing QSGW with the experiment for a
wide variety of semiconductors.31 We refer to this as the 0.8�

approximation. Within this approximation most band gaps are
obtained to better than 0.1 eV. The 
Vxc represented in a
muffin-tin orbital basis set can be Fourier transformed to real
space and then Bloch summed for arbitrary k points on a
finer mesh than the one on which the time-consuming GW
calculation is carried out. This allows us to obtain accurate
effective masses and band plots along symmetry lines.

As explained in Ref. 32 the 
V xc
ñm̃(k) in the basis set

of the LDA Hamiltonian eigenstates (as indicated by the ˜
over the indices) can be approximated to be linear in the
LDA eigenvalue: aεLDA

ñk + b for energy bands above some
cutoff energy Ecut. We find it is important to take this cutoff
sufficiently high for the nitrides, say Ecut = 3 Ryd above
the Fermi level, to obtain well-converged results. The gaps
for Ecut = 2.5 Ryd were still underestimated by 5−10%.
As k-point sampling set for the GW self-energy we use a
2 × 2 × 2 mesh corresponding to the 16 atom unit cell. This is
more or less equivalent to a 8 × 8 × 4 sampling for wurtzite.

IV. RESULTS

A. Structural results

The lattice constants obtained by energy minimization in
both LDA and GGA are presented in Table I compared with
experimental values where available. We note that, even for
ZnGeN2, the most studied of these materials, there is still
considerable variation between experimental results on the
lattice constants obtained from different growth methods,
reflecting for example film strain conditions, as discussed
in more detail in Du et al.,17 and that ZnSnN2 has not yet
been synthesized. For example, Du et al.17 obtain a b/aw

ratio of 1.741 and c/aw of 1.627 with a lattice constant
a = 6.314 Å. This gives V = 178.24 Å3. We also compare
our results with those of a previous calculation by Paudel and
Lambrecht24 The average deviation of the lattice constants

TABLE I. Lattice parameters a, b, and c (Å), lattice volume V

(Å3), the average error with respect to experiment {σ = [(δV/V ) −
1]/3}, and lattice-constant ratio (aw = a/2) in Zn-IV-N2.

Compound LDA GGA LDA-ABINIT a Expt.b

ZnSiN2 a 6.08 6.16 6.01 6.18
b 5.27 5.41 5.28 5.35
c 5.02 5.11 4.98 5.05
V 160.85 170.29 158.02 166.97
δV

V
0.96 1.02 0.95

σ −0.012 0.007 −0.018
b/aw 1.733 1.756 1.757 1.731
c/aw 1.651 1.659 1.657 1.634

ZnGeN2 a 6.38 6.42 6.33 6.44
b 5.45 5.54 5.36 5.45
c 5.22 5.27 5.11 5.19
V 181.50 187.44 173.38 182.16
δV

V
0.996 1.03 0.952

σ −0.001 0.009
b/aw 1.708 1.726 1.693 1.693
c/aw 1.636 1.641 1.614 1.612

ZnSnN2 a 6.59 6.70 6.76
b 5.70 5.80 5.85
c 5.41 5.53 5.58
V 203.21 214.89 220.67

b/aw 1.730 1.731
c/aw 1.642 1.651

aReference 24.
bFor ZnSiN2 from Ref. 10, for ZnGeN2 from Ref. 2.

from the experiment is most easily seen by comparing the
volumes. We see that, as usual, LDA slightly underestimates
the volume while GGA overestimates it. For ZnSiN2, GGA
appears closer to the experiment, and for ZnGeN2 LDA
is slightly closer, but neither has a clear advantage. The
ratios b/aw and c/aw are slightly larger in our calculated
results than in the experiment and LDA seems closer to the
experiment for those than GGA. The remaining discrepancies
in b/aw and c/aw with the experiment are of the order 1%,
comparable to the experimental uncertainty. Therefore in the
remainder of the paper we will calculate the band structures
at the LDA equilibrium lattice parameters. Compared with
the pseudopotential plane-wave calculations of Paudel and
Lambrecht24 the present results are slightly closer to the
experimental values.

Table II gives the reduced coordinates (x,y,z) of the atomic
positions after relaxation. All atoms occur in 4(a) Wyckoff
positions: (1) x,y,z; (2) −x, − y,z + (1/2); (3) x + (1/2), −
y + (1/2),z; and (4) −x + (1/2),y + (1/2),z + (1/2). Com-
pared with the results given in Paudel and Lambrecht24 we
here use a different setting of the unit cell with the two-fold
screw axes passing through the origin, as recommended in
the International Tables of Crystallography. All coordinates
are relaxed relative to the position of the two-fold screw
axes but one finds generally that the Zn and IV atoms are
almost exactly shifted by 0.5a from each other. The relaxation
consists mainly in an adjustment of each N atom inside its
surrounding tetrahedron, approaching the group-IV atom and
moving away from the Zn atom. The average bond-lengths are
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TABLE II. Wyckoff 4(a) positions (reduced coordinates) in the
unit cell.

Compound Atoms x y z

ZnSiN2 Zn 0.623 0.089 0.000
Si 0.126 0.074 0.000

NSi 0.102 0.057 0.346
NZn 0.649 0.109 0.402

ZnGeN2 Zn 0.625(0.620)a 0.085(0.083) 0.000(0.000)
Ge 0.126(0.125) 0.079(0.083) 0.001(0.000)
NGe 0.113(0.115) 0.069(0.070) 0.360(0.365)
NZn 0.637(0.640) 0.096(0.095) 0.389(0.385)

ZnSnN2 Zn 0.626 0.084 0.000
Sn 0.127 0.083 0.002
NSn 0.125 0.081 0.377
NZn 0.622 0.085 0.372

aFor ZnGeN2, the numbers in parentheses are the experimental values
from Wintenberger et al.2

summarized in Table III and are in good agreement with Paudel
and Lambrecht24 and with experimental data for ZnGeN2.

In the process of obtaining the optimum lattice volume, we
fitted the Vinet equation of state, given by

E(V ) = E0 + 2B0V0

(B ′
0 − 1)2

{
2 − [5 + 3B ′

0((V/V0)1/3 − 1)

− 3(V/V0)1/3]e− 3
2 (B ′

0−1)[(V/V0)1/3−1]
}

(2)

to the energy-versus-volume relation and obtained from this
fit, values for the bulk modulus B0, its pressure derivative B ′

0,
and the equilibrium volume V0. These are given in Table IV
and are in good agreement with Paudel and Lambrecht24,25

This establishes that our FP-LMTO calculations describe the
structure adequately, so we can move on to a study of the
electronic band structure in the next section.

B. Band structures

The LDA and QSGW band structures of ZnSiN2, ZnGeN2,
and ZnSnN2 are compared with each other in Fig. 2. Before
discussing the differences we discuss the atomic-orbital
character of the bands. The bands fall in three regions: the
lower valence band, near −15 eV, is the N-2s-like band; bands
in the range from −5 to 0 eV are mostly N-2p, but near 5 eV
in LDA and about 2 eV lower in GW we find the Zn-3d bands
overlapping with them. The N-2p bands are fairly strongly
hybridized with cation s and p orbitals, as can be seen in
the partial density of states shown in Fig. 3. A more detailed
examination of the orbital character of the conduction-band
minimum (CBM) indicates that the CBM has slightly higher

TABLE III. Average bond lengths (Å).

Compound Zn-N (Å) IV-N (Å)

ZnSiN2 2.02 1.74
ZnGeN2 2.03(2.01)a 1.88(1.88)
ZnSnN2 2.04 2.02

aExperimental values from Wintenberger et al.2 in parentheses.

TABLE IV. Bulk moduli and their pressure derivatives of Zn-IV-
N2 compounds obtained from fit to Vinet equation of state.

B0 (GPa) B ′
0

Compound LDA GGA LDA GGA

ZnSiN2 234 (228)a 208 4.4 (4.4) 4.4
ZnGeN2 207 (197) 178 4.8 (4.4) 4.9
ZnSnN2 177 (184) 150 4.9 (4.8) 4.8

aValues in parentheses from Paudel and Lambrecht.24

group-IV than group-II cation-s character. Thus to maximally
change the band gap it is more efficient to vary the group-IV
rather than group-II element.

The band gaps are summarized in Table V. First, we note
that ZnSiN2 has an indirect minimum gap slightly lower than
the lowest direct gap. All compounds have their conduction-
band minimum (CBM) at � but the valence-band maximum
(VBM) in ZnSiN2 occurs at a point along the �–Y direction
close to Y .

Before comparison with the experiment, we add an esti-
mated zero-point motion band-gap renormalization correction

(0) and exciton binding-energy correction Exb. The former
were tabulated by Cardona and Thewalt36 for various semi-
conductors. We find that for the III-N semiconductors this
correction is approximately proportional to the band gap itself
and approximately given by −50 − 31Eg meV. This gives

(0) as −227, −162, and −117 meV for ZnSiN2, ZnGeN2,
and ZnSnN2, respectively.

The exciton binding energies are estimated from

Exb = μ

ε2
0

Rydberg, (3)

where we use the reduced mass μ = mcmv/(mc + mv), with
mc,mv being a directional averaged conduction and valence-
band hole mass as obtained in the next section. We here neglect
the interaction of the different valence bands and take only the
highest VBM into account (which is justified by the fairly
large crystal-field splittings) and average the inverse masses
over direction. This gives mc values of 0.293, 0.185, and
0.141 for ZnSiN2, ZnGeN2, and ZnSnN2, respectively. The
corresponding mv values are 0.520, 0.530, and 0.392 and the
reduced exciton masses 0.188, 0.137, 0.104. For ZnSiN2, we
use the actual VBM, not at � so the exciton binding energy
corresponds to the indirect gap. For the direct gap we do
not include an exciton binding energy. With high-frequency
dielectric constants from Paudel and Lambrecht24 averaged
arithmetically over x, y, and z, we obtain the ε∞ value of
5.00, 5.37, and 6.37. This would give exciton binding energies
of 102, 64, and 35 meV, respectively. Using static dielectric
constants 9.33, 9.70, and 12.71 instead, we would obtain
exciton binding energies of 29, 20, and 9 meV. These are
comparable to the value in GaN of 25 meV.37 Since these are
smaller than the LO-phonon energies, it makes sense to include
the ionic screening. The gaps, including both zero-point
motion renormalization correction and exciton binding energy,
are given in Table V.

For ZnGeN2, our best converged QSGW calculations
overestimate the gap by about 0.5 eV, which is typical for
QSGW, while 0.8� is very close to the experimental value and
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FIG. 2. (Color online) Electronic band structure of ZnSiN2,
ZnGeN2, and ZnSnN2.

is even closer after adding the above-mentioned corrections.
This experimental gap was determined by photoluminescence
at 4 K and thus should be very close to our calculated gap.
Spin-orbit corrections turn out to be negligibly small for
these nitrides, as will be discussed below. The LDA and
GGA as usual underestimate the gap significantly. The GGA
underestimates it a bit more than LDA, but this is mostly
because this calculation was done at the GGA lattice constants,
which are slightly larger, and hence the gap is expected to be
lower.

For ZnSiN2, even our 0.8� gap is significantly larger than
the experimental value. The zero-point motion and exciton
binding-energy corrections here are larger, but even so our
value is about 1 eV larger than the experimental value. We
note, however, that the latter is obtained from absorption
measurements at room temperature. The temperature effect
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FIG. 3. (Color online) Total and partial densities of states: N-
2s,2p, IV-ns,np, with n = 3,4,5 for Si, Ge, Sn, Zn-4s,4p,3d , of
ZnSiN2, ZnGeN2, and ZnSnN2.

could be at most 0.2 eV. So, even taking these corrections
into account, there remains a significant discrepancy. Early
absorption measurements for ZnGeN2 also gave significantly
lower values of the gap, e.g., 2.67 eV in Larson et al.,3

3.1−3.2 eV,8 and 3.3 eV.11 Defect band tails might be
responsible for an experimental underestimate of the gap.
Earlier work by Endo et al.4 gave an even lower estimate
of the onset of absorption in ZnSiN2 of 3.64 eV.

Previous calculations also obtained an indirect gap, for
ZnSiN2,20 of 3.32 eV in LDA. For ZnGeN2 they obtained
an LDA gap of 1.67 eV close to ours. The small discrepancy
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TABLE V. Band gaps (eV) of Zn-IV-N2 compounds in various approximations.

Compound LDA GGA QSGW 0.8� 0.8� + 
(0) + Exb
a Expt.

ZnSiN2 Indirect 3.60 3.23 6.01 5.70 5.44
Direct 3.84 3.45 6.26 5.92 5.66 4.46b

ZnGeN2 Direct 1.66 1.57 3.99 3.60 3.42 3.40 ± 0.01c

ZnSnN2 Direct 0.55 0.35 2.64 2.15 2.02

a
(0) is the estimated zero-point motion renormalization correction (see text) and Exb the exciton binding energy.
bOsinksy et al.8
cDu et al.17

in LDA values is likely to arise from the use of different
band-structure methods or slightly different lattice constants.

Our predicted gap (including the various corrections) for
ZnSnN2 corresponds to a 614-nm wavelength, which is
in the orange-red region of the spectrum, while for ZnGeN2

the corresponding wavelength is 362 nm and for ZnSiN2

the indirect and direct gaps correspond to 228 and 218 nm,
respectively, well in the UVC range.

Next, we discuss individual band state shifts due to GW. In
an electron gas or metal, the GW self-energy �xc(εF ) = 0 at
the Fermi level, and furthermore one knows that near the Fermi
level |Im�xc(ω)| ∝ (ω − εF )2 and leads to an increasing shift
of the levels away from the Fermi level.34 In a semiconductor
we can no longer do this expansion around the Fermi level
and the zero of energy of the �xc(ω) is set by that of the
Green’s function of the underlying one-electron Hamiltonian.
Although there is no physical meaning to eigenvalues on an
absolute scale in a periodic system, we can use the average
electrostatic potential as the zero of energy. Quasiparticle shifts
of eigenvalues between single-shot GW and the corresponding
one-electron Hamiltonian are well defined, because they
correspond to the same electron density. We obtain this shift by
comparing the QSGW eigenvalues with the LDA eigenvalues
obtained with the charge density generated by QSGW. We
refer to it as the “pure quasiparticle shift” �i for a given level i.
On the other hand, we can also compare the shifts between the
QSGW quasiparticle energies and the LDA eigenvalues for the
LDA charge density, where the latter are given with respect to
the average electrostatic potential, calculated in the same way
by setting the reciprocal lattice vector G = 0 component of
the Madelung potential equal to zero. The bands in Fig. 2 were
aligned by this procedure. The QSGW and LDA eigenvalues
were both determined relative to their average electrostatic
potentials and then shifted to the VBM of the LDA as zero
of energy. In Table VI, we include both the pure quasiparticle
shifts and the shifts between QSGW and LDA. The difference

TABLE VI. Absolute shifts (Ei − εi) (eV) between QSGW and
LDA relative to their own average electrostatic potentials and pure
quasiparticle shift �i (in parentheses) for various levels.

Level ZnSiN2 ZnGeN2 ZnSnN2

CBM 1.6(1.5) 1.7(1.5) 1.8(1.6)
VBM −0.5(−0.5) −0.1(−0.4) 0.2(−0.3)
Zn-3d −2.3(−2.2) −2.0(−2.0) −1.5(−1.9)
N-2s −1.3(−1.2) −1.2(−1.1) −1.0(−0.7)

in these two shifts provides an estimate of the error to expect
in band offsets from one-shot GW calculations based on the
LDA.

These absolute shifts are mainly useful in the context
of band-offset calculations between two materials. Once we
determine from an interface calculation how the average
electrostatic potentials in the two semiconductors are placed
relative to each other, and assuming that far away from
the interface the material is bulklike, we can then apply
the shifts between LDA and QSGW relative to this local
average electrostatic potential reference and thus obtain a GW
correction to the LDA band offset. One can also use core
levels or any other “local potential marker” for this purpose,
such as the potential at the muffin-tin radius. These shifts
also play a role in the understanding of defect levels and
alloys.38

With these cautions in mind, let us now inspect the results
as given in Table VI. We find the pure quasiparticle shifts of the
VBM to be negative and those of the CBM to be positive, with
the ratio of the CBM shift to the absolute value of the VBM
shift increasing from Si to Sn. The dominant shift is always
in the CBM. When considering the shifts relative to the pure
LDA, which include a change in charge density between LDA
and QSGW, we find also a downward shift of the VBM, except
for ZnSnN2, for which both the VBM and the CBM shift up
relative to LDA. The CBM of ZnSnN2 has a sizeable Sn-s
contribution. On an absolute scale one expects Sn-s levels to
lie deeper than, e.g., Ge-s levels because s levels are nonzero
at the nucleus. This is of course the underlying reason for the
gap reduction from Si to Ge to Sn. Apparently, for ZnSnN2, the
Sn-s states are positioned relative to the electrostatic potential
reference in such a way as to behave almost like a N-2p level,
and hence the VBM shift has the same sign as the CBM. The
N-2s and Zn-3d bands shift considerably more down, showing
that the GW shifts are orbital dependent: the Zn-3d shift down
more than the N-2s even though the N-2s lie below the Zn-3d.
These average band positions were taken as the peak in the
corresponding partial density of states.

C. Effective valence-band Hamiltonian

In this section, we examine the energy bands near the
band gap in more detail. Figure 4 shows the band structures
near the the valence-band maximum for the three compounds.
The states at � are labeled according to the irreducible
representations. We note that the conduction-band minimum
at � has a1 symmetry. Thus direct optical transitions are
allowed from a1 to a1 for E ‖ c, from b1 to a1 for E ‖ a,
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FIG. 4. (Color online) Fine structure of the bands near the
valence-band maximum with symmetry labeling at � for ZnSiN2,
ZnGeN2, and ZnSnN2.

and from b2 to a1 for E ‖ b. We see that in ZnGeN2 and
ZnSnN2 the valence-band maximum is split in three levels
even without including spin-orbit coupling. The order of the
different symmetry levels is different in each case. In ZnSiN2,
in addition, a level of a2 symmetry lies between these levels.
This level has no allowed dipole transitions to the CBM. When
adding spin-orbit coupling to the calculation, we find almost
identical splittings. From the group theory point of view, all
transitions then become allowed because all of them belong to
the �5 irreducible representation of the double group, using
Koster and Slater’s character table. However, the fact that
spin-orbit coupling appears to have a negligible effect on

the VBM states indicates that we should discuss selection
rules based on the single rather than the double group. The
selection rules mentioned above imply that these materials
might have opportunities for polarization-sensitive detectors.
Even for light incident normally to the basal plane, there
should be a significant splitting between excitons or light
absorbed for the two in-plane polarizations. This results from
the low orthorhombic symmetry. At this point, however, no
such exciton fine structure has been observed. This will require
high-quality films.

The effective masses of the valence bands at � are different
in each direction x, y, and z and for each separate valence
band. Likewise the CBM has in principle an anisotropic mass
tensor with three different diagonal components. The VBM
manifold of states can be described by a generalization of
the Kohn-Luttinger (for zincblende) or Rashba-Sheka-Pikus
(RSP) Hamiltonian for wurtzite. Using the theory of invariants,
we can write the effective mass Hamiltonian as follows:

HC2v = 
1cLz
2 + 
2c

(
Lx

2 − Ly
2
) + 
1soLzσz

+
√

2(
2soLxσx + 
3 soLyσy)

+ [
A1 + A2Lz

2 + A3
(
Lx

2 − Ly
2
)]

kz
2

+ [
B1 + B2Lz

2 + B3
(
Lx

2 − Ly
2)](kx

2 + ky
2)

+ [
C1 + C2Lz

2 + C3
(
Lx

2 − Ly
2
)](

kx
2 − ky

2
)

+D1{Lx,Ly}kxky + D2{Lz,Lx}kzkx

+D3{Lz,Ly}kzky + E1Lxky + E2Lykx, (4)

where {Li,Lj } are anticommutators. This includes all terms up
to second order that can be formed from the operators Li , ki ,
and σi that are invariant (i.e., belong to the a1 representation).
At k = 0 we have two crystal-field splittings and three spin-
orbit splitting parameters. The remaining terms are inverse
effective masses and the parameters E1 and E2 are linear in ki .
We have neglected purely relativistic linear terms involving σi

and ki . If 
2c = 0, 
2so = 
3so, A3 = 0, B3 = 0, C1 = C2 =
0, C3 = 2D1, D2 = D3, and E1 = E2, the above Hamiltonian
is reduced to the RSP Hamiltonian valid for C6v symmetry. If
we denote the RSP Hamiltonian parameters as defined in Kim
et al.39 by Ãi , we have the relations

A1 = Ã1, A2 = Ã3, B1 = Ã2, B2 = Ã4,

C3 = Ã5, D1 = 2Ã5, D2 = D3 =
√

2Ã6, (5)

E1 = −E2 =
√

2Ã7.

For k = 0 and without spin-orbit splitting, the Hamiltonian in
the basis of Ym

l with l = 1 and m = 1,0, − 1 is of the form
⎛
⎜⎝


1c 
2c

0


2c 
1c

⎞
⎟⎠ . (6)

The eigenvalues are

Ea1 = 0, Eb2 = 
1c + 
2c, Eb1 = 
1c − 
2c, (7)

where we have used the usual sign convention of the spherical
harmonics Y±1

1 = ∓√
3/8π sin θe±iφ , so the x orbital, which

gives the state with b1 = x symmetry, corresponds to −Y 1
1 +

Y−1
1 , which indeed corresponds to the eigenvalue with the

165204-7



PUNYA, LAMBRECHT, AND VAN SCHILFGAARDE PHYSICAL REVIEW B 84, 165204 (2011)

− sign in the above equation. Since, in all cases, we find
Eb1 > Eb2 , it means that 
2c < 0. The splittings and 
1c, 
2c

parameters are given in Table VIII. We find the hexagonal

crystal-field splitting 
1c to be significantly larger than in
GaN, and furthermore the 
2c is of comparable magnitude.

For arbitrary k the 3 × 3 Hamiltonian matrix without spin-
orbit coupling terms is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


1c + (B1 + B2 + C1 + C2)k2
x

+(B1 + B2 − C1 − C2)k2
y

+(A1 + A2)k2
z

(D2kzkx − iD3kzky)/
√

2

+E1ky − iE2kx


2c + (B3 + C3)k2
x

+(B3 − C3)k2
y + A3k

2
z

−iD1kxky

(D2kzkx + iD3kzky)/
√

2

+E1ky + iE2kx

(B1 + C1)k2
x + (B1 − C1)k2

y + A1k
2
z

(−D2kzkx + iD3kzky)/
√

2

+E1ky − iE2kx


2c + (B3 + C3)k2
x

+(B3 − C3)k2
y + A3k

2
z

+iD1kxky

(−D2kzkx − iD3kzky)/
√

2

+E1ky + iE2kx


1c + (B1 + B2 + C1 + C2)k2
x

+(B1 + B2 − C1 − C2)k2
y

+(A1 + A2)k2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

If we now consider the bands in each of the orthogonal
directions, e.g., (kx = ky = 0), we can diagonalize the Hamil-
tonian in the same way as for k = 0 and read off the hole
inverse masses. We will use the notation mλ

α where λ gives
the irreducible representation of the level at � and α gives
the Cartesian direction x,y,z. Thus, we obtain the following
relations for the inverse hole masses:

−(
ma1

z

)−1 = A1, − (
mb2

z

)−1 = A1 + A2 + A3,

−(
mb1

z

)−1 = A1 + A2 − A3, − (
ma1

x

)−1 = B1 + C1,

−(
mb2

x

)−1 = B1 + B2 + B3 + C1 + C2 + C3,

−(
mb1

x

)−1 = B1 + B2 − B3 + C1 + C2 − C3, (9)

−(
ma1

y

)−1 = B1 − C1,

−(
mb2

y

)−1 = B1 + B2 + B3 − C1 − C2 − C3,

−(
mb1

y

)−1 = B1 + B2 − B3 − C1 − C2 + C3.

In Table VII we summarize the various VBM and CBM
effective masses, and in Table VIII we summarize the Ai,Bi,Ci

parameters. The remaining parameters Di only enter if we
look at bands in directions intermediate between the in-basal
plane and the out-of-basal plane. Assuming the crystal is not
too far from hexagonal, which we could call a quasihexago-
nal approximation, one would have the relation D1 = 2C3.
Furthermore, within the quasicubic relation, one has the
approximate relation Ã6 = (4Ã5 − Ã3)/

√
2 in the wurtzite

case. This leads here to the relation D2 = D3 = 4C3 − A2.
Thus the Di parameters can be obtained approximately from
the ones already determined. The Ei linear in k parameters
are related to the anticrossing behavior of the bands one can
observe, for example, for the b2 and a1 bands along �–Y in
ZnGeN2. Since these occur well below the VBM, they are of
limited interest and were not determined.

Now, we return to the case k = 0 but add spin-orbit
coupling. The 6 × 6 Hamiltonian breaks into two equivalent
3 × 3 Hamiltonians of the form

⎛
⎜⎝


1c + 
so1 
so2 − 
so3 
2c


so2 − 
so3 0 
so2 + 
so3


c2 
so2 + 
so3 
c1 − 
so1

⎞
⎟⎠ . (10)

The order of the basis function is m = 1 ↑, m = 0 ↓, m =
−1 ↑ or equivalently m = −1 ↓, m = 0 ↑, and m = 1 ↓. The
eigenvalues are indeed doubly degenerate in spin because of
the Kramer’s theorem related to time reversal symmetry. If we
assume that the spin-orbit coupling parameters are essentially
isotropic, 
so1 = 
so2 = 
so3 = 
s , which is usually a good
approximation because spin-orbit coupling arises from the
inner part of the atom where the potential is close to spherically
symmetric, we can make some progress by first applying the

TABLE VII. Effective masses (units of free-electron mass me).

ZnSiN2 ZnGeN2 ZnSnN2

CBM at � mc
x 0.30 0.22 0.16

mc
y 0.47 0.20 0.15

mc
z 0.21 0.15 0.12

VBM at � ma1
x 4.80 1.90 1.79

ma1
y 0.80 2.02 1.98

ma1
z 0.21 0.15 0.12

mb1
x 0.37 0.21 0.15

mb1
y 4.80 2.19 2.02

mb1
z 2.97 2.26 2.04

mb2
x 0.31 2.91 2.27

mb2
y 1.06 0.19 0.15

mb2
z 1.18 2.42 2.34

Actual VBM mv
x 0.55

in ZnSiN2 mv
y 0.33

mv
z 1.09
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TABLE VIII. Parameters of effective Hamiltonian: inverse mass
(h̄2/2me), energy splitting (meV).

Parameter ZnSiN2 ZnGeN2 ZnSnN2 GaN

A1 −4.71 −6.87 −8.57 −6.4
A2 4.11 6.44 8.10 5.9
A3 −0.26 0.01 0.02
B1 0.73 −0.51 −0.53 −0.50
B2 −1.93 −2.19 −3.12 −2.55
B3 0.04 0.09 0.11
C1 −0.52 −0.02 −0.03
C2 −1.26 −0.05 −0.05
C3 −0.32 2.30 3.18 2.56
D1 −0.64 4.60 6.36 5.12
D2,D3 −5.41 2.76 4.62 4.33

1c 160 115 82 36

2c −20 −14 −94 0

unitary transformation that diagonalized the matrix without
spin-orbit coupling. This leads to

⎛
⎜⎝


c1 + 
c2

√
2
s 
s√

2
s 0 −√
2
s


s −√
2
s 
c1 − 
c2

⎞
⎟⎠ . (11)

If we furthermore assume that the spin-orbit parameter is small
compared with the crystal-field splitting of the levels, then in
second-order perturbation theory we obtain

Ea1 = − 2
2
s


c1 + 
c2
,

Eb2 = 
c1 + 
c2 + 2
2
s


c1 + 
c2
+ 
2

s

2
c2
, (12)

Eb1 = 
c1 − 
c2 + 2
2
s


c1 − 
c2
− 
2

s

2
c2
.

Strictly speaking, all levels have symmetry �5 but we still label
them by the single group label from which they are derived.

We carried out calculations including spin-orbit coupling
and found that the splittings were essentially indistinguishable
from the ones without spin-orbit coupling. This indicates
that the spin-orbit coupling parameter is very small in these
compounds and makes it at this point unpractical and at
the same time unimportant to try to extract these small
parameters.

The reason for this small spin-orbit coupling is worth
some discussion. For the parent compounds, GaN, we find
it is already rather small because (1) the N atom is a low-Z
element for which relativistic effects are small and (2) there
is a negative contribution from the Ga-3d states lying below
the VBM but which are nevertheless somewhat hybridized
with the VBM. In ZnGeN2, this negative contribution which
now derives from the Zn-3d must be even stronger. In
fact, we know that in ZnO the spin-orbit splitting becomes
negative.40 One expects it here to be intermediate between
GaN and ZnO because only half the cation sites contribute.
The Ge-3d or Sn-4d states lie significantly deeper so that
their contribution must be significantly smaller. Apparently,

the 3d contribution must almost perfectly cancel the N-2p

contribution.
Now for ZnSiN2 the a2 valence band lies between the b1

and b2 bands. Along �–Z the point group of the k point is
still C2v so the band emanating from a2 retains a2 symmetry
and cannot interact with the other bands. Thus it is indeed
seen to cross the b1 band as it disperses upward in energy.
Along �–X or �–Y the symmetry group is reduced to a single
mirror plane, σy , σx , respectively. Along �–Y , for example,
a1- and b2-derived bands are both even and a2 and b1 are odd
under the σx . Thus one can see an anticrossing behavior of
the a2- and b1-derived bands along �Y . However, the effective
Hamiltonian describing the states near � loses its usefulness.
In fact, this Hamiltonian is mostly useful as a starting point
for envelope function calculations of nanostructure or shallow
acceptor impurities or excitons. But the �-point VBM lies
about 0.2 eV below the actual VBM. Thus it is more useful to
give the anisotropic effective mass tensor of the VBM at this
k point. The latter are also given in Table VII.

Finally, it is instructive to compare these parameters with
those in GaN. Using Eq. (5) we can rewrite the RSP parameters
of GaN derived in Kim et al.39 in our present orthorhombic
notation. These are included in Table VIII as the last column.
In that case Eb1 = Eb2 and the masses in x and y directions
are the same. We can see that the inverse mass parameters
in GaN are similar to those in ZnGeN2 but the crystal-field
splitting is significantly smaller. In fact, the value given here
from Kim et al.39 was found to be an overestimate due to the
LDA compared with the experiment.

V. CONCLUSIONS

We presented FP-LMTO LDA and GGA calculations of the
crystal structure parameters and QSGW band structures of the
Zn-IV-N2 semiconductors with IV equal to Si, Ge, and Sn.
Excellent agreement is obtained for the structural parameters
with the experiment and previous calculations. As for the band
structures, we find ZnSiN2 to be an indirect gap semiconductor
while the other two are direct gap semiconductors. The
band gaps versus lattice constants are summarized in Fig. 5
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compared with the group-III nitride family and firmly establish
that these compounds are promising for similar optoelectronic
applications as the III-N family. Gap corrections such as
exciton binding-energy and zero-point motion phonon renor-
malization of the gaps were included. Spin-orbit coupling was
also taken into account and found to have negligible effect on
the valence-band splittings.

The orthorhombic symmetry reduction, compared with the
III-nitrides, however, has important consequences in splitting
the valence band according to x,y,z-like states. The bands near
the valence-band maximum were analyzed in detail by gen-
eralizing the Kohn-Luttinger Hamiltonian for orthorhombic

symmetry, and the corresponding parameters were extracted
by fitting to the band structure. Conduction-band masses and
exciton reduced masses and binding energies were estimated.

ACKNOWLEDGMENTS

This work made use of the High Performance Comput-
ing Resource in the Core Facility for Advanced Research
Computing at Case Western Reserve University and the
Ohio Supercomputer Center. The work was supported by
the National Science Foundation under Grant No. DMR-
0710485.

1M. Maunaye and J. Lang, Mater. Res. Bull 5, 793 (1970).
2M. Wintenberger, M. Maunaye, and Y. Laurent, Mat. Res. Bull. 8,
1049 (1973).

3W. L. Larson, H. P. Maruska, and A. Stevenson, J. Electrochem.
Soc. 121, 1683 (1974).

4T. Endo, Y. Sato, H. Takizawa, and M. Shimada, J. Mater. Sci. Lett.
11, 424 (1992).

5L. D. Zhu, P. H. Maruska, P. E. Norris, P. W. Yip, and L. O.
Bouthillette, in GaN and Related Alloys, edited by S. J. Pearton, C.
Kuo, A. F. Wright, and T. Uenoyama, Mater. Res. Soc. Proc., Vol.
537 (Materials Research Society, Warrendale, PA, 1999), p. G3.8.

6J. Muth, A. Cai, A. Osinsky, H. Everitt, B. Cook, and I. Avrutsky,
in GaN, AlN, InN, and Their Alloys, Mater. Res. Soc. Symp. Proc.,
Vol. 831, edited by C. Wetzel, B. Gil, M. Kuzuhara, and M. Manfra
(MRS, Pittsburgh, 2005), p. E11.45.1.

7B. P. Cook, H. O. Everitt, I. Avrutsky, A. Osinsky, A. Cai, and J. F.
Muth, Appl. Phys. Lett. 86, 121906 (2005).

8A. Osinsky, V. Fuflyigin, L. D. Zhu, A. B. Goulakov, J. W. Graff, and
E. F. Schubert, in High Performance Devices, 2000. Proceedings
2000 IEEE/Cornell Conference on (IEEE, Piscataway, NJ, 2000),
pp. 168–172.

9S. J. Pearton et al., J. Appl. Phys. 92, 2047 (2002).
10A. Mintairov, J. Merz, A. Osinsky, V. Fuflyigin, and L. Zhu, Appl.

Phys. Lett. 76, 2517 (2000).
11T. Misaki, K. Tsuchiya, D. Sakai, A. Wakahara, H. Okada, and

Y. A., Phys. Status Solidi C 0, 188 (2000).
12T. Misaki, A. Wakahara, H. Okada, and A. Yoshida, Phys. Status

Solidi C 0, 2890 (2003).
13T. Misaki, A. Wakahara, H. Okada, and A. Yoshia, J. Cryst. Growth

260, 1049 (2004).
14T. Cloitre, A. Sere, and R. L. Aulombard, Superlattices Microstruct.

36, 377 (2004).
15S. Kikkawa and H. Morisaka, Solid State Commun. 112, 513 (1999).
16R. Viennois, T. Taliercio, V. Potin, A. Errebbahi, B. Gil, S. Charar,
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