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We give a classification of gapped quantum phases of one-dimensional systems in the framework of matrix
product states (MPS) and their associated parent Hamiltonians, for systems with unique as well as degenerate
ground states and in both the absence and the presence of symmetries. We find that without symmetries, all
systems are in the same phase, up to accidental ground-state degeneracies. If symmetries are imposed, phases
without symmetry breaking (i.e., with unique ground states) are classified by the cohomology classes of the
symmetry group, that is, the equivalence classes of its projective representations, a result first derived by Chen,
Gu, and Wen [Phys. Rev. B 83, 035107 (2011)]. For phases with symmetry breaking (i.e., degenerate ground
states), we find that the symmetry consists of two parts, one of which acts by permuting the ground states, while
the other acts on individual ground states, and phases are labeled by both the permutation action of the former
and the cohomology class of the latter. Using projected entangled pair states (PEPS), we subsequently extend
our framework to the classification of two-dimensional phases in the neighborhood of a number of important
cases, in particular, systems with unique ground states, degenerate ground states with a local order parameter,
and topological order. We also show that in two dimensions, imposing symmetries does not constrain the phase
diagram in the same way it does in one dimension. As a central tool, we introduce the isometric form, a normal
form for MPS and PEPS, which is a renormalization fixed point. Transforming a state to its isometric form does
not change the phase, and thus we can focus on to the classification of isometric forms.
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I. INTRODUCTION

A. Background

Understanding the phase diagram of correlated quantum
many-body systems, that is, the different types of order
such systems can exhibit, is one of the most important and
challenging tasks on the way to a comprehensive theory of
quantum many-body systems. Compared to classical statistical
models, quantum systems exhibit a much more complex
behavior, such as phases with topological order, as in the
fractional quantum Hall effect, which cannot be described
using Landau’s paradigm of local symmetry breaking.

In the last years, tensor-network-based ansatzes, such
as matrix product states1 (MPS) and projected entangled
pair states2 (PEPS), have proven increasingly successful in
describing ground states of quantum many-body systems. In
particular, it has been shown that MPS and PEPS can approxi-
mate ground states of gapped quantum systems efficiently:3–5

That is, not only the ground state of systems with local
order, but also, for instance, the ground states of topological
insulators are well represented by those states. Since MPS
and PEPS provide a characterization of quantum many-body
states from a local description, they are promising candidates
for a generalization of Landau’s theory. Moreover, they can be
used to construct exactly solvable models, as every MPS and
PEPS appears as the exact ground state of an associated parent
Hamiltonian.1,6–8

In this paper, we apply the framework of MPS and PEPS
to the classification of gapped quantum phases by studying
systems with exact MPS and PEPS ground states. Here,
we define two gapped systems to be in the same phase if
and only if they can be connected by a smooth path of

gapped local Hamiltonians. Along such a path, all physical
properties of the state will change smoothly, and as the
system follows a quasilocal evolution,9 global properties are
preserved. A vanishing gap, on the other hand, will usually
imply a discontinuous behavior of the ground state and affect
global properties of the system. In addition, one can impose
symmetries on the Hamiltonian along the path, which in turn
leads to a more refined classification of phases.

In the presence of symmetries, the above definition of
gapped quantum phases can be naturally generalized to
systems with symmetry breaking, that is, degenerate ground
states, as long as they exhibit a gap above the ground state
subspace. Again, ground states of such systems are well
approximated by MPS and PEPS, which justifies why we
study those phases by considering systems whose ground-state
subspace is spanned by MPS and PEPS. On the other hand,
the approach will not work for gapless phases, as the MPS
description typically cannot be applied to them.

B. Results

Using our framework, we obtain the following classification
of quantum phases.

For one-dimensional (1D) gapped systems with a unique
ground state, we find that there is only a single phase,
represented by the product state. Imposing a constraint in form
of a local symmetry Ug (with symmetry group G � g) on the
Hamiltonian leads to a more rich phase diagram. It can be
understood from the way in which the symmetry acts on the
virtual level of the MPS, Ug

∼= Vg ⊗ V̄g , where the Vg are
projective representations of G. In particular, different phases
under a symmetry are labeled by the different equivalence
classes of projective representations Vg of the symmetry group
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G,10 which are in one-to-one correspondence to the elements
of its second cohomology group H2(G,U(1)) (this has been
previously studied in Ref. 11).

For 1D gapped systems with degenerate ground states,
we find that in the absence of symmetries, all systems with
the same ground-state degeneracy can be transformed into
another along a gapped adiabatic path. In order to make these
degeneracies stable against perturbations, symmetries need
to be imposed on the Hamiltonian. We find that any such
symmetry decomposes into two parts, Pg and Wh. Here Pg

acts by permuting the symmetry-broken ground states of the
system. To describe Wh, choose a “reference” ground state,
and let H ⊂ G be the subgroup for which Ph acts trivially on
the reference state: Then Wh (h ∈ H ) is a unitary symmetry
of the reference state, which again acts on the virtual level
as Wh

∼= Vh ⊗ V̄h, with Vh a projective representation of H .
Together, Pg and Wh form an induced representation. The
different phases of the system are then labeled both by the
permutation action Pg of Ug on the symmetry-broken ground
states (or alternatively by the subgroup H ⊂ G for which Ph

leaves the reference state invariant) and by the equivalence
classes of projective representations Vh of H .

Our classification of phases is robust with respect to the
definition of the gap: Two systems which are within the same
phase can be connected by a path of Hamiltonians, which is
gapped even in the thermodynamic limit; conversely, along
any path interpolating between systems in different phases the
gap closes already for any (large enough) finite chain. On the
other hand, we demonstrate that the classification of phases is
very sensitive to the way in which the symmetry constraints
are imposed, and we present various alternative definitions,
some of which yield more fine-grained classifications, while
others result in the same classification as without symmetries.
In particular, we also find that phases under symmetries are
not stable under taking multiple copies and thus should not be
regarded a resource in the quantum information sense.

Parts of our results can be generalized to two dimensions
(2D), with the limitation that we can only prove gaps of parent
Hamiltonians associated with PEPS in restricted regions.
These regions include systems with unique ground states and
with local symmetry breaking as well as topological models.
We show that within those regions, these models label different
quantum phases, with the product state, Ising Hamiltonians,
and Kitaev’s double models12 as their representatives. We
also find that in these regions, imposing symmetries on the
Hamiltonian does not alter the phase diagram, and, more
generally, that symmetry constraints on two- and higher-
dimensional systems must arise from a different mechanism
than in one dimension.

As a main tool for our proofs, we introduce a new standard
form for MPS and PEPS, which we call the isometric form.
Isometric forms are renormalization fixed points which capture
the relevant features of the quantum state under consideration,
both for MPS and for the relevant classes of PEPS. Parent
Hamiltonians of MPS can be transformed into their isometric
form along a gapped path, which provides a way to renormalize
the system without actually blocking sites. This reduces
the classification of quantum phases to the classification of
phases for isometric MPS/PEPS and their parent Hamiltonians,

which is considerably easier to carry out due to its additional
structure.

C. Structure of the paper

The paper is structured as follows. In Sec. II, we prove
the results for the 1D case: We start by introducing MPS
(Sec. II A) and parent Hamiltonians (Sec. II B) and defining
phases without and with symmetries (Sec. II C); we then
introduce the isometric form and show that the problem of
classifying phases can be reduced to classifying isometric
forms (Sec. II D); subsequently, we first classify 1D phases
without symmetries (Sec. II E), then phases of systems
with unique ground states under symmetries (Sec. II F), and
finally phases of symmetry-broken systems under symmetries
(Sec. II G).

In Sec. III, we discuss the 2D scenario. We start by
introducing PEPS (Sec. III A) and characterize the region in
which we can prove a gap (Sec. III B). We then classify PEPS
without symmetries (Sec. III C) and show that symmetries do
not have an effect comparable to one dimension (Sec. III D).

Section IV contains discussions of various topics which
have been omitted from the preceding sections. Most impor-
tantly, in Secs. IV B and IV C, we discuss various ways in
which phases, in particular in the presence of symmetries, can
be defined, and the way in which this affects the classification
of phases, and in Sec. IV D we provide examples illustrating
our classification.

II. RESULTS IN ONE DIMENSION

In this section, we derive the classification of phases for 1D
systems both with unique and with degenerate ground states
and in both the absence and the presence of symmetries. We
start by giving the necessary definitions; we introduce MPS
and their parent Hamiltonians and define what we mean by
phases both without and with symmetries. Then we state and
prove the classification of phases for the various scenarios
(with some technical parts placed in Appendixes).

Note that, for clarity, we keep discussions in this section to a
minimum. Extensive discussion of various aspects (motivation
of the definitions, alternative definitions, etc.) can be found in
Sec. IV.

A. Matrix product states

In the following, we study translational invariant systems on
a finite chain of length N with periodic boundary conditions.
While we do not consider the thermodynamic limit, we require
relevant properties such as spectral gaps to be uniform in N .

1. Definition of MPS

Consider a spin chain (Cd )⊗N . A (translational invariant)
MPS |μ[P]〉 of bond dimension D on (Cd )⊗N is constructed
by placing maximally entangled pairs

|ωD〉 :=
D∑

i=1

|i,i〉

between adjacent sites and applying a linear map P :
CD ⊗ CD → Cd , as depicted in Fig. 1 (Ref. 13); that is,
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FIG. 1. (Color online) MPS are constructed by applying a linear
map P to maximally entangled pairs |ωD〉 := ∑D

i=1 |i,i〉 of bond
dimension D.

|μ[P]〉 = P⊗N |ωD〉⊗N . The map P is sometimes called the
MPS projector (though it need not be a projector).

2. Standard form

The definition of MPS is robust under blocking sites:
Blocking k sites into one super-site of dimension dk gives
a new MPS with the same bond dimension, with projector
P ′ = P⊗k|ωD〉⊗(k−1), where the maximally entangled pairs
are again placed as in Fig. 1.

By blocking and using gauge degrees of freedom (in-
cluding changing D), any MPS which is well-defined in
the thermodynamic limit can be brought into its standard
form, where P is supported on a “block-diagonal” space,
(ker P)⊥ = H1 ⊕ · · · ⊕ HA, with

Hα = span{|i,j 〉 : ζα−1 < i,j � ζα}. (1)

Here 0 = ζ0 < ζ1 < · · · < ζA = D gives a partitioning of
1, . . . ,D; we define Di := ζi − ζi−1. The case where A = 1
(i.e., P is injective) is called the injective case, whereas the
case with A > 1 is called noninjective.

In the following, we assume, without loss of generality, that
all MPS are in their standard form; note that this might involve
the blocking of sites of the original model. Moreover, we
impose that P is surjective; this can be achieved by restricting
Cd to the image of P .

B. Parent Hamiltonians

For any MPS (in its standard form) one can construct local
parent Hamiltonians which have this MPS as their ground
state. A (translational invariant) parent Hamiltonian,

H =
N∑

i=1

h(i,i + 1),

consists of local terms h(i,i + 1) ≡ h � 0 acting on two
adjacent sites (i,i + 1) whose kernels exactly support the
two-site reduced density operator of the corresponding MPS,
that is,

ker h = (P ⊗ P)(CD ⊗ |ωD〉 ⊗ CD). (2)

By construction, H � 0 and H |μ[P]〉 = 0, that is, |μ[P]〉 is a
ground state of H . It can be shown that the ground-state space
of H isA-fold degenerate and spanned by the states |μ[P|Hα

]〉,
where P|Hα

is the restriction of P to Hα .1,6,7 This associates a
family of parent Hamiltonians to every MPS, and by choosing
h a projector, the mapping between MPS and Hamiltonians
becomes one to one.

Given this duality between MPS and their parent Hamil-
tonians, we use the notion of MPS and parent Hamiltonians
interchangeably whenever appropriate.

C. Definition of quantum phases

Vaguely speaking, we define two systems to be in the
same phase if they can be connected along a continuous
path of gapped local Hamiltonians, possibly preserving certain
symmetries; here gapped means that the Hamiltonian keeps its
spectral gap even in the thermodynamic limit. The intuition is
that along any gapped path, the expectation value of any local
observable will change smoothly, and the converse is widely
assumed to also hold.14

The rigorous definitions are as follows.

1. Phases without symmetries

Let H0 and H1 be a family of translational invariant
gapped local Hamiltonians on a ring (with periodic boundary
conditions). Then, we say that H0 and H1 are in the same phase
if and only if there exists a finite k such that after blocking k

sites, H0 and H1 are two local,

Hp =
N∑

i=1

hp(i,i + 1), p = 0,1,

and there exists a translational invariant path

Hγ =
N∑

i=1

hγ (i,i + 1), 0 � γ � 1,

with two-local hγ such that
(i) h0 = hγ=0 , h1 = hγ=1;

(ii) ‖hγ ‖op � 1;
(iii) hγ is a continuous function of γ ;
(iv) Hγ has a spectral gap above the ground state manifold

which is bounded below by some constant � > 0, which is
independent of N and γ .

In other words, two Hamiltonians are in the same phase
if they can be connected by a local, bounded-strength,
continuous, and gapped path.

Note that this definition applies to Hamiltonians both with
unique and with degenerate ground states.

2. Phases with symmetries

Let Hp (p = 0,1) be a Hamiltonian acting on H⊗N
p ,

Hp = Cdp , and let U
p
g be a linear unitary representation of

some group G � g on Hp. We then say that Ug is a symmetry
of Hp if [Hp,(Up

g )⊗N ] = 0 for all g ∈ G; note that U
p
g is

only defined up to a 1D representation of G, U
p
g ↔ eiφ

p
g U

p
g .

Then we say that H0 and H1 are in the same phase under
the symmetry G if there exists a phase gauge for U 0

g and U 1
g

and a representation U = U 0
g ⊕ U 1

g ⊕ U
path
g of G on a Hilbert

space H = H0 ⊕ H1 ⊕ Hpath and an interpolating path Hγ on
H with the properties given in the preceding section, such that
[Hγ ,U⊗N

g ] = 0, and where H0 and H1 are supported on H0

and H1, respectively.
There are a few points to note about this definition. First, we

allow for an arbitrary representation of the symmetry group
along the path; we discuss in Sec. IV C why this is not a
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restriction. Second, we impose that H0 and H1 are supported
on orthogonal Hilbert spaces: This allows us to compare,
for example, the spin-1 AKLT state with the spin-0 state
under SO(3) symmetry, but we impose this even if the two
representations are the same; we discuss how to circumvent
this in Sec. IV C. Note that, just as without symmetries, this
definition should be understood after an appropriate blocking
of sites.

3. Robust definition of phases

In addition to the properties listed in the definition of phases
in Sec. II C 1 above, one usually requires a phase to be robust,
that is, an open set in the space of allowed Hamiltonians: For
every Hamiltonian

H =
N∑

i=1

h(i,i + 1),

there should be an ε > 0 such that

H =
N∑

i=1

[ h(i,i + 1) + ε k(i,i + 1)

is in the same phase for any bounded-strength k(i,i + 1) which
obeys the required symmetries.

We are not going to rigorously address robustness of phases
in the present paper; however, it should be pointed out that,
in the absence of symmetries, Hamiltonians with degenerate
MPS ground states do not satisfy this property: In its standard
form, the different ground states of a noninjective MPS are
locally supported on linearly independent subspaces, and we
can use a translational invariant local perturbation ε k(i) to
change the energy of any of the ground states proportionally
to εN , thereby closing the gap for a N ∝ 1/ε. On the other
hand, in the presence of a symmetry which permutes the
different ground states (such a symmetry always exists), those
perturbations are forbidden, and the phase becomes stable.
(A rigorous stability proof for MPS phases would make use of
the stability condition for frustration-free Hamiltonians proven
in Ref. 15 and its generalization to symmetry-broken phases
analogous to the one discussed in Ref. 16: The condition is
trivially satisfied by the renormalization fixed points of MPS,17

and using the exponential convergence of MPS to their fixed
point,17 the validity of the stability condition, and thus the
stability of MPS phases, follows.)

Therefore, when classifying phases of systems with degen-
erate ground states, one should keep in mind that in order to
make this a robust definition, a symmetry which protects the
degeneracy is required.

4. Restriction to parent Hamiltonians

We want to classify the quantum phases of gapped
Hamiltonians which have exact MPS ground states (or, in
the case of degeneracies, the same ground-state subspace
as the corresponding parent Hamiltonian). Fortunately, with
our definition of phases it is sufficient to classify the phases
for parent Hamiltonians themselves: Given any two gapped
Hamiltonians H and H ′ which have the same ground-state
subspace, the interpolating path γH + (1 − γ )H ′ has all
desired properties, and in particular it is gapped. Note that

FIG. 2. Construction of the interpolating path for MPS and parent
Hamiltonians. Instead of interpolating between the MPS |ψ0〉 and
|ψ1〉 directly (dotted line), we first show how to interpolate each of
the two states toward a standard from |ψ̂p〉, the isometric form, and
then construct an interpolating path between the isometric forms.
Note that using the parent Hamiltonian formalism, any such path in
the space of MPS yields a path in the space of Hamiltonians right
away.

this also shows that all parent Hamiltonians for a given MPS
are interchangeable.

D. The isometric form

1. Reduction to a standard form

Given two MPS |μ[Pp]〉, p = 0,1, together with their
nearest-neighbor parent Hamiltonians Hp, we want to see
whether H0 and H1 are in the same phase, that is, whether
we can construct a gapped interpolating path. We do so
by interpolating between P0 and P1 along a path Pγ , in
such a way that it yields a path Hγ in the space of parent
Hamiltonians which satisfies the necessary continuity and
gappedness requirements.

In order to facilitate this task, we proceed in two steps, as
illustrated in Fig. 2: In a first step, we introduce a standard
form for each MPS—the isometric form—which is always in
the same phase as the MPS itself. This will reduce the task of
classifying phases to the classification of phases for isometric
MPS, which we pursue subsequently.

2. The isometric form

Let us now introduce the isometric form of an MPS. The
isometric form captures the essential entanglement and long-
range properties of the state and forms a fixed point of a
renormalization procedure,17 and every MPS can be brought
into its isometric form by stochastic local operations.18 Most
importantly, as we show, there exists a gapped path in the space
of parent Hamiltonians which interpolates between any MPS
and its isometric form.

Given an MPS |μ[P]〉, decompose

P = Q W, (3)

with W an isometry WW † = 1 and Q > 0, by virtue of a
polar decomposition of P|(ker P)⊥ ; without loss of generality,
we can assume 0 < Q � 1 by rescaling P . The isometric form
of |μ[P]〉 is now defined to be |μ[W ]〉, the MPS described by
W , the isometric part of the tensor P .

To see that |μ[P]〉 and |μ[W ]〉 are in the same phase, define
an interpolating path |μ[Pγ ]〉, Pγ = Qγ W , with

Qγ = γQ + (1 − γ )1, 1 � γ � 0;

note that the path can be seen as a stochastic deformation
|μ[Pγ ]〉 = Q⊗N

γ |μ[P0]〉 (cf. Fig. 3). Throughout the path, the
MPS stays in standard form, and in the noninjective case, the
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FIG. 3. Isometric form of an MPS. (a) The MPS projector P
can be decomposed into a positive map Q and an isometric map
W . (b) By removing Q, one obtains the isometric form W of the
MPS. (c) Interpolation to the isometric form is possible by letting
Qγ = γQ + (1 − γ )1.

blocking pattern which is encoded in the structure of ker P
stays unchanged.

Let us now see that |μ[P]〉 ≡ |μ[P1]〉 and its isometric
form |μ[W ]〉 ≡ |μ[P0]〉 are in the same phase. To this end,
consider the parent Hamiltonian H0 = ∑

h0(i,i + 1) of the
isometric MPS |μ[P0]〉, with h0 a projector. Let


γ = (
Q−1

γ

)⊗2
,

and define the γ -deformed Hamiltonian

Hγ :=
∑

hγ (i,i + 1), with hγ := 
γ h0
γ � 0.

Since h0|μ[P0]〉 = 0, it follows that hγ |μ[Pγ ]〉 = 0 (and, in
fact, the kernel of h is always equal to the support of the
two-site reduced state); that is, Hγ is a parent Hamiltonian
of |μ[Pγ ]〉. Note that the family Hγ of Hamiltonians is
continuous in γ by construction.

It remains to show that the path Hγ is uniformly gapped;
that is, there is a � > 0 which lower bounds the gap of Hγ

uniformly in γ and the systems size N : This establishes that
the |μ[Pγ ]〉 are all in the same phase. The derivation is based
on a result of Nachtergaele6 (extending the results of Ref. 1
for the injective case), where a lower bound (uniform in N ) on
the gap of parent Hamiltonians is derived, and can be found
in Appendix A. The central point is that the bound on the gap
depends on the correlation length ξ and the gap of Hγ restricted
to ξ sites, and since both depend smoothly on γ , and ξ → 0
as γ → 0, a uniform lower bound on the gap follows; for the
noninjective case, one additionally needs that the overlap of
different ground states goes to zero as γ → 0.

3. Isometric form and symmetries

An important point about the isometric form |μ[P0]〉 of
an MPS |μ[P1]〉 is that both remain in the same phase even
if symmetries are imposed. The reason is that using gauge
transformations

P ←→ P[Y ⊗ (Y−1)T ]

—such transformations do not change |μ[P]〉 —any P can
be brought into a standard form where Trleft[P†P] = 1right [cf.
Refs. 1,7]; in this standard form, any symmetry U⊗N

g of the
MPS |μ[P]〉 can be understood as some unitary Xg acting on
the virtual level,19

UgP = PXg.

In the polar decomposition P = QW [Eq. (3)] we have that
Q =

√
PP†, and thus

Q2 = PP† = U †
g P XgX

†
gP† Ug

= U †
gPP†Ug = U †

gQ
2Ug.

That is, for any g ∈ G the matrices Q2 and Ug are diagonal in a
joint basis, and therefore [Q,Ug] = 0, and it follows that both
the interpolating path |μ[Pγ ]〉 = Q⊗N

γ |μ[P0]〉 and its parent
Hamiltonian Hγ are invariant under Ug .

E. Phase diagram without symmetries

The preceding discussion show thats in order to classify
quantum phases (both without and with symmetries), it
is sufficient to consider isometric MPS and their parent
Hamiltonians. In the following, we carry out this classification
for the scenario where no symmetries are imposed. We find that
without symmetries, the phase of the system only depends on
the ground-state degeneracy, as any two systems with the same
ground-state degeneracy are in the same phase (and clearly the
ground-state degeneracy cannot be changed without closing
the gap).

1. Unique ground state

Let us start with the injective case where the Hamiltonian
has a unique ground state. In that case, the isometry W is a
unitary. We can now continuously undo the rotation W ; this
clearly is a smooth gapped path and does not change the phase.
This yields the state |μ[P = 1]〉 = |ωD〉⊗N , consisting of
maximally entangled pairs of dimension D between adjacent
sites which can only differ in their bond dimension D (cf.
Fig. 4). The parent Hamiltonian is a sum of commuting
projectors of the form

hD = 1 − |ωD〉〈ωD| (4)

and thus gapped. [Here hD should be understood as acting
trivially on the leftmost and rightmost ancillary particle, and
nontrivially on the middle two (cf. Fig. 4).] Moreover, for
different D and D′ one can interpolate between these states
via a path of commuting Hamiltonian with local terms

hθ = 1 − |ω(θ )〉〈ω(θ )|, (5)

where |ω(θ )〉 = √
θ |ωD〉 + √

1 − θ |ωD′ 〉. It follows that any
two isometric injective MPS, and thus any two injective MPS,
are in the same phase. In particular, this phase contains the
product state as its canonical representant.

FIG. 4. (Color online) The isometric form of an injective MPS
consists of maximally entangled states |ωD〉 with bond dimension D

between adjacent sites, where each site is a D2-level system. The local
Hamiltonian terms hD [Eq. (4)] acts only on the degrees of freedom
corresponding to the central entangled pair.
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FIG. 5. (Color online) Structure of the isometric form for nonin-
jective MPS. The state consists of a GHZ state

∑
α |α, . . . ,α〉 (gray)

and maximally entangled pairs between adjacent sites |ωDα
〉, where

the bond dimension Dα can couple to the value α of the GHZ state.

Note that in the previous derivation, the dimensions of the
local Hilbert spaces differ. One can resolve this by thinking of
both systems as being embedded in a larger Hilbert space or
by adding ancillas; we discuss this further is Sec. IV.

2. Degenerate ground states

Let us now consider the case of of noninjective MPS, that
is, systems with degenerate ground states? First, consider the
case with block sizes Dα := dimHα = 1, that is,P ≡ PGHZ =∑

α |α〉〈α,α| (up to a rotation of the physical system): This
describes an A-fold degenerate GHZ state with commuting
Hamiltonian terms

h = 1 −
∑

α

|α,α〉〈α,α|. (6)

For Dα �= 1, we have that (again up to local rotations)

P =
∑

α

|α〉〈α,α| ⊗ 1D2
α
,

where 1D2
α

acts on Hα in Eq. (1). This describes a state∑
α

|α, . . . ,α〉 ⊗ ∣∣ωDα

〉⊗N
(7)

(cf. Fig. 5), that is, a GHZ state with additional local
entanglement between adjacent sites, where the amount of
local entanglement Dα can depend on the value α of the
GHZ state. (Since the Dα can be different, the correct
interpretation of Eq. (7) is |ωD1〉⊗N ⊕ · · · ⊕ |ωDA〉⊗N , with
the |α〉 labeling the direct sum components locally.) The
corresponding Hamiltonian is a sum of the GHZ Hamiltonian
(6) and terms ∑

α

|α〉〈α| ⊗ (
1 − ∣∣ωDα

〉〈
ωDα

∣∣),
which are responsible for the local entanglement. This Hamil-
tonian commutes with the GHZ part (this can be understood by
the fact that the GHZ state breaks the local symmetry; that is,
there is a preferred local basis), and one can again interpolate
to the pure GHZ state with D′

α = 1 analogously to the injective
case [Eq. (5)].

3. Summary: Classification of phases

Together, we obtain the following result on the classification
of 1D phases in the absence of symmetries: Any two
systems with MPS ground states with the same ground-state
degeneracy are in the same phase; the canonical representant
of these phases are the product and the GHZ-type states,
respectively. Since the ground-state degeneracy cannot be

smoothly changed without closing the gap, this completes the
classification.

F. Phase under symmetries: Unique ground state

Let us now discuss the classification of phases in the
presence of symmetries, as defined in Sec. II C 2. In the
following we first discuss the case of injective MPS, that is,
systems with unique ground states. Note that we consider the
symmetry of the blocked MPS, but as we have argued when
defining phases under symmetries, this does not affect the
classification.

An important prerequisite for the subsequent discussion is
the observation that any MPS has a gauge degree of freedom

eiϑ |μ[P]〉 = |μ[eiφP(Y ⊗ Y ∗)]〉, (8)

where Y is right-invertible (i.e., there exists Y−1 such that
YY−1 = 1D , but Y need not be square) and Y ∗ = (Y−1)T .
Conversely, it turns out that any two P representing the same
state are related by a gauge transformation (8).

1. Projective representations and the classification of phases

Let Ug be a linear unitary representation of a symmetry
group G. We start from the fact that for any Ug-invariant MPS
|μ[P]〉 and parent Hamiltonian, there is a standard form for P
and a phase gauge for Ug such that

Ug P = P (Vg ⊗ V̄g), (9)

where the bar denotes the complex conjugate.19 Here the Vg

form a projective unitary representation of group G, that is,
VgVh = eiω(g,h)Vgh (cf. Appendix B for details). As Vg appears
together with its complex conjugate in Eq. (9), it is only
defined up to a phase, Vg ↔ eiχgVg , and thus, ω(g,h) is only
determined up to the equivalence relation

ω(g,h) ∼ ω(g,h) + χgh − χg − χh mod 2π.

The equivalence classes induced by this relation form a
group under addition (that is, tensor products of represen-
tations), which is isomorphic to the second cohomology
group H2(G,U(1)) of G over U(1); thus, we also call them
cohomology classes.

In the following, we show that in the presence of sym-
metries, the different phases are exactly labeled by the
cohomology class of the virtual realization Vg of the symmetry
Ug determined by Eq. (9); this result was previously found in
Ref. 11.

2. Equality of phases

Let us first show that MPS with the same cohomology class
for Vg in Eq. (9) can be connected by a gapped path. We do so
by considering the isometric point, where P is unitary; recall
that the transformation to the isometric point commutes with
the symmetry, so that (9) still holds. Then (9) can be rephrased
as

Ûg = P†UgP = Vg ⊗ V̄g;

that is, the action of the symmetry can be understood as Ûg =
Vg ⊗ V̄g acting on the virtual system, in a basis characterized
by P .
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Now consider two MPS with isometric forms P0 and P1,
and symmetries

Û 0
g = P†

0U
0
gP0 = V 0

g ⊗ V̄ 0
g ,

Û 1
g = P†

1U
1
gP1 = V 1

g ⊗ V̄ 1
g ,

where V 0
g and V 1

g are in the same cohomology class. We can
now interpolate between the two MPS with bond dimensions
D0 and D1 (in the “convenient basis” corresponding to Û 0

g and

Û 1
g ) along the path |ω(γ )〉⊗N , where

|ω(γ )〉 = (1 − γ )
D0∑
i=1

|i,i〉 + γ

D1∑
i=D0+1

|i,i〉, (10)

which is an MPS with bond dimension D0 + D1. Again,
the parent Hamiltonian along this path is commuting and
thus gapped and changes smoothly with γ . This path can be
understood as a path with symmetry(

V 0
g ⊕ V 1

g

) ⊗ (
V̄ 0

g ⊕ V̄ 1
g

) = Û 0
g ⊕ Û 1

g ⊕ Û path
g (11)

(cf. Ref. 11), with

Û path
g = (

V 0
g ⊗ V̄ 1

g

) ⊕ (
V 1

g ⊗ V̄ 0
g

)
(this is where equality of the cohomology classes is required,
since only then Û

path
g forms a linear representation).

3. Separation of phases

As we have seen, MPS for which Vg in Eq. (9) is in the same
cohomology class fall into the same phase. Let us now show
that, conversely, states with different cohomology classes fall
into different phases. We prove this again in the framework
of MPS; that is, we show that there cannot be a smooth MPS
path connecting two such states. Note that it is clear that the
interpolation given above cannot work, as now V 0

g ⊕ V 1
g does

not form a representation any more.
The idea of the impossibility proof is to consider a chain

of arbitrary length N and show that along any well-behaved
path Hγ , Pγ needs to change continuously, which results
in a continuous change in the way the symmetry acts on
the virtual system. In turn, such a continuous change cannot
change the cohomology class. While this argument is based
on the fact that the chain is finite (as the continuity bounds
depend on N ), it works for arbitrary system size N ; also,
our argument implies that, in order to interpolate between two
systems with different cohomology classes, that is, in different
phases, the gap of the Hamiltonian will have to close for a
finite chain, and not only in the thermodynamic limit. (This
can be understood from the fact that along an MPS path, the
virtual representation of the symmetry is well defined even for
finite chains, so that it cannot change without closing the gap.
While we believe that cohomology classes label gapped phases
beyond MPS, this will likely not hold exactly for finite chains,
thus leaving the possibility of a higher order phase transition
when interpolating beyond MPS.) We will now proceed by
fixing some γ along the path and show the continuity in an
environment γ + dγ .

Fix some γ , with corresponding ground state |μ[Pγ ]〉 of
Hγ , where Pγ is, without loss of generality, in its standard
form, where UgPγ = Pγ (Vg ⊗ V̄g) with Vg unitary. Now

consider Hγ+dγ with dγ � 1 small and expand its ground
state as

|μ[Pγ+dγ ]〉 =
√

1 − λ2|μ[Pγ ]〉 + λ|χγ 〉,
with 〈χγ |μ[Pγ ]〉 = 0. With Hγ+dγ = Hγ + dH ,

0 = 〈μ[Pγ+dγ ]|Hγ+dγ |μ[Pγ+dγ ]〉
= λ2〈χγ |Hγ |χγ 〉 + 〈μ[Pγ+dγ ]|dH |μ[Pγ+dγ ]〉
� λ2� − ‖dH‖, (12)

where � is the spectral gap of Hγ . Since λ = ||μ[Pγ ]〉 −
|μ[Pγ+dγ ]〉| and dH → 0 as dγ → 0, this shows that |μ[Pγ ]〉
is continuous in γ , and since |μ[Pγ ]〉 is a polynomial in Pγ , it
follows that Pγ can be chosen to be a continuous function of
γ as well.

Let us now study how the virtual representation of the sym-
metry is affected by a continuous change Pγ+dγ = Pγ + dP .
Let us first consider the case where Pγ and dP are supported
on the same virtual space, that is, the bond dimension does
not change, and let us restrict the discussion to the relevant
space. The representation of the symmetry on the virtual level
becomes19

Zg ⊗ Z∗
g = P−1

γ+dγ UgPγ+dγ ,

where Zg ≡ Zg(λ) is invertible, and Z∗
g = (Z−1

g )T [cf. Eq. (8)].
Since both Pγ+dγ and its inverse change continuously, one can
find a gauge such that this also holds for Zg .

It remains to see that a continuous change of the represen-
tation Zg does not change its cohomology class; note that the
choice of gauge for Pγ+dγ [Eq. (8)] leads to a transformation
Zg ↔ YZgY

−1, which does not affect the cohomology class.
Let us first assume that Zg ≡ Zg(λ) is differentiable, and let

Zg = Ug + U ′
g dγ, (13)

and UgUh = eiω(g,h)Ugh. Then we can start from

ZgZh = ei[ω(g,h)+ω′(g,h)dγ ]Zgh

(note that smoothness of Zg implies smoothness of
exp[iω(g,h)] = Tr[ZgZh]/Tr[Zgh] ) and substitute (13). Col-
lecting all first-order terms in dγ , we find that

UgU
′
h + U ′

gUh = eiω(g,h)U ′
gh + iω′(g,h)eiω(g,h)Ugh.

Left multiplication with U−1
h U−1

g = e−iω(g,h)U−1
gh yields

U−1
h U ′

h + U−1
h U−1

g U ′
gUh = U−1

gh U ′
gh + i ω′(g,h) 1,

and by taking the trace and using its cyclicity in the second
term, we obtain

ω′(g,h) = −i(φg + φh − φgh), (14)

with φg = Tr[U−1
g U ′

g]: This proves that differentiable changes
of Zg can never change the cohomology class of ω.

In case Zg ≡ Zg(λ) is continuous but not differentiable,
we can use a smoothing argument: For any ε, we can find a
differentiable Ẑg(λ,ε) such that ‖Ẑg(λ,ε) − Zg(λ)‖ � ε, and
define ωλ,ε(g,h) via

eiωλ,ε (g,h) = Tr
[
Zg(λ,ε)Zh(λ,ε)Z−1

gh (λ,ε)
]
.
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This ωλ,ε(g,h) (and in particular its real part) varies again
according to (14) for any ε and thus does not change its
cohomology class, and since it is O(ε) close to ωλ(g,h), the
same holds for the cohomology class of Zg(λ).

In order to complete our proof, we also need to consider the
case where Pγ+dγ is supported on a larger space than Pγ . (The
converse can be excluded by choosing dγ sufficiently small.)
This can be done by considering the symmetry on the smaller
space, and is done in Appendix C. Together, this continuity
argument shows that we cannot change the cohomology class
of the symmetry Ug on the virtual level along a smooth gapped
path Hγ and thus completes the classification of phases with
unique ground states in the presence of symmetries.

G. Phases under symmetries: Systems with symmetry breaking

Having discussed systems with unique ground states, we
now turn our attention to systems with symmetry breaking,
that is, degenerate ground states, corresponding to noninjective
MPS. Recall that in that case, the MPS projectorP is supported
on a “block-diagonal” space,

H =
A⊕

α=1

CDα ⊗ CDα︸ ︷︷ ︸
=: Hα

. (15)

Before starting, let us note that different from the injective
case, symmetry-broken systems can be invariant under nontriv-
ial projective representations as well. However, we can always
find a blocking k such that the symmetry of the symmetry on
the blocked system is represented linearly (see Sec. IV C), and
we consider that scenario in the following.

1. Induced representations and the structure of systems
with symmetry breaking

Let us first explain how the physical symmetry is realized
on the virtual level; we see that it has the form of a so-called
induced representation of a projective representation (the proof
can be found in Appendix D). Consider an noninjective MPS
|μ[P]〉 and its parent Hamiltonian. Then any invariance of the
Hamiltonian under a linear unitary representation of a group
G can be understood as invariance under an equivalent linear
representation Ug which, with the correct gauge for P , and in
the correct basis, acts on the virtual system as

Ûg = Pg

⊕
a

(⊕
α∈a

V a
h ⊗ V̄ a

h

)
. (16)

Here Pg is a permutation representation of G permuting blocks
with different α’s in (15). Pg leads to a natural partitioning of
{1, . . . ,A} into minimal subsets a invariant under the action
of all Pg , which we call irreducible; the first direct sum in (16)
runs over those irreducible sets a. The V a

h are unitaries, where
h ≡ h(g,α) is a function of g and α. Before explaining their
algebraic structure, note that Pg can be thought of as composed
of permutations P a

g acting on irreducible subsets, and (16) can
be rewritten as a direct sum over irreducible subsets,

Ûg =
⊕

a

P a
g

(⊕
α∈a

V a
h ⊗ V̄ a

h

)
. (17)

In the following, we describe the structure of the symmetry
for one irreducible subset a; in fact, degeneracies correspond-
ing to different subsets a are not of particular interest, as
they are not protected by the symmetry (which acts trivially
between them) and are thus not stable under perturbations
of the Hamiltonian. For a single irreducible subset a, the
symmetry

P a
g

(⊕
α∈a

V a
h ⊗ V̄ a

h

)
(18)

has the following structure (which is known as an induced
representation): Fix the permutation representation P a

g , pick
an element α0 ∈ a, and define a subgroup H ⊂ G as

H = {g : πg(α0) = α0},
where πg is the action of Pg on the sectors, Hπg(α) = PgHα .
Further, fix a projective representation V a

h of the subgroup H .
Then the action of V a

h can be boosted to the full group G

in Eq. (18) by picking representatives kβ of the disjoint cosets
kβH , and labeling them such that πkβ

(α0) = β. Then, for every
g and α, there exist unique h and β such that

gkα = kβh, (19)

and this is how h ≡ h(g,α) in (18) is determined. Note that the
action of the permutation is to map α to β, so that (19) carries
the full information of how to boost the representation V a

h of
the subset H to the full group; this is known as an induced
representation. (It is straightforward to check that this is well
defined.)

Before classifying the phases, let us briefly comment on
the structure of (17). The sectors α correspond to different
symmetry-broken ground states. The splitting into different
irreducible blocks a corresponds to the breaking of symmetries
not contained in Ug , and it is thus not stable under perturba-
tions. Within each block, Ug has subsymmetries which can be
broken by the ground states—the α ∈ a—and subsymmetries
which are not broken by the ground states—corresponding to
the symmetry action V a

h ⊗ V̄ a
h defined on subspaces H , where

the symmetry acts as in the injective case.

2. Structure of symmetry-broken phases

In the following, we prove that two Hamiltonians with
symmetry breaking are in the same phase if and only if
(i) the permutation representations Pg are the same (up to
relabeling of blocks) and (ii) for each irreducible subset a,
the projective representation V a

h has the same cohomology
class. (In different words, we claim that two systems are
in the same phase if Ug permutes the symmetry-broken
ground states in the same way, and if the effective action
of the symmetry on each symmetry-broken ground state
satisfies the same condition as in the injective case.) Note that
having the same Pg allows us to even meaningfully compare
the V a

h as the subgroups H can be chosen equal. Also note that
since the permutation is effectively encoded in the subgroup
H , we can rephrase the above classification by saying that a
phase is characterized by the choice of a subgroup H together
with one of its cohomology classes.

As a simple example, the Ising Hamiltonians Hx =∑
σx

i σ x
i+1 and Hz = ∑

σ z
i σ z

i+1 are in different phases if the
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Z2 symmetry (σx)⊗N is imposed: While Hz can break the
symmetry, Hx cannot and thus belongs to a different phase.

3. Equality of phases

The proof of equality requires again to devise an interpo-
lating path in the space of MPS which is sufficiently well
behaved (i.e., it yields a smooth and gapped path in the set of
parent Hamiltonians). It turns out that we can use essentially
the same construction as in the injective case: We interpolate
along a path

|ω1(γ )〉⊗N ⊕ · · · ⊕ |ωA(γ )〉⊗N ≡
∑

α

|α, . . . ,α〉|ωα(γ )〉⊗N

in a space with local dimensions
∑

α(D0
α + D1

α)2, where

|ωα(γ )〉 = (1 − γ )
D0

α∑
i=1

|i,i〉 + (1 − γ )
D0

α+D1
α∑

i=D0
α+1

|i,i〉;

the joint symmetry is given by

⊕
a

P a
g

[⊕
α∈a

(
V a

h ⊕ Wa
h

) ⊗ (
V̄ a

h ⊕ W̄ a
h

)]
,

where V a
h and Wa

h denote the projective representations for the
two systems (as in the injective case, it can be thought of being
embedded in the physical symmetry by blocking two sites).
Again, the Hamiltonian along the path is the sum of the GHZ
Hamiltonian and projectors of the form 1 − |ωα(γ )〉〈ωα(γ )|,
which couple to the GHZ degree of freedom; the resulting
Hamiltonian is commuting and therefore gapped throughout
the path.

4. Separation of phases

Let us now show that two phases which differ in either the
permutation representation Pg or the cohomology classes of
the V a

h cannot be transformed into each other along a gapped
path. As in the injective case, we make use of a continuity
argument. The argument goes in two parts: On one hand,
continuity implies that each of the symmetry-broken ground
states changes continuously, and thus the permutation action
Pg of Ug stays the same. The effective action V a

h ⊗ V̄ a
h (modulo

permutation) of the symmetry on each of the symmetry-broken
ground states, on the other hand, can be classified by reducing
the problem to the injective case.

Let us first show that the symmetry-broken ground states
change continuously. Let |ψα

γ 〉 := |μ[Pα
γ ]〉 be the (orthogonal)

symmetry-broken ground states of Hγ , with Pα
γ := Pγ |Hα

the
restriction of Pγ to Hα (this describes an injective MPS).
For small changes dγ , we can again (as in Sec. II F 3) use
continuity and gappedness of Hγ to show that the ground-state
subspaces of Hγ and Hγ+dγ = Hγ + dH are close to each
other; that is, there exist ground states |χα

γ+dγ 〉 of Hγ+dγ such
that ∣∣∣∣ψα

γ

〉 − ∣∣χα
γ+dγ

〉∣∣ � O∗(dH ),

where O∗(dH ) goes to zero as dH goes to zero. Since the
|χα

γ+dγ 〉 can be expanded in terms of the |ψα
γ+dγ 〉, they are

MPS, |χα
γ+dγ 〉 = |μ[Qα

γ+dγ ]〉. Using continuity of the roots of
polynomials, we infer that we can choose |Qα

γ+dγ − Pα
γ | �

O∗(dH ). On the other hand, this implies that the Qα
γ+dγ

are almost supported on Hα , and thus |Qα
γ+dγ − Pα

γ+dγ | �
O∗(dH ). Together, this shows that∣∣Pα

γ − Pα
γ+dγ

∣∣ � O∗(dH );

that is, the Pα
γ , and thus the symmetry-broken ground states

|ψα
γ 〉, change continuously. Since Pg describes the permutation

action of the physical symmetry Ug on the symmetry-broken
ground states, which is a discrete representation, it follows that
Pg is independent of γ ; that is, it cannot be changed along a
gapped path Hγ .

In a second step, we can now break the problem down to
the injective scenario. To this end, do the following for each
irreducible block of Pg: Fix the α0 used to define the subgroup
H and its representation V a

h , restrict the physical symmetry
Ug to g ∈ H , and consider the injective ground state |μ[Pα0

γ ]〉
and the correspondingly restricted parent Hamiltonian (this
can be done by adding local projectors restricting the system
to the subspace given by α0). Since Ug , g ∈ H , leaves |μ[Pα

γ ]〉
invariant up to a phase, it is a symmetry of the restricted parent
Hamiltonian; it acts on the virtual level as V a

h ⊗ V̄ a
h . The results

for the injective case now imply that it is impossible to change
the cohomology class of V a

h , thus completing the proof.

III. TWO DIMENSIONS

A. Projected entangled pair states

1. Definition

Projected entangled pair states form the natural general-
ization of MPS to two dimensions2: For P : (CD)⊗4 → Cd ,
the PEPS |μ[P]〉 is obtained by placing maximally entangled
pairs |ωD〉 on the links of a 2D lattice and applying P as in
Fig. 6. As with MPS, PEPS can be redefined by blocking,
which allows to obtain standard forms for P , discussed later
on. Parent Hamiltonians for PEPS are constructed (as in 1D)
as sums of local terms which have the space supporting the
2 × 2 site reduced state as their kernel.

2. Cases of interest

As in 1D, each PEPS has an isometric form to which it
can be continuously deformed, yielding a continuous path

FIG. 6. (Color online) PEPS are constructed analogously to MPS
by applying linear maps P to a 2D grid of maximally entangled states
|ωD〉.
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of γ -deformed Hamiltonians along which the ground-state
degeneracy is preserved. There are three classes of PEPS which
are of special interest.

First, the injective case, where P is injective, and |μ[P]〉 is
the unique ground state of its parent Hamiltonian.8

Second, the block-diagonal case, where (ker P)⊥ =⊕A
α=1 Hα , with Hα = span{|i,j,k,l〉 : ζα−1 < i,j,k,l � ζα};

this corresponds again to GHZ-type states and Hamiltonians
with A-fold degenerate ground states. These systems are
closely related to the 1D noninjective case; they exhibit
breaking of some local symmetry, and the ground-state
subspace is spanned by |μ[P|Hα

]〉.
Third, the case where the isometric form of P is

P =
∑

g

Vg ⊗ V̄g ⊗ Wg ⊗ W̄g (20)

(the ordering of the systems is top-down-left-right), with Vg

and Wg unitary representations of a finite group G containing
all irreps of G at least once; this scenario corresponds to
systems where the ground-state degeneracy depends on the
topology of the system, and which thus exhibit some form
of topological order20; in particular, for Vg and Wg the
regular representation of G, the isometric form of these PEPS
describes Kitaev’s double model of the underlying group.12 All
these three classes have parent Hamiltonians at the isometric
point which are commuting and thus gapped.

B. Gap in two dimensions

1. Gap in the thermodynamic limit

The major difference to the case of 1D systems is that it is
much more difficult to assess whether the parent Hamiltonian
is gapped in the thermodynamic limit, and examples which
become gapless at some finite deformation 0 < γcrit < 1 of
the isometric form exist. For instance, the coherent state
corresponding to the classical Ising model21 on a hexagonal
lattice at the critical temperature has critical correlations and is
thus gapless,22 while it is injective and therefore its isometric
form is gapped. In fact, this example illustrates that a smooth
change in P can even lead to a nonlocal change in the PEPS
|μ[P ]〉.

Fortunately, it turns out that in some environment of com-
muting Hamiltonians (and, in particular, in some environment
of the three classes introduced above), a spectral gap can be
proven. To this end, let H̃ = ∑

h̃i , h̃i � 1 with ground-state
energy λmin(H̃ ) = 0, where the condition

h̃i h̃j + h̃j h̃i � − 1
8 (1 − �)(h̃i + h̃j ) (21)

holds for some � > 0 (here each hi acts on 2 × 2 plaquettes on
a square lattice); in particular, this is the case for commuting
Hamiltonians. Then

H̃ 2 =
∑

i

h̃2
i︸︷︷︸

�hi

+
∑
〈ij〉

h̃i h̃j +
∑′

h̃i h̃j︸︷︷︸
�0

� �H̃ (22)

(where the second and third sum run over overlapping and
nonoverlapping h̃i , h̃j , respectively), which implies that H̃

has a spectral gap between 0 and � (cf. Ref. 1).
As we show in detail in Appendix E, condition (21) is robust

with respect to γ -deformations of the Hamiltonian. In particu-

lar, for any PEPS |μ[P]〉 with commuting parent Hamiltonian
(such as the three cases presented above), it still holds for the
parent of Q⊗N |μ[P]〉 as long as λmin (Q)/λmax (Q) � 0.967.
Thus, while considering the isometric cases does not allow us
to classify all Hamiltonians as in 1D, we can still do so for a
nontrivial subset in the space of Hamiltonians.

C. Classification of isometric PEPS without symmetries

Let us now classify the three types of isometric PEPS
introduced previously in the absence of symmetries; together
with the results of the previous section, this provides us with a
classification of quantum phases in some environment of these
cases.

1. Systems with unique or GHZ-type ground state

As in one dimension, any injective isometric P can be
locally rotated to the scenario where P = 1; that is, it consists
of maximally entangled pairs between adjacent sites. This
entanglement can again be removed along a commuting path
hθ [Eq. (5)] as in one dimension. This implies that any injective
PEPS and its parent Hamiltonian which is sufficiently close to
being isometric is in the same phase as the product state.

The case with block-diagonal P , such as for GHZ-like
states, is also in complete analogy to one dimension: Up to
a rotation, it is equivalent to the A-fold degenerate GHZ state
with additional maximally entangled pairs between adjacent
sites, whose bond dimension Dα can again couple to the
(classical) value of the GHZ state. This local entanglement
can again be removed along a commuting path, as in one
dimension, and we find that all block-diagonal PEPS which
are close enough to being isometric can be transformed into the
A-fold degenerate GHZ state along a gapped adiabatic path.

2. Systems with topological order

What about the topological case of Eq. (20)? Of course,
additional local entanglement |ωD〉 can be present indepen-
dently of the topological part of the state, which corresponds
to replacing Vg with Vg ⊗ 1 (and correspondingly for Wg),
and this entanglement can be manipulated and removed along
a commuting path.

However, it turns out that the bond dimension D of the
local entanglement can couple to the topological part of the
state even though there is no local symmetry breaking. In
particular, the bond dimension Dα can couple to the irreps
Rα(g) of Vg and Wg; that is, we can change the multiplicity
Dα of individual irreps Rα(g),

⊕
α

Rα(g) ←→
⊕

α

Rα(g) ⊗ 1Dα
.

The interpolation between different multiplicities Dα can be
done within the set of commuting Hamiltonians by observing
that the Hamiltonian consists of two commuting parts:20 One
ensures that the product of each irrep around a plaquette
is the identity, and the other controls the relative weight of
the different subspaces and thus makes it possible to change
multiplicities. The underlying idea can be understood most
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easily by considering a two-qubit toy model consisting of the
two commuting terms,

hz = 1
2 (1 − Z ⊗ Z),

hx(θ ) = 
⊗2
θ

1
2 (1 − X ⊗ X) 
⊗2

θ ,

where 
θ = ( θ 0
0 1 ): The term hz enforces the even-parity

subspace α|00〉 + β|11〉, while hx(θ ) takes care that the
relative weight within this subspace is |00〉 + θ2|11〉, which
makes it possible to smoothly interpolate between |00〉 and
|00〉 + |11〉 within the set of commuting Hamiltonians.

Together, this proves that for a given group G, all PEPS
of the form (20), with representations Vg and Wg which
contain all irreducible representations of G, yield PEPS which
are in the same phase. On the other hand, it is not clear
whether the converse holds: Given two finite groups G, H

with corresponding representations Vg , Wg and V ′
h, W ′

h, for
which Eq. (20) yields the same (or a locally equivalent) map
P—which means that the two models are in the same phase—is
it true that the two groups are equal? While we cannot answer
this question, let us remark that since both models can be
connected by a gapped path, one can use quasiadiabatic
continuation9,23 to show that their excitations need to have
the same braiding statistics; that is, the representations of their
doubles need to be isomorphic as braided tensor categories.
Note that in Ref. 24, the map P is used to map doubles to
equivalent string-net models.

3. More types of local entanglement

Let us remark that while we have characterized the equiva-
lence classes of isometric PEPS for the three aforementioned
classes, this characterization is not complete, even beyond
the difficulty of proving a gap: There are PEPS which can
be transformed to those cases by local unitaries or low-depth
local circuits, yet P has a different structure. The reason is
that unlike in 1D, local entanglement need not be bipartite.
For example, one could add four-partite GHZ states around
plaquettes: While this is certainly locally equivalent to the
original state, it will change the kernel of P , since only
bipartite maximally entangled states can be described by a
mapping P → P ⊗ 1. Thus, the previous classification can
be extended to a much larger class of isometric tensors, by
including all symmetries of ker P which can arise due to
adding local entanglement.

D. Symmetries in two dimensions

How does the situation change when we impose symmetries
on the system and require the Hamiltonian path to commute
with some unitary representation Ug? Surprisingly, imposing
symmetries in two dimensions has a much weaker effect than
in one dimension, as we show in the following. In particular, we
demonstrate how to interpolate along a symmetry-preserving
path between arbitrary injective PEPS and between any
two GHZ-type PEPS given that the permutation action of
the symmetry on the symmetry-broken ground states is the
same; note that the symmetry can, in particular, stabilize
the degeneracy of GHZ-type states. Recall, however, that, in
the following, we only show how to construct continuous

paths of PEPS; in order to turn this into a classification of
phases under symmetries, we need to restrict to the regions
characterized in Sec. III B where we can prove a gap. Yet
the following arguments show that the reasoning used for 1D
systems with symmetries will not apply in two dimensions,
and a more refined framework might be needed.

1. Systems with unique ground states

Let us start by studying the injective case. There it has be
shown25 that any two maps P and P ′ which describe the same
PEPS are related via a gauge transformation

P ′ = P(eiφ Y ⊗ Y ∗ ⊗ Z ⊗ Z∗), (23)

with Y ∗ = (Y−1)T . This implies that any unitary invariance of
|μ[P]〉 can be understood as a symmetry

Ûg = P−1UgP = Vg ⊗ V̄g ⊗ Wg ⊗ W̄g

acting on the on the virtual system, with Vg and Wg projective
unitary representations.

While this is in complete analogy to the 1D case, there is
an essential difference: The representation of the symmetry
on the virtual level is not invariant under blocking sites. By
blocking k × � sites, we obtain a new PEPS projector with
symmetries V ′

g = V ⊗k
g and W ′

g = W⊗�
g , respectively. However,

taking tensor products changes the cohomology class, and in
particular, for any finite-dimensional representation Vg there
exists a finite k such that V ⊗k

g is in the trivial cohomology
class. That is, by blocking a finite number of sites, any two
PEPS |μ[P0]〉 and |μ[P1]〉 can be brought into a form where
the symmetry on the virtual level is represented by V 0

g , W 0
g

and V 1
g , W 1

g , which are all in the trivial cohomology class.
At this point, we can proceed as in the 1D case and construct

an interpolating path which preserves the symmetry using
nonmaximally entangled states |ω(γ )〉 [Eq. (10)], now with
joint symmetry(

V 0
g ⊕ V 1

g

) ⊗ (
V̄ 0

g ⊕ V̄ 1
g

) ⊗ (
W 0

g ⊕ W 1
g

) ⊗ (
W̄ 0

g ⊕ W̄ 1
g

)
.

Note that the whole construction can be understood as the
sequential application of two 1D interpolations (since at the
isometric point the horizontal and vertical directions decouple)
and thus, all arguments concerning technical points such as the
embedding in the physical space can be directly transferred.

2. Systems with local symmetry breaking

The results of Ref. 25 for the relation of two maps P and
P ′ [Eq. (23)] can be readily generalized to relate different
representations of a PEPS with local symmetry breaking, that
is, GHZ-type states. It follows that for any such PEPS, a
symmetry can be understood at the virtual level as

Ûg = Pg

⊕
a

(⊕
α∈a

V a
h ⊗ V̄ a

h ⊗ Wa
h ⊗ W̄ a

h

)
,

where again the Pg permutes the sectors, the a are minimal
subsets invariant under Pg , and the V a

h and Wa
h , together with

Pg , form an induced projective representation.
The permutation action Pg of the symmetry is invariant

under blocking. Thus, we can apply the same type of continuity
argument as in 1D to show that different permutations Pg
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label different phases. (Since this argument proves that there
cannot be a gapped path of Hamiltonians on any finite chain
connecting systems with different Pg , it holds independently
of whether we can prove a gap on the Hamiltonian along the
path, as long as the initial and final systems are gapped.) On
the other hand, the projective representations behave under
blocking just as in the injective case: They map to tensor
products of themselves, and thus we can choose a blocking
such that the V a

h and Wa
h are all in the trivial cohomology

class. If, moreover, the Pg are equal, we can construct an
interpolating path of PEPS just as in one dimension.

IV. DISCUSSION

In this section, we discuss various aspects which have been
omitted in the previous sections.

A. Matrix product states

1. Injectivity and translational invariance

In order to obtain injectivity, it is necessary to block sites
(say, k sites per block). Thus, the notion of locality changes:
For instance, a two-local path of parent Hamiltonians is 2k

local on the unblocked system. Also, along such a path we can
maintain translational invariance only under translations by k

sites, that is, on the blocked system.
However, the number of sites which need to be blocked

to obtain injectivity is fairly small, namely, O(log D) for
typical cases26 and O(D4) in the worst case.27 In particular,
this is much more favorable than what is obtained using
renormalization methods,11 where in addition to injectivity
one has to go to block sizes beyond the correlation length.

It should be noted that several of our arguments apply
without blocking, thus strictly preserving translational
invariance. In particular, the way in which symmetries act
on the virtual level is the same without blocking, and the
impossibility proofs for interpolating paths also apply equally.
On the other hand, it is not clear whether we can construct
interpolating paths without reaching injectivity of P: While
we can move to isometric P along gapped paths, the structure
of those isometric points is now much more rich; for instance,
the Affleck-Kennedy-Lieb-Tasaki (AKLT) projector is of
that form. Also, certain alternative definitions of phases
under symmetries (cf. Sec. IV B) behave differently under
translational invariance. Finally, in the case of symmetry-
broken systems, imposing translational invariance can result
in projective representations as physical symmetries (this is
discussed in Sec. IV C), which leads to a much more involved
structure of the 1D induced representation in Eq. (D9).

2. Different MPS definition

Typically, MPS are defined using a set of matrices Ai as∑
i1,...,iN

Tr[Ai1 · · ·AiN ]|i1, . . . ,iN 〉.

This definition can be easily related to our definition in terms
of MPS projectors via

P =
∑
i,α,β

Ai
αβ |i〉〈α,β|.

Injectivity of P translates to the fact that the {Ai}i span
the whole space of matrices, and the “block-diagonal” support
space in the noninjective case corresponds to restricting the
Ai’s to be block-diagonal and spanning the space of block-
diagonal matrices.

The effect of symmetries in this language can be written as
follows: Equation (9) becomes∑

j

(Ug)ijA
j = V T

g AiV̄g,

and Eq. (16) ∑
j

(Ûg)ijA
j = P †

g V T
g AiV̄gPg,

where the Pg now permute the blocks of the Ai’s and, together
with Vg , form an induced representation.

While the matrix formalism using the Ai’s is more common,
we choose the projector formulation since we believe it is more
suitable for the purposes of this paper (with the exception of
describing the block structure in the noninjective case): The
P , or parts of it, are the maps which we use to conjugate
the Hamiltonian with to get to the isometric form and which
we conjugate the Ug with to obtain the effective action of the
symmetry on the bonds. Also, in this formulation the isometric
point is characterized simply by maximally entangled pairs
with U ⊗ Ū symmetry, rather than by an MPS with Kronecker
δ tensors, and is thus more intuitive to deal with.

B. Definition of phases

1. Different definitions of phases

There are other definitions of quantum phases: For instance,
instead of gappedness one can ask for a path of Hamiltonians
along which the ground states do not change abruptly. One
can also right away consider the ground states instead of the
Hamiltonian and ask whether two states can be transformed
into each other using (approximately) local transformations.11

Both these definitions are implied by ours: The existence of a
gapped path implies that the ground states change smoothly [cf.
Eq. (12)] and using quasiadiabatic continuation,9 any gapped
path of Hamiltonians yields a quasilocal transformation
between the ground states.23

2. Local dimension and ancillas

In our definition of phases, we made it possible to compare
systems with different local Hilbert space dimension. One way
to think of this is to consider the smaller system as being
embedded in the larger system. A more flexible way is to
allow for the use of ancillas to extend the local Hilbert space. In
fact, these ancillas are automatically obtained when blocking:
Recall that we restricted our attention to the subspace actually
used by P; the remaining degrees of freedom (if sufficiently
many to allow for a tensor product structure) can be used
to construct ancillas. An explicit way to do so is to block two
isometric tensors together: The state now contains a maximally
entangled pair |ωD〉 (correlated to the GHZ in the noninjective
case) which can be considered as a D2-dimensional ancilla
system.
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Note that we can, in the same way, obtain ancillas for
systems with symmetries: After blocking three isometric
sites, the maximally entangled states in the middle are
invariant under V̄g ⊗ Vg ⊗ V̄g ⊗ Vg . Since also two maximally
entangled states between sites (1,4) and (2,3) are invariant
under that symmetry, the symmetry acts trivially on this 2D
subspace which thus constitutes an ancilla qubit not subject to
the symmetry action.

C. Symmetries

1. Definition with restricted symmetry representations

When defining phases under symmetries, we have allowed
for arbitrary representations of the symmetry group along the
path. What if we want to restrict to only the representation
of the initial and final symmetry, U 0

g and U 1
g , respectively? It

turns out that does not pose a restriction for compact groups,
as long as at least one of the effective representations U 0

g

or U 1
g after blocking to the normal form is faithful. Namely,

given such a faithful representation Ug , we have that χU (g) =
Tr Ug = |Tr[Vg]|2 � 0 (with Vg ⊗ V̄g the virtual realization of
Ug), which implies that any representation Wg is contained as
a subrepresentation in U⊗N

g for N large enough. (For finite
groups, this follows as the multiplicity 1

|G|
∑

g χU (g)Nχ̄W (g)
is dominated by χW (1) since |χU (g)| is maximal for g = 1 [cf.
Ref. 28]; for Lie groups, this argument needs to be combined
with a continuity argument [cf. Ref. 29].) Thus, starting from
the symmetry representation U 0

g or U 1
g , we can effectively

obtain any representation needed for the interpolating path by
blocking N sites, proving equivalence of the two definitions.

2. Definition with only one symmetry representation

If the two systems to be compared are invariant under the
same symmetry U 0

g = U 1
g , we might want to build a path

invariant under that symmetry, instead of considering the
symmetry Ug = U 0

g ⊕ U 1
g as in our definition. In fact, these

two definitions turn out the be equivalent, since we can easily
map a path with symmetry Ug to one with symmetry U 0

g = U 1
g ,

and vice versa. Given a path |ψ(λ)〉 (with corresponding
Hamiltonian) with symmetry U 0

g , we can add an unconstrained
ancilla qubit (cf. Sec. IV B 2) at each site and consider the
path |ψ(λ)〉 ⊗ (

√
1 − λ |0〉 + √

λ |1〉)⊗N , thus embedding the
system in a space with symmetry Ug .

Conversely, we can map any path with symmetry Ug to a
path with symmetry U 0

g = U 1
g . To this end, we can use Ug =

U 0
g ⊗ 12 to interpret the path as a path involving one system

with Ug symmetry and one unconstrained ancilla qubit per
site, which again can be understood as being part of a (U 0

g )⊗2-
invariant subspace (cf. Sec. IV B 2). Note that the factorization
Ug = U 0

g ⊗ 12 requires U 0
g and U 1

g to have the same phase,
which motivates why we chose to lock the phase between U 0

g

and U 1
g in such a scenario.

3. Definitions with different classifications

Defining phases in the presence of symmetries is subtle,
as different definitions can yield very different classifications.
In the following, we discuss some alternative definitions and
their consequences.

One possibility would be not to allow for an arbitrary gauge
of the phases of the symmetries in U 0

g and U 1
g , but to keep the

gauge fixed. In that case, the 1D representations in (B1) and
(D1) can enter the classification: While finite representations
can be still removed by blocking sites, continuous represen-
tations remain different even after blocking and cannot be
changed into each other continuously, and thus, phases are
additionally labeled by the continuous 1D representations of
the symmetry.

This classification changes once more if one allows to
compare blocks of different lengths for the two systems: For
example, for U(1) any two continuous representations ein0ϑ

and ein1ϑ of ϑ ∈ U(1) can be made equal by blocking |n1|
and |n0| sites, respectively, as long as the signs of n0 and n1

are equal. Therefore, in that case the phases are additionally
labeled by the signs of the 1D representations; this case has
been considered in Ref. 11.

To give an example where one might want to fix the phase
relation between U 0

g and U 1
g , consider the two product states

|0000 · · · 〉 and |0101 · · · 〉 under U(1) symmetry: Both U 0
g and

U 1
g arise as subblocks of Rφ ⊗ Rφ [with Rφ = exp(iφZ/2) the

original U(1) representation], which suggests to fix the phase
relation and in turn separates the two phases; note that this can
be seen as a way to reinforce translational invariance.

4. A definition with only one phase

We are now going to present an alternative definition
of phases under symmetries which yields a significantly
different classification, namely, that all systems with the same
ground-state degeneracy are in the same phase, just as without
symmetries. The aim of this discussion is to point out that
it is important to fix the representation of the symmetry
group, and not only the symmetry group itself, in order to
obtain a meaningful classification of phases in the presence of
symmetries.

We impose that along the path, the system is invariant
under some (say, faithful) representation of the symmetry
group, which may, however, change along the path. Then,
however, it is possible to transform any state to pairs of
maximally entangled states between adjacent sites in the
same basis, and therefore to the same parent Hamiltonian, by
rotating the isometric form. Thus, all injective systems can be
transformed to the same Hamiltonian preserving symmetries
and similarly for symmetry-broken systems. It follows that
even with symmetries, all systems are in the same phase as
long as they have the same ground-state degeneracy.

Note that while in our approach, we also use rotations to
bring the system into a simple form, these “rotations” should
just be thought of as choosing a convenient basis and not as
actual rotations. In particular, due to our way of imposing
the two symmetry representations on orthogonal subspaces,
Ug = U 1

g ⊕ U 2
g , we never need to fix two different bases for

the same subspace.

5. Projective symmetries

While our definition of phases under symmetries can be
applied to both linear and projective representations, we found
that in the injective case, symmetries are, in fact, always linear
(cf. Appendix B). In the noninjective case, however, there exist
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systems having projective symmetries, such as the Majumdar-
Ghosh model, which has the ground states (|01〉 − |10〉)⊗N

and the same state translated by one lattice site. This model
is invariant under SU(2)/Z2 [which can be understood as
a projective representation of SO(3)] and under the Pauli
matrices (a projective representation of D2 = Z2 × Z2). On
the other hand, any d-dimensional projective representation
becomes linear (up to trivial phases) after taking its dth power;
thus, classifying phases under linear symmetries as we did is, in
fact sufficient. Alternatively, any projective representation can
be lifted to a linear representation, which is still a symmetry of
the Hamiltonian: For example, any Ug-invariant Hamiltonian,
[H,U⊗N

g ] = 0, is also invariant under eiφUg , and thus under
the representation Vk ≡ k of the group K = 〈Ug〉 generated
by the Ug by itself.

On the other hand, in case we want to build a joint symmetry
representation Ug = U 0

g ⊕ U 1
g before blocking and do not

want to lift the joint representation to a larger group, we get
constraints on U 0

g and U 1
g . First, both of them need to be in

the same cohomology class; while the cohomology class can
be changed by blocking, one might want to compare systems
with a particular notion of locality. Also note that even if both
symmetries are in the same cohomology class, one needs to
adjust the trivial phases such that ω(g,h) is actually equal up
to a 1D representation of the group, since otherwise Ug does
not form a representation; note, however, that this is actually a
consequence of our requirement that Ug forms a representation
and does not follow from an underlying symmetry.

6. Multiple copies and phases as a resource

An interesting observation is that the classification of 1D
phases under symmetries is not stable if one takes multiple
copies. For instance, one can construct a path of smooth
gapped Hamiltonians which interpolates from two copies of
the AKLT state to the trivial state while preserving SO(3)
symmetry. More generally, for any two states |μ[P0]〉 and
|μ[P1]〉 there exist k0 and k1 such that |μ[P0]〉⊗k0 can be
converted to |μ[P1]〉⊗k1 . This follows from the observation
made in Sec. III D for 2D systems: Taking tensor products
changes the projective representation on the bond, and it is
always possible to obtain a linear representation by taking a
finite number of copies.

From a quantum information perspective, this shows that
MPS which belong to different phases should not be regarded
as a resource such as entanglement, but rather as characterized
by conserved quantities such as parity (i.e., described by a
finite group). The minimum requirement for a resource should
be that it cannot be created “for free” (e.g., by the quasilocal
evolution created by a gapped path9). However, an arbitrary
even number of copies of the AKLT state can be created
from one trivial state, which demonstrates that phases under
symmetries should not be considered resources.

7. Other symmetries

While we have discussed the classification of phases for
local symmetries U⊗N

g , very similar ideas can be used to
classify phases under global symmetries such as inversion
or time-reversal symmetry.10,11,30 The fundamental concept—
that two P representing the same MPS or PEPS are related

by a gauge transformation—equally applies in the case of
global symmetries. However, it should be noted that there is an
essential difference, in that the representation structure of the
global symmetry need not lead to a representation structure
on the virtual level, which, in turn, leads to classification
criteria beyond cohomology classes. Let us illustrate this for
reflection symmetry: Reflection is realized by applying a flip
(swap) operator F to the virtual system, together with an
operation π on the physical system reversing the ordering
of the blocked sites. Thus, for an injective MPS |μ[P]〉 with
reflection symmetry, we have that

π P F = P(V−1 ⊗ V̄−1),

where V−1 is the virtual representation of the nontrivial
element of Z2 ≡ {+1, − 1}. (Note that if P is injective, π

cannot be trivial, since otherwise F = V−1 ⊗ V̄−1, which is
impossible; this shows that an injective MPS cannot have
reflection symmetry unless it contains more than one site per
block.) Applying a second reflection, we find that

P = π (πP F )F = πP (V−1 ⊗ V̄−1)F

= (πP F ) (V̄−1 ⊗ V−1) = P (V−1V̄−1 ⊗ V̄−1V−1);

that is, the Z2 group structure of the symmetry is represented
on the virtual level as V−1V̄−1 = eiφ1—similar to a projective
representation, but with an additional complex conjugation.
This relation allows for phases eiφ = ±1, corresponding to
symmetric and antisymmetric unitaries V−1, which cannot
be connected continuously and thus label different phases;
this observation has been used in Refs. 10,30 to prove the
separation of the AKLT phase from the trivial phase under
either time reversal or inversion symmetry.

D. Examples

1. The six phases with D2 symmetry

As an example for the classification of 1D phases in the
presence of symmetries, let us discuss the different phases
under D2 = Z2 × Z2 symmetry, which appears, for example,
as a subsymmetry of SO(3) invariant models; we see that there
is a total of six different phases under D2 symmetry.

Let us label the elements of D2 = Z2 × Z2 by e ≡ (0,0),
x ≡ (1,0), z ≡ (0,1), and y ≡ (1,1), with componentwise
addition modulo 2. D2 = {e,x,y,z} forms a subgroup of SO(3)
by identifying (1,0) with an x rotation by π and (0,1) with
a z rotation by π . There are two equivalence classes of
projective representations, corresponding to the integer and
half-integer representations of SO(3). In particular, the 1D
spin-0 representation ρ1

e = ρ1
x = ρ1

y = ρ1
z = 1 belongs to the

trivial class, and the 2D spin- 1
2 representation ρ2

x = X, ρ2
y = Y ,

and ρ2
z = Z (with X, Y , Z the Pauli matrices) belongs to

the nontrivial class. For the following examples, we always
consider systems with physical spin S = 1; we label the basis
elements by their Sz spin component, |−1〉, |0〉, and |1〉 and
denote the physical representation of the symmetry group by

Rx = exp[iπSx] = −| − 1〉〈+1| − |0〉〈0| − | + 1〉〈−1|,
Rz = exp[iπSz] = −| − 1〉〈−1| + |0〉〈0| − | + 1〉〈+1|,
Ry = exp[iπSy] = +| − 1〉〈+1| − |0〉〈0| + | + 1〉〈−1|.
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For systems with unique ground states, there are two
possible phases. One contains the trivial state |0, . . . ,0〉, which
can be trivially written as an MPS with bond dimension D = 1,
and

PTriv = |0〉;
clearly, applying any physical transformation Rw (w = x,y,z)
to the physical spin translates to applying the 1D representation
1 ⊗ 1 on the virtual system. The corresponding Hamiltonian
is

HTriv = −
∑

i

|0〉〈0| + const. (24)

The second phase with unique ground state is illustrated by the
AKLT state,31 which can be written as an MPS with D = 2,
and a projector

PAKLT = �S=1(1 ⊗ iY ),

with �S=1 the projector onto the S = 1 subspace and iY =
( 0 1

−1 0
). Since we have that Rx = �S=1X ⊗ X�S=1, and corre-

spondingly for y and z, it follows that the symmetry operations
are represented on the virtual level as RxP = P(X ⊗ X̄),
RyP = P(Y ⊗ Ȳ ), and RzP = P(Z ⊗ Z̄), which is a non-
trivial projective representation of SO(3). The corresponding
Hamiltonian is the AKLT Hamiltonian

HAKLT =
∑

i

[
�Si · �Si+1 + 1

3
(�Si · �Si+1)2 + const

]
.

In order to classify all phases with symmetry breaking, we
need to consider all proper subgroups of D2. There are four of
them:

Hx = {e,x}, Hz = {e,z},
Hy = {e,y}, and HTriv = {e}.

The first three are isomorphic to Z2, which has only trivial
projective representations, and thus, each of them labels one
phase; since HTriv also has only trivial representations, it
corresponds to a fourth phase with symmetry breaking. The
number of symmetry-broken ground states is |D2/H |; that is,
the first three cases have twofold degenerate ground states and
the last case a fourfold degenerate one.

Let us start with Hz. A representant of that phase is a
GHZ-type state of the form

|GHZz〉 = | + 1, . . . , + 1〉 + | − 1, . . . , − 1〉,
which can be written as an MPS with D = 2 and

PGHZz
= | + 1〉〈0,0| + | − 1〉〈1,1|,

where the basis elements |0〉 and |1〉 correspond to two
symmetry-broken sectors. The action of the symmetry on the
virtual level is

RxPGHZz
= −PGHZz

[|0,0〉〈1,1| + |1,1〉〈0,0|] ,

RzPGHZz
= −PGHZz

[|0,0〉〈0,0| + |1,1〉〈1,1|] ,

and correspondingly for Ry ; that is, while Rz acts within the
symmetry-broken sectors, Rx (and Ry) acts by permuting the

different sectors. The corresponding Hamiltonian is the GHZ
Hamiltonian

HGHZz
= −

∑
i

[|+1,+1〉〈+1,+1|

+ |−1,−1〉〈−1,−1|]i,i+1.

The same type of ground state and Hamiltonian is found for
the subgroups Hx and Hy with correspondingly interchanged
roles (i.e., Rx and Ry , respectively, do not permute the ground
states). Note that these three phases are indeed distinct in the
presence of D2 symmetry, as there is no way to smoothly
change the element of the symmetry group which does not
permute the symmetry-broken sectors. (This is related to the
fact that D2/H is discrete, that is, we are breaking a discrete
symmetry; note that breaking of continuous symmetries does
not fit the MPS framework since this would correspond to
an infinite number of blocks in the MPS and would require
gapless Hamiltonians.)

Finally, choosing HTriv = {e} gives a phase which fully
breaks the D2 symmetry. A representative of this phase can be
constructed by blocking two sites, with the four basis states,

|1̂〉 = | + 1〉| + x〉, |2̂〉 = | + 1〉| − x〉,
|3̂〉 = | − 1〉| + x〉, |4̂〉 = | − 1〉| − x〉,

where | ± x〉 are the Sx eigenstates with eigenvalues ±1,

| ± x〉 ∝ | − 1〉 ±
√

2|0〉 + | + 1〉.
We have that

Rx | ± x〉 = −| ± x〉, Rz| ± 1〉 = −| ± 1〉,
Rx | ± 1〉 = −| ∓ 1〉, Rz| ± x〉 = −| ∓ x〉.

It follows that all Rw ⊗ Rw (w = x,y,z) act as permutations
on the basis {|1̂〉,|2̂〉,|3̂〉,|4̂〉}:

(Rx ⊗ Rx) : |1̂〉 ↔ |3̂〉 ; |2̂〉 ↔ |4̂〉;
(Rz ⊗ Rz) : |1̂〉 ↔ |2̂〉 ; |3̂〉 ↔ |4̂〉;
(Ry ⊗ Ry) : |1̂〉 ↔ |4̂〉 ; |2̂〉 ↔ |3̂〉.

Thus, the GHZ-type state

|GHZ4〉 =
4∑

k=1

|k̂, . . . ,k̂〉,

which is an MPS with D = 4 and

PGHZ4 =
4∑

k=1

|k̂〉〈k,k|,

breaks all symmetries of D2, and represents yet another dis-
tinct phase with symmetry D2 = Z2 × Z2; the corresponding
Hamiltonian is

HGHZ4 = −
∑

j

[
4∑

k=1

|k̂,k̂〉〈k̂,k̂|j,j+1

]
,

where the label j refers to the blocked sites.

2. Phases under SO(3) and SU(2) symmetry

Let us now consider symmetry under rotational invariance,
imposed either as SO(3) or as SU(2) symmetry. We find
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that under SO(3) symmetry, there are two possible phases,
represented by the spin-1 AKLT state and the trivial spin-0
state, respectively; on the other hand, we show that if we
impose SU(2) symmetry, there is only a single phase, as the
AKLT state can be transformed into the trivial state keeping
SU(2) symmetry.

Let us start with SO(3) symmetry. In order to compare the
AKLT state to the trivial spin-0 state, we need a representation
of SO(3) which contains both the spin-1 and spin-0 represen-
tation; we denote the representation as

Rn̂(θ ) = exp[i θ n̂ · S] ⊕ 1.

While we could start with such a symmetry representation
right away, let us discuss how to obtain the same setting from
a spin-1 chain by blocking: Blocking two spin-1 sites gives a
system with total spin 1 ⊗ 1 = 2 ⊕ 1 ⊕ 0, containing both a
spin-1 and spin-0 subspace. It is straightforward to check that
after blocking two sites and applying a rotation 1 ⊗ iY , the
isometric form of the AKLT state is

P̂AKLT = 1, (25)

where the identity is on the two virtual spins with represen-
tation 1

2 ⊗ 1
2 = 1 ⊕ 0. The physical rotation Rn̂ acts on the

virtual indices with the projective spin- 1
2 representation of

the rotation group; it follows that the AKLT state is in the
nontrivial equivalence class under SO(3) symmetry. The trivial
spin-1 state, on the other hand, is obtained by placing singlets
between pairs of spin-1 sites [i.e., between sites (1,2), (3,4),
etc.]. After blocking these pairs, we obtain a product state with
the spin-0 state at each site, which is an MPS with D = 1 and
the trivial projector

P̂Triv = |S = 0〉. (26)

Thus, the rotation group Rn̂(θ ) acts with the trivial represen-
tation on the virtual indices, and the trivial state is thus in a
different phase than the AKLT chain.

It should be noted that while D2 is a subgroup of SO(3),
this does not imply that SO(3) exhibits all phases of D2;
indeed, the symmetry-broken phases are missing. The reason
is that while for any subgroup H ⊂ D2, D2/H is finite, this
is not true for SO(3). Since, however, SO(3)/H labels the
symmetry-broken ground states, this corresponds to breaking
a continuous symmetry, which leads to gapless phases and
cannot be described in the framework of MPS.

Let us now turn our attention toward SU(2) symmetry,
and explicitly construct an interpolating path between the
isometric projectors for the AKLT state [Eq. (25)] and the
trivial state [Eq. (26)]. Note that the difference is that now for
both P̂AKLT and P̂Triv, the symmetry action on the virtual level
is a linear representation of SU(2) (namely, the spin- 1

2 and the
spin-0 representation, respectively). We can now provide an
interpolating path |�γ 〉 = |ω(γ )〉⊗N , with

|ω(γ )〉 = γ |0,0〉 + (1 − γ )(|1,1〉 + |2,2〉),
where |�0〉 corresponds to the isometric form (25) of the AKLT
state, and |�1〉 to the isometric from (26) of the trivial state.

Furthermore, for U ∈ SU(2), the whole path is invariant under
the on-site symmetry

(1 ⊕ U ) ⊗ (1 ⊕ Ū ) = 1 ⊕ (U ⊕ Ū ) ⊕ (U ⊗ Ū ), (27)

which contains the symmetries 1 and U ⊗ Ū of the trivial and
the AKLT state as subsymmetries; this proves that under SU(2)
symmetry, the AKLT state and the trivial state are in the same
phase. Note that the symmetry (27) is only a representation
of SU(2), but not of SO(3), as integer and half-integer spin
representations belong to inequivalent classes of projective
representations of SO(3); also, we cannot obtain this symmetry
by starting only from the spin-0 and spin-1 representation of
SU(2), as they are not faithful representations. Note that this
interpolating path can already be ruled out by imposing a parity
constraint on the total number of half-integer representations,
by, for example, associating them to fermions.

V. CONCLUSION AND OUTLOOK

In this paper, we have classified the possible phases of 1D,
and to a certain extent 2D, systems in the framework of MPS
and PEPS. We have done so by studying Hamiltonians with
exact MPS and PEPS ground states, and classifying under
which conditions it is possible or impossible to connect two
such Hamiltonians along a smooth and gapped path of local
Hamiltonians.

We have found that in the absence of symmetries, all
systems are in the same phase, up to accidental ground-
state degeneracies. Imposing local symmetries leads to a
more refined classification: For systems with unique ground
states, different phases are labeled by equivalence classes of
projective representations, that is, cohomology classes of the
group; for systems with degenerate ground states, we found
that the symmetry action can be understood as composed of a
permutation (permuting the symmetry-broken ground states)
and a representation of a subgroup (acting on the individual
ground states), which together form an induced representation,
and different phases are labeled by the permutation action
(that is, the subgroup) and the cohomology classes of the
subgroup. In this classification, systems in the same phase
can be connected along a path which is gapped even in the
thermodynamic limit, while for systems in different phases,
the gap along any interpolating path will close even for a finite
chain.

We have subsequently studied 2D systems and considered
three classes of phases, namely, product states, GHZ states,
and topological models based on quantum doubles. We have
shown that all of these phases are stable in some region,
and demonstrated that within that region, and more generally
within the framework used for MPS, imposing symmetries
does not further constrain the phase diagram.

We have also compared different definitions of phases under
symmetries and found that very different classifications can
be obtained depending on the definition chosen, ranging from
scenarios where symmetries do not affect the classification at
all, to scenarios where the classification is more fine-grained
and, for example, the 1D representations of the group partly
or fully enter the classification. In this context, it is interesting
to note that there is a hierarchy in the classification of phases
as the spatial dimension increases: Zero-dimensional phases
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are labeled by 1D representations of the symmetry group
(that is, its first cohomology group). This label vanishes in
one dimension, and phases are now classified by the second
cohomology group. This label, in turn, vanishes in three
dimensions, and although we have demonstrated that we
cannot infer symmetry constraints from the continuity of the
PEPS projectors P alone, it is expected that phases under
symmetries in two and more dimensions are still classified by
higher-order cohomology groups.32,33

A central tool in our proofs has been the isometric form
of an MPS or PEPS. Isometric MPS and PEPS are fixed
points of renormalization transformations, and any MPS can
be transformed into its isometric form along a gapped path
in Hamiltonian space; this result allows us to restrict our
classification of 1D quantum phases to the case of isometric
RG fixed points. Moreover, it gives us a tool to carry out
renormalization transformations in a local fashion, that is,
without actually having to block and renormalize the system; it
thus provides a rigorous justification for the application of RG
flows toward the classification of quantum phases. Let us add
that the possibility to define an isometric form, as well as the
possibility to interpolate toward it along a continuous path of
parent Hamiltonians, still holds for not translational invariant
systems; however, without translational invariance we are
lacking tools to assess the gappedness of the Hamiltonian.

Let us note that MPS have been previously applied to
the classification of phases of 1D quantum systems:11,30,34 In
particular, in Ref. 30, MPS have been used to demonstrate
the symmetry protection of the AKLT phase, and in Ref. 11,
renormalization transformations17 and their fixed points on
MPS have been applied to the classification of quantum
phases for 1D systems with unique ground states both with
and without symmetries, giving a classification based on
cohomology classes and 1D representations. Beyond that,
RG fixed points of PEPS have also been used toward the
classification of phases for 2D systems.14,35
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APPENDIX A: GAP PROOF FOR THE 1D PATH

In the following, we show that the family of γ -deformed
parent Hamiltonians which arise from the MPS path |μ[Pγ ]〉
interpolating between an MPS and its isometric form is gapped.
Recall that this family was defined as Hγ := ∑

hγ (i,i + 1),
with hγ := 
γ h0
γ > 0.

We want to show that the path Hγ is uniformly gapped;
that is, there is a � > 0 which lower bounds the gap of Hγ

uniformly in γ and the systems size N : This establishes that the

|μ[Pγ ]〉, and the corresponding Hγ , are all in the same phase.
To this end, we use a result of Nachtergaele6 (extending the
result of Ref. 1 for the injective case), where it is shown that
any parent Hamiltonian is gapped, and a lower bound on the
gap (uniform in N ) is given.

In the following, we use the results of Ref. 6 to derive
a uniform lower bound on the gap for all Hγ , 1 � γ � 0.
Let the MPS matrices [Ai(γ )]kl := ∑

k,l〈i|Pγ |k,l〉|k〉〈l| (cf.
Sec. IV A 2); in the normal form, the Ai(γ ) have a block struc-
ture Ai(γ ) = ⊕

Aα
i (γ ). Let Eα(γ ) := ∑

i A
α
i (γ ) ⊗ Aα

i (γ ),
and let |specEα(γ )| = {λα

1 (γ ) > λα
2 (γ ) > · · · � 0} be the

ordered absolute value of the spectrum of Eα(γ ) (not counting
duplicates). Then, λ2(γ )/λ1(γ ) < 1, and since the spectrum is
continuous in γ ∈ [0; 1], and the degeneracy of λ1 is A,6 the
existence of a uniform upper bound 1 > τα > λα

2 (γ )/λα
1 (γ )

follows. For α �= β, let

�
p

α,β (γ ) = sup
X,Y

〈�[Aα(γ ); X]
∣∣�[Aβ(γ ); Y ]〉

‖|�[Aα(γ ); X]〉‖‖|�[Aβ(γ ); Y ]〉‖ ,

where |�[C; X]〉 := ∑
i1,...,ip

Tr[Ci1, . . . ,CipX]|i1, . . . ,ip〉;
that is, �

p

α,β (γ ) is the maximal overlap of the p-site
reduced states of the MPS described by the blocks
Aα(γ ) and Aβ(γ ). With Sα(γ ) := {∑i Tr[Aα

i (γ )X]|i〉|X},
and O(X ,Y) the maximal overlap between normalized
vectors in the subspaces X and Y , we have that
�

p

α,β (γ )�O(Sα(γ )⊗p,Sβ (γ )⊗p)�O(Sα(γ ),Sβ(γ ))p. More-
over, since Sα(0) ⊥ Sβ(0), and S•(γ ) = Qγ S•(0), we have
that

O(Sα(γ ),Sβ(γ )) � sup
〈v|w〉=0

|〈v|Q2
γ |w〉|

‖Qγ |v〉‖‖Qγ |w〉‖

= sup
〈v|w〉=0

√
|M12|2

M11M22
,

where M = πQ2
γ π †, π = |0〉〈v| + |1〉〈w|, is some 2 × 2 sub-

matrix of Q2
γ . For M > 0,

|M12|2
M11M22

� 1 − λmin(M)

λmax(M)
� 1 − λmin

(
Q2

γ

)
λmax

(
Q2

γ

)
� 1 − λmin(Q2) =: κ < 1,

and we find that �
p

α,β (γ ) � κp. Thus, there exists a p such
that

Kp(γ ) := 4(A − 1)κp

1 − 2(A − 1)κp
+

∑
α

D2τp
α

1 + D2τ
p
α

1 − D2τ
p
α

< 1/
√

2 ,

and as Nachtergaele shows,6 1
2�2p(γ )[1 − √

2Kp(γ )]2 is a
lower bound on the spectral gap of Hγ . Here �2p(γ ) is the gap
of Hγ , restricted to 2p sites, which has a uniform lower bound
as the restricted Hamiltonian is continuous in γ . This proves
that Hγ has a uniform spectral gap for 0 � γ � 1.

APPENDIX B: STANDARD FORM FOR INJECTIVE MPS
UNDER SYMMETRIES

In this section, we discuss how Ug symmetry of an injective
MPS is represented on the virtual level. To start with, it has
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been shown19 that any two tensors P and P ′ which (up to
a phase) represent the same MPS can be related by a gauge
transformation,

P ′ = P(eiφV ⊗ V̄ ).

Given an MPS |μ[P ]〉 with Ug-invariant parent Hamiltonian
(where Ug is a linear or projective representation), it follows
that |μ[P]〉 is invariant under Ug up to a phase and thus, the
action of Ug on |μ[P]〉 can be understood on the virtual level
as

UgP = P(eiφgVg ⊗ V̄g), (B1)

or

Ûg := P−1UgP = (eiφgVg ⊗ V̄g);

note that Ûg forms again a representation. From this, it follows
that the Vg form a projective representation, and, in turn, that φg

forms a 1D representation of G. This shows that Ûg , and thus
Ug , is a linear representation of G; systems with MPS ground
states without symmetry breaking cannot be invariant under
projective representations. (Strictly speaking, we only find that
φg is in the same cohomology class as a linear representation,
but in order to compare two systems, we need the same gauge
for φ0

g and φ1
g , so we choose them to be linear representations.)

Under blocking, the physical symmetry Ug in Eq. (B1) is
mapped to U⊗k

g , restricted to the range of the blocked map
P⊗k|ωD〉⊗(k−1). Vg remains unchanged under blocking; this
suggests that it is suitable as a characteristic of a quantum
phase (which we expect to be stable under blocking). The 1D
representation eiφg , on the other hand, changes under blocking
to eikφg . In particular, if the 1D representation is finite, it can be
removed by blocking, while this is not possible for continuous
representations such as of U(1).

However, our definition of quantum phases allows us to
fully remove the 1D representation eiφg in Eq. (B1) even if
it is continuous, using the phase degree of freedom which we
included in our definition. Consider first the scenario where we
are free to choose the phase degree of freedom for the initial
and final system independently. Then we can choose to replace
Ug with eiφgUg , which will make the phase in Eq. (B1) vanish.
Second, consider the case where the two physical symmetries
are equal, U 0

g = U 1
g =: Ug . Then we can choose the phase

gauge such that the 1D representation for one system vanishes,

U 0
g = V 0

g ⊗ V̄ 0
g .

On the other hand, since U 0
g = U 1

g , we have that

eiφ1
g V 1

g ⊗ V̄ 1
g = V 0

g ⊗ V̄ 0
g ,

which also implies that eiφ1
g = 1 [e.g., by looking at any

nonzero matrix element (i,i) × (j,j )]. Finally, if U 0
g and U 1

g

only share a subblock, this means that V 0
g = X0

g ⊕ Y 0
g such

that X0
g ⊗ X̄0

g yields that subblock, and similary for V 1
g , which

again shows that eiφ1
g = 1.

APPENDIX C: CONTINUITY OF COHOMOLOGY CLASS
WHERE SUBSPACE CHANGES

This appendix contains the proof omitted at the end of
Sec. II F 3 (all the notation is the same as introduced there):
That the cohomology class obtained from Pγ and Pγ+dγ is the
same even if Pγ+dγ is supported on a larger space than Pγ . We
again show this for differentiable Pγ ; it extends to continuous
Pγ by approximating them by a sequence of differentiable
functions. Let Pγ+dγ = Pγ + P ′

γ dγ , with

Pγ =
[

P 0
0 0

]
and

P ′
γ =

[
A B

C D

]
,

and note that the same block structure has to hold for the
physical symmetry (as it is a symmetry for the whole path),

Ug =
[

Qg 0
0 Rg

]
,

with Rg , Sg unitary. To first order in dγ , the action of the
symmetry on the virtual space is

Ũg = P−1
γ+dγ UgPγ+dγ = T −1KgT + O(dγ 2),

with

Kg =
[

(1 + X)Q̄g − XR̄g Q̄gX − XR̄g

(1 + X)(R̄ − Q̄) (1 + X)R̄g − Q̄gX

]
,

T =
[
1 0
0 C−1D

]
,

X = (P + Adγ )−1BD−1Cdγ , and the “dressed representa-
tions”

Q̄g = (P + Adγ )−1Qg(P + Adγ ),

R̄g = C−1RgC.

(This can be derived using the Schur complement to express
P−1

γ+dγ and can be readily checked by left multiplication with
Pγ+dγ .) It follows that the upper left block of KgKh is

(1 + X)Q̄gQ̄h − XR̄gR̄h + O(dγ 2);

that is, the upper left block of Ug (which corresponds to the
virtual subspace used by Pγ ) forms a representation to first
order in dγ . The part corresponding to each of the two bonds
thus forms a projective representation which changes smoothly
in γ , and which therefore cannot change its cohomology
class. Since the cohomology class has to be the same for all
subblocks, this completes the proof.

APPENDIX D: STANDARD FORM FOR NONINJECTIVE
MPS UNDER SYMMETRIES

In the following, we show that for any noninjective MPS
|μ[P]〉 with a parent Hamiltonian which is invariant under
some local symmetry Ug , the symmetry can be represented
as the symmetry (16) of P . It is clear from (2) that any P
with this symmetry will result in a Hamiltonian with the same
symmetry. In the following, we prove the converse.
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Using the same arguments as in Ref. 36, one can show that
any Ug invariance of a parent Hamiltonian (at the moment, we
are talking of a single unitary Ug and only carry the subscript
g for “future use”) can be understood as resulting from an
effective action

Ûg := P−1 Ug P = Pg

[ ⊕
α

eiφα
g V α

g ⊗ V̄ α
g

]
(D1)

of the symmetry operation on the virtual system, using the
correct gauge for P . Here V α

g is unitary, the direct sum runs
over the Hilbert spaces Hα in Eq. (15), and Pg permutes those
Hilbert spaces. [Proof sketch (cf. Ref. 36): Ug invariance of
the Hamiltonian means that Ug maps ground states to ground
states. The different sectors Hα , corresponding to different
symmetry-broken sectors, must be treated independently, since
they do not interfere on any open boundary conditions (OBC)
interval. Thus, Ug can, on one hand, permute sectors and
change their phase—this gives the Pg and exp[iφα

g ]—and it
can, on the other hand, act nontrivially on each sector; since
each of the sectors behaves like an injective MPS, this gives
the V α

g ⊗ V̄ α
g .]

In the following, we assume that Pg acts irreducibly on
the system in the sense that there are no subsets of {1, . . . ,A}
invariant under all Pg . We can always achieve this situation by
splitting (D1) into a direct sum over such irreducible cases.

Let us now study what a linear representation structure

ÛgÛh = Ûgh (D2)

(g,h ∈ G) implies for the algebraic structure of Pg , V α
g ,

and eiφα
g . (We can always achieve a linear representation

by blocking; also note that the following argument can be
generalized to projective representations.) First, since Pg is
the only part of (D1) which is not block diagonal, it follows
that the Pg form a linear representation of G. (Linearity follows
since the entries of Pg are 0 and 1.) Let us define

Wα
g := eiφα

g V α
g ⊗ V̄ α

g . (D3)

Then, using (D1) the representation structure (D2) is equiva-
lent to the relation

Wπh(α)
g Wα

h = Wα
gh (D4)

for the Wα
g , where the permutations πh are defined viaHπh(α) =

Ph(Hα) and thus form a representation, πgπh = πgh.
Let us now show that (D4) implies that the Ûg can be

understood as an induced representation; the following proof
is due to S. Beigi.37 Fix some α0, and let

H := {h : h ∈ G,πh(α0) = α0}.
Then (D4) implies that Wα0

h is a linear representation of H . We
know we can write G as the disjoint union over cosets kβH

labeled by the blocks β = 1, . . . ,A, for a (nonunique) choice
of kβ ∈ G chosen such that πkβ

(α0) = β. (This is where we
need irreducibility.) We now have that

Wβ
g

(D4)= W
π

k
−1
β

(β)

gkβ
W

β

k−1
β

= W
α0
gkβ

W
β

k−1
β

, (D5)

where we have used that πk−1
β

(β) = π−1
kβ

(β) = α0. Using the
decomposition of G in cosets, we have that g and β uniquely
determine γ and h ∈ H by virtue of

gkβ = kγ h (D6)

and thus, continuing (D5),

Wβ
g

(D4)= W
πh(α0)
kγ

W
α0
h W

β

k−1
β

= W
α0
kγ

W
α0
h W

β

k−1
β

,

using that πh(α0) = α0. We can now replace W
β

k−1
β

using that

1 = W
β

kβk−1
β

(D4)= W
π

k
−1
β

(β)

kβ
W

β

k−1
β

= W
α0
kβ

W
β

k−1
β

.

Substituting this above, we finally obtain that

Wβ
g = W

α0
kγ

W
α0
h

(
W

α0
kβ

)−1
; (D7)

that is, W
β
g is fully determined by the representation W

α0
h on

H , together with the (arbitrary) unitaries W
α0
kβ

for all coset
representatives kβ .

We now define a rotation

K =
⊕

δ

W
α0
kδ

;

then, in the rotated basis, Ûg reads

K†ÛgK = Pg

[⊕
β

W
α0
h

]
,

using that πg(β) = πkγ
{πh[πk−1

β
(β)]} = πkγ

[πh(α0)] = γ . If
we now substitute back

W
α0
h = eiφ

α0
h V

α0
h ⊗ V̄

α0
h

[Eq. (D3)] in

Wα0
g W

α0
h = W

α0
gh, g,h ∈ H

[Eq. (D4)], we find that V
α0
h forms a projective representation

of H and eiφ
α0
h forms a linear representation of H .

Thus, we can write

K†ÛgK = ŨgDg,

with

Ũg = Pg

⎡
⎣⊕

β

V
α0
h ⊗ V̄

α0
h

⎤
⎦ (D8)

and

Dg =
⊕

β

eiφ
α0
h , (D9)

where h ≡ h(g,β) is determined by (D6). The diagonal
operator Dg acts independently on the different symmetry-
broken ground states of the system and thus commutes with
the Hamiltonian; therefore, we can remove it by choosing
the proper gauge for the physical symmetry according to our
definition of phases under symmetries. If the symmetry of
the initial and the final state overlap on a subsector of the
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ground-state space, this implies (as for the injective case,
Appendix B) that the 1D representations for this sector in
Dg are the same and thus can be removed by a joint gauge
transformation. Together, this shows that for the classification
of phases under symmetries in the noninjective case, any
symmetry can be understood as a direct sum over independent
sectors, where on each sector the action of the symmetry is
given by (D8), where h ≡ h(g,β) is determined by (D6).

APPENDIX E: ROBUSTNESS OF THE 2D GAP

Here we prove the robustness of a gap based on a condition
of the form

h̃i h̃j + h̃i h̃j � − 1
8 (1 − �ij )(h̃i + h̃j ); (E1)

where we consider a square lattice with h̃i � 1 acting on
2 × 2 plaquettes, �ij = �a for directly adjacent plaquettes
i, j sharing two spins, and �ij = �d for diagonally adjacent
plaquettes i, j having one spin in common. (In Sec. III B,
we have given the simplified version where �a = �d = �.)
Then,

H̃ 2 =
∑

i

h̃2
i︸︷︷︸

�hi

+
∑
〈ij〉

h̃i h̃j +
∑′

h̃i h̃j︸︷︷︸
�0

� �a + �d

2
H̃ ,

which implies a gap in the spectrum of H̃ between 0 and
� = (�a + �d )/2 > 0, and thus a lower bound � on the gap
of H̃ (cf. Ref. 1).

Let us now study the robustness of (E1) under γ defor-
mation of the Hamiltonian. Let hi , hj be projectors which
satisfy hihj + hjhi � − 1

8 (1 − �ij )(hi + hj ). (The proof can
be modified for the hi not being projectors.) Let hi be
supported on systems AB, and hj on systems BC, where
the number of sites in systems A, B, and C is a, b, and
c = a, respectively. (For the square lattice, a = b = c = 2
for directly neighboring terms, and a = c = 3, b = 1 for
diagonally adjacent terms.) With Qγ = (1 − γ )1 + γQ � 1
as in the 1D case, let 
γ,X = (Q−1

γ )⊗x , with X = A,B,C and
x = a,b,c. Then the γ -deformed Hamiltonians are

hi(γ ) = (
γ,A ⊗ 
γ,B)hi(
γ,A ⊗ 
γ,B),

hj (γ ) = (
γ,B ⊗ 
γ,C)hj (
γ,B ⊗ 
γ,C).

Let us define

�γ := 
2
γ,B − 1 � 0,

q := λmin(Q) < 1,

μγ := [(1 − γ ) + γ λmin(Q)]−2 � 1,

such that Q2a
γ � 1

μa
γ
1, and (μb

γ − 1)1 � �γ . Then we find that

hi

2
γ,Bhj + hj


2
γ,Bhi + 1

8μa
γ

[
1 − �ij + 8

(
μb

γ − 1
)] (

hi ⊗ 
−2
γ,C + 
−2

γ,A ⊗ hj

)
� hi


2
γ,Bhj + hj


2
γ,Bhi + 1

8

[
1 − �ij + 8

(
μb

γ − 1
)]

(hi ⊗ 1C + 1A ⊗ hj )

= hi�γ hj + hj�γ hi + hi

[(
μb

γ − 1
)
1
]
hi + hj

[(
μb

γ − 1
)
1
]
hj + hihj + hjhi + 1

8 (1 − �ij )(hi + hj )

� (hi + hj )�γ (hi + hj ) � 0.

By multiplying this with 
γ,A ⊗ 
γ,B ⊗ 
γ,C from both
sides, we obtain a lower bound of type (E1) for the γ -deformed
Hamiltonian,

hi(γ )hj (γ )+hj (γ )hi(γ )�− 1
8 [1−�ij (γ )][hi(γ ) + hj (γ )],

(E2)

with �ij (γ ) = μa
γ �ij + (1 + 7μa

γ − 8μa+b
γ ). This can be used

to find an environment of any point in which the system is still

gapped. In particular, in the case where the isometric parent
Hamiltonian is commuting, and assuming a square lattice, the
lower bound on the spectral gap provided by (E2) is

�(γ ) = �a(γ ) + �d (γ )

2
= 1 + 4μ2

γ

(
1 + μγ − 2μ2

γ

)
.

This gap vanishes at μγ ≈ 1.07, limiting the maximal de-
formation of the isometric tensor to λmin(Q)/λmax(Q) ≈
0.967.
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8D. Pérez-Garcı́a, F. Verstraete, J. I. Cirac, and M. M. Wolf, Quantum
Inf. Comput. 8, 0650 (2008).

9M. B. Hastings and X. G. Wen, Phys. Rev. B 72, 045141 (2005).
10F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys. Rev.

B 81, 064439 (2010).
11X. Chen, Z. C. Gu, and X. G. Wen, Phys. Rev. B 83, 035107 (2011).
12A. Kitaev, Ann. Phys. 303, 2 (2003), e-print

arXiv:quant-ph/9707021.
13F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205

(2004).
14X. Chen, Z. Gu, and X. Wen, Phys. Rev. B 82, 155138 (2010).

165139-20

http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1007/BF02099178
http://arXiv.org/abs/arXiv:cond-mat/0407066
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1103/PhysRevB.76.035114
http://dx.doi.org/10.1007/BF02099509
http://dx.doi.org/10.1103/PhysRevB.72.045141
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.81.064439
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://arXiv.org/abs/arXiv:quant-ph/9707021
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevB.82.155138


CLASSIFYING QUANTUM PHASES USING MATRIX . . . PHYSICAL REVIEW B 84, 165139 (2011)

15S. Michalakis and J. Pytel, e-print arXiv:1109.1588 (to be pub-
lished).

16S. Bravyi and M. B. Hastings, e-print arXiv:1001.4363 (to be
published).

17F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M. Wolf,
Phys. Rev. Lett. 94, 140601 (2005).

18C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V.
Thapliyal, Phys. Rev. A 63, 012307 (2000).
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