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We provide an effective description of fractional topological insulators that include the fractional quantum
spin Hall effect by considering the time-reversal symmetric pendant to the topological quantum field theories that
encode the Abelian fractional quantum Hall liquids. We explain the hierarchical construction of such a theory
and establish for it a bulk-edge correspondence by deriving the equivalent edge theory for chiral bosonic fields.
Furthermore, we compute the Fermi-Bose correlation functions of the edge theory and provide representative
ground state wave functions for systems described by the bulk theory.
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I. INTRODUCTION

Laughlin initiated the theoretical exploration of the frac-
tional quantum Hall effect (FQHE) by proposing wave func-
tions for the ground states of interacting electrons in the lowest
Landau level at filling fractions ν = 1/(2m + 1), m ∈ Z.1

The experimental observation of a plethora of fractional Hall
plateaus at other filling fractions lead to the construction
of a hierarchy of wave functions out of Laughlin’s wave
function,2–7 and the development of the composite fermion
picture.8 These approaches were later reconciled, and unified
by the effective description of the FQHE in terms of multi-
component Chern-Simons theories in (2 + 1)-dimensional
space and time.9–15 These topological effective theories for
the hierarchy of the FQHE deliver a correspondence between
the physics in the two-dimensional bulk and the physics along
one-dimensional boundaries at which the two-dimensional
sample terminates.16–21

It is possible to double the Chern-Simons effective theory
representing the universal properties of the FQHE at some
filling fraction ν = 1/(2m + 1), m ∈ Z so as to obtain a time-
reversal symmetric theory. This approach has been used to
interpret a fully gaped superconductor as an example of a
topological phase,22–24 and, more generally, to explore the
universal properties of interacting theories with an emergent
local Z2 gauge symmetry (see Refs. 25–29) that signals the
phenomenon of spin and charge separation.30–34

A more urgent impetus for the construction of effective
time-reversal symmetric topological field theories in (2 +
1)-dimensional space and time arose with the theoretical
prediction of time-reversal symmetric topological band insu-
lators, shortly followed by their experimental discovery.35–39

These band insulators realize the counterparts to the integer
quantum Hall effect and their discovery suggests that a
time-reversal symmetric counterpart to the FQHE might
emerge from interacting itinerant electrons in a crystalline
environment.

From the outset, this endeavor follows a different line
of logic than the FQHE, as it is not based on preexist-
ing experimental evidence. Past experience with the FQHE
has thus guided recent attempts to either construct time-
reversal symmetric edge theories or to construct time-reversal

symmetric bulk wave functions supporting local excitations
carrying fractional quantum numbers.37,40–45

While numerical support for a time-reversal symmetric
topological phase of matter was given by Neupert et al. in their
study of a lattice model for interacting itinerant electrons,44

a description in terms of an effective theory is desirable to
reveal the universal properties of such a phase. In Ref. 44,
the universal properties such as the topological degeneracies
of the ground state manifold were explored with the help
of a family of edge theories. In this paper we are going
to construct the corresponding bulk topological theory by
generalizing the hierarchy of Abelian FQHEs to the hierarchy
of Abelian fractional quantum spin Hall effects (FQSHEs) in
Sec. II. We will show in Sec. III the correspondence between
the bulk theory and the edge theory whose stability to the
breaking of translation invariance and residual spin-1/2 U(1)
symmetry was studied in Ref. 44. Finally, we shall generalize
in Sec. IV the wave functions supporting the Abelian FQHE
for a fractional filling of the lowest Landau level to wave
functions supporting an Abelian FQSHE. These time-reversal
symmetric wave functions are built from the holomorphic and
antiholomorphic single-particle wave functions belonging to
the lowest Landau level when the applied uniform magnetic
field is pointing down or up, respectively. For the reader who
wants to skip the derivations, we provide a detailed summary
of our results in Sec. V.

II. TIME-REVERSAL SYMMETRIC ABELIAN
CHERN-SIMONS QUANTUM FIELD THEORY

Let us start by summarizing some of the results that we
will derive in this section. We shall construct a class of
incompressible liquids, each of which is the ground state of
a time-reversal symmetric (2 + 1)-dimensional Chern-Simons
quantum field theory that depends on 2N flavors of gauge
fields ai,μ(t,x), where i = 1, . . . ,2N labels the flavors and
μ = 0, 1, 2 labels the space-time coordinates xμ ≡ (t,x), with
the action

S :=
∫

dtd2x εμνρ

(
− 1

4π
Kij ai,μ ∂ν aj,ρ

+ e

2π
Qi Aμ ∂ν ai,ρ + s

2π
Si Bμ ∂ν ai,ρ

)
. (2.1a)
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Here Kij are elements of the symmetric and invertible
2N × 2N integer matrix K . The integer-valued component
Qi of the 2N -dimensional vector Q represents the ith electric
charge in units of the electronic charge e, which couples
to the electromagnetic gauge potential Aμ(t,x). Similarly,
Si is an integer-valued component of the 2N -dimensional
vector S that represents the ith spin charge in units of
s associated to the up or down spin projection along a
spin-1/2 quantization axis, which couples to the Abelian
(spin) gauge potential Bμ(t,x). The operation of time reversal
maps ai,μ(t,x) into −gμν ai+N,ν(−t,x) for i = 1, . . . ,N and
vice versa. Here, gμν := diag(+, − ,−) ≡ gμν is the Lorentz
metric. In Eq. (2.1a) x ∈ �, where � ⊂ R2 is a region of
two-dimensional Euclidean space, which for the discussion of
the bulk theory we consider to have no boundary, ∂ � = Ø.
The domain of integration R is unbounded in time t . We will
show that time-reversal symmetry imposes that the matrix K

and the vectors Q and S are of the block form

K =
(

κ 	

	T −κ

)
, Q =

(






)
, S =

(



−


)
, (2.1b)

with 
 an integer N -vector, while κ = κT and 	 = −	T are
symmetric and antisymmetric integer-valued N × N matrices,
respectively.

The doubled structure of the theory is even more evident if
we express it as a BF theory,46–48 that is, by defining

a(±)
i,μ := 1

2 (ai,μ ± ai+N,μ), i = 1, . . . ,N (2.2a)

for μ = 0, 1, 2. This basis allows to reexpress the effective
action (2.1a) as

S :=
∫

dtd2x εμνρ

(
− 1

π
κij a

(+)
i,μ ∂ν a

(−)
j,ρ

+ e

π
ρi Aμ∂ν a(+)

i,ρ + s

π
ρi Bμ∂ν a(−)

i,ρ

)
. (2.2b)

In this representation, the indices in sans serif fonts i,j run from
1 to N . The coupling between the pair of gauge fields a(+) and
a(−) is off-diagonal in the BF labels ±. This is a consequence
of time-reversal symmetry, which is implemented by

a(±)
μ (t,x)

T→ ∓gμν a(±)
ν (−t,x), (2.2c)

that leaves the action (2.2b) invariant. In this representation,
the electromagnetic gauge potential A couples to the + species
only, while the spin gauge potential B couples to the −
species only. The N × N integer-valued matrix κ in the
BF representation is related to the block matrices κ and 	

contained in K from Eq. (2.1b) through

κ = κ − 	. (2.2d)

The degeneracy of the ground state is obtained for either
description, that is, the one in terms of the flavors ai with
i = 1, . . . ,2N or the one in terms of the flavors a

(±)
i with

i = 1, . . . ,N , from

NGS =
∣∣∣∣det

(
0 κ

κ
T 0

)∣∣∣∣ = (det κ)2. (2.3)

If the underlying microscopic theory describes fermions
with a residual spin-1/2 U(1) (easy plane XY ) symmetry,

it is then meaningful to define the quantized spin Hall
resistance

σsH := e

2π
× νs. (2.4a)

The filling fraction νs is here defined so that it is unity for the
integer quantum spin Hall effect and therefore given by

νs := 1
2QT K−1 S

= 
T
κ

−1 
. (2.4b)

We now turn to the hierarchical construction of the states
described by this quantum field field theory. As a warm up
we begin by reviewing how a one-component Chern-Simons
quantum field theory in (2 + 1)-dimensional space and time
is related to the quantum Hall effect. We then construct
recursively the multicomponent Chern-Simons quantum field
theory in such a way that it respects time-reversal symmetry.

A. Brief review of the one-component Chern-Simons theory

We start from the Lagrangian density

LCS := − p

4π
εμνλ aμ ∂ν aλ + e

2π
εμνλ Aμ ∂ν aλ (2.5a)

in (2 + 1)-dimensional space and time with the action

SCS :=
∫
R

dt

∫
�

d2x LCS (2.5b)

and partition function

ZCS[A] :=
∫

D[a] e
i
h̄
SCS . (2.5c)

The dimensionless integer p is positive. The electromagnetic
coupling (electric charge) e is dimensionfull. It measures the
strength of the interaction between an external electromagnetic
gauge field A with the components Aμ ≡ (A0,A) and a
dynamical gauge field a with the components aμ ≡ (a0,a).
The symbol D[a] represents the measure of all gauge orbits
stemming from the Abelian group U(1).

The operation T for reversal of time is defined by

aμ(t,x)
T→ +gμν aν(−t,x), (2.6a)

Aμ(t,x)
T→ +gμν Aν(−t,x) (2.6b)

for μ = 0, 1, 2. We also posit that T is an anti-unitary linear
transformation. If so, one verifies thatLCS is odd under reversal
of time.

Define the electromagnetic current to be the three-vector

J
μ

CS := 1

h̄

δSCS

δAμ

= e

2πh̄
εμνλ ∂ν aλ (2.7a)

for μ = 0, 1, 2. Because the Levi-Civita tensor with the
component ε012 ≡ 1 is fully antisymmetric, this current is
conserved,

∂μJ
μ

CS = 0. (2.7b)

Now, the equations of motions

0 = δSCS

δaμ

= − p

2π
εμνλ ∂ν aλ + e

2π
εμνλ ∂ν Aλ (2.8)
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can be used in conjunction with Eq. (2.7) to yield the conserved
electromagnetic current

J
μ

CS = 1

p

e2

h
εμνλ ∂ν Aλ (2.9)

which allows us to identify the filling fraction ν = p−1 in this
simple example, so that the quantum Hall conductance is given
by σH = ν e2

h
. From now on we adopt units in which h̄ = 1.

B. One-component BF theory

We start from the Lagrangian density in (2 + 1)-
dimensional space and time

LTRS
BF := −p

π
εμνλ a(+)

μ ∂ν a
(−)
λ

+ e

π
εμνλ Aμ ∂ν a

(+)
λ + s

π
εμνλ Bμ ∂ν a

(−)
λ (2.10a)

with the action

STRS
BF :=

∫
R

dt

∫
�

d2x LTRS
BF (2.10b)

and partition function

ZTRS
BF [A,B] :=

∫
D[a(+),a(−)] eiSTRS

BF . (2.10c)

Equation (2.10) is a BF theory made of two copies of
the Chern-Simons theory (2.5) with the specificity that the
integer p enters with opposite signs in the two copies. We
have also introduced two external gauge fields A and B with
the couplings e and s, respectively. For the gauge field A, e will
be interpreted as a total U(1) charge. For the gauge field B, s

will be interpreted as a relative U(1) charge. If the underlying
microscopic model is built from itinerant electrons, the gauge
field A is the U(1) electromagnetic gauge field that couples
to the conserved electric charge, whereas the gauge field B is
the U(1) gauge field that couples to the conserved projection
along some quantization axis of the electronic spin, that is,
s = 1/2.

This theory is invariant under the operation of time reversal
defined by the antilinear extension of

a(±)
μ (t,x)

T→ ∓gμν a(±)
ν (−t,x) ≡ ∓a(±)μ(t̃ ,x̃), (2.11a)

Aμ(t,x)
T→ +gμν Aν(−t,x) ≡ +Aμ(t̃ ,x̃), (2.11b)

Bμ(t,x)
T→ −gμν Bν(−t,x) ≡ −Bμ(t̃ ,x̃) (2.11c)

for μ = 0, 1, 2. The component A0 of the external electro-
magnetic gauge field A is unchanged, whereas its vector
component A is reversed under reversal of time, just as the
vector components of a(−). This behavior is reversed for
the components of the external gauge field B that couples
to the conserved U(1) spin current and the gauge field a(+).

Since this theory is equivalent to two independent copies
of the Chern-Simons theory (2.5), there are two independent
conserved currents of the form (2.7),

J
μ
± := e

π
εμνλ∂νa

(±)
λ (2.12)

for μ = 0, 1, 2. Their transformation laws under reversal of
time are

J
μ
± (x)

T→ ±gμνJ
ν
±(x̃) (2.13)

for μ = 0, 1, 2. If the microscopic model is made of itinerant
electrons, we can thus interpret J

μ
+ as the charge current and,

if the model has a residual U(1) rotation symmetry of the
electronic spin, J

μ
− represents the conserved spin current. The

equations of motions

0 = δSTRS
BF

δa
(±)
μ

(2.14a)

for the dynamical compact gauge fields a(−) and a(+), respec-
tively, deliver the relations

εμνλ ∂ν a
(+)
λ = s

p
εμνλ ∂ν Bλ (2.14b)

and

εμνλ ∂ν a
(−)
λ = e

p
εμνλ ∂ν Aλ (2.14c)

for μ = 0, 1, 2, respectively. We conclude that, on the one
hand, the charge current obeys the Hall response

J
μ
+ = 2s × e

2πp
εμνλ ∂ν Bλ (2.15a)

with μ = 0, 1, 2 while, on the other hand, the spin current
obeys the Hall response

J
μ
− = 2e × e

2πp
εμνλ ∂ν Aλ (2.15b)

with μ = 0, 1, 2.

C. Time-reversal symmetric hierarchy

The generic structure of the hierarchical construction is the
following. Let n > 0 be any positive integer. Define at the level
n of the hierarchy the quantum field theory with the partition
function

ZTRS
n [A,B] :=

∫
D[a(+)

1 , . . . ,a(+)
n ,a

(−)
1 , . . . ,a(−)

n ]eiSTRS
n ,

(2.16a)

where the action is

STRS
n :=

∫
R

dt

∫
�

d2x LTRS
n (2.16b)

and the Lagrangian density is

LTRS
n := −

n∑
i,j=1

1

π
κ

(n)
ij εμνλ a(+)

i,μ ∂ν a
(−)
j,λ

+
n∑

i=1

e

π

(n)

i εμνλ Aμ ∂ν a
(+)
i,λ

+
n∑

i=1

s

π

(n)

i εμνλ Bμ ∂ν a
(−)
i,λ . (2.16c)

Here the dynamical gauge fields a(±) are the n-tuplet with the
components

(a(±)
i ) ≡ (a(±)

1 , . . . ,a(±)
n )T. (2.17a)

Moreover, the n × n matrix κ
(n) is invertible and has, by

assumption, integer-valued matrix elements. The charge vector

(n) has the integer-valued components


(n) = (1, 0, . . . ,0)T ∈ Zn. (2.17b)
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Finally, the compatibility condition

(−)κ
(n)
ii = (−)


(n)
i (2.17c)

for i = 1, . . . ,n is also assumed.
The operation of time reversal is the rule

xμ T→ x̃μ := −gμν xν (2.18a)

together with the antilinear extension of the rules

a(±)μ
i (x)

T→ ∓gμν a(±)ν
i (x̃) (2.18b)

for μ = 0, 1, 2 and i = 1, . . . ,n that leaves the Lagrangian
density (2.16c) invariant.

The level n + 1 of the hierarchical construction posits the
existence of the pair of quasiparticle 3-currents j±,n+1 that are
conserved, that is,

∂μ j
μ

±,n+1 = 0. (2.19)

It also posits the existence of some even integer pn+1 and 2n

integers l
(+)
i , l

(−)
i with i = 1, . . . ,n such that the constraints

j
μ

±,n+1 = εμνλ

πpn+1

n∑
i=1

l(±)
i ∂ν a

(±)
i,λ (2.20)

for μ = 0, 1, 2 hold. The constraint (2.20) means that any
pair of flux quanta, arising when a

(+)
i and a

(−)
i each support

a vortex, creates a quasiparticle with charge 2 l
(+)
i /pn+1 and

spin 2 l
(−)
i /pn+1 for i = 1, . . . ,n.

This construction can be achieved from the partition
function

ZTRS
n+1[A,B] :=

∫
D[a(+)

1 , . . . ,a
(+)
n+1,a

(−)
1 , . . . ,a

(−)
n+1]eiSTRS

n+1 ,

(2.21a)

with the action

STRS
n+1 :=

∫
R

dt

∫
�

d2x Ln+1 (2.21b)

and Lagrangian density

LTRS
n+1 := LTRS

n

− pn+1

π
εμνλ a

(+)
n+1,μ ∂ν a

(−)
n+1,λ

+ 1

π
εμνλ

n∑
i=1

l(+)
i a(+)

i,μ ∂ν a
(−)
n+1,λ

+ 1

π
εμνλ

n∑
i=1

l(−)
i a(−)

i,μ ∂ν a
(+)
n+1,λ. (2.21c)

Indeed, we can then define the conserved quasiparticle currents
of type n to be

j
μ

±,n+1 := 1

π
εμνλ ∂ν a

(±)
n+1,λ (2.22)

for μ = 0, 1, 2 and use the equations of motion

0 = δSTRS
n+1

δa
(∓)
n+1,μ

⇐⇒ pn+1

π
εμνλ∂νa

(±)
n+1,λ = εμνλ

π

n∑
i=1

l(±)
i ∂ν a

(±)
i,λ (2.23)

obeyed by the dynamical gauge fields a
(±)
n+1,μ to establish that

they indeed obey the constraints imposed in Eq. (2.20).
Observe that if we introduce the two (n + 1)-tuplets a(±)

given by

(a(±)
i )T ≡ (a(±)

1 , . . . ,a
(±)
n+1)T (2.24a)

of dynamical gauge fields, then the LagrangianLTRS
n+1 defined in

Eq. (2.21c) takes the same form as LTRS
n defined in Eq. (2.16c)

after the substitution n → n + 1. The (n + 1) × (n + 1) ma-
trix κ

(n+1) is then given by

κ
(n+1) =

(
κ

(n) −l(+)

−l(−)T pn+1

)
. (2.24b)

The (n + 1)-component charge vector 
(n+1) is given by


(n+1) = (1,0, . . . ,0)T ∈ Zn+1, (2.24c)

thus imposing a vanishing coupling of the external gauge fields
A and B to a

(±)
n+1. The compatibility condition

(−)κ
(n)
ii = (−)


(n)
i (2.24d)

for i = 1, . . . ,n + 1 holds if and only if the integer pn+1 is
even.

The representation (2.24) is called the hierarchical repre-
sentation.

The operation of time reversal obtained from Eq. (2.18) by
allowing i to run from 1 up to n + 1 leaves the Lagrangian
of level n + 1 invariant. Therefore, we have constructed a
hierarchical time-reversal symmetric BF theory.

D. Equivalent representations

We define an equivalence class on all the actions of the
form (2.2b) when there exists a linear transformation W

with integer valued coefficients and unit determinant such
that

κ = WT
κ

′ W (2.25a)

and


 = WT 
′ (2.25b)

between any two given pairs (κ,
) and (κ′,
′) within an
equivalence class.

Example 1: The lower-triangular transformation

WT :=

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

1 −1 · · · 0
...

... · · · ...

1 0 · · · −1

⎞
⎟⎟⎟⎟⎠ (2.26a)

relates the hierarchical basis characterized by the charge
vectors


 = (1, 0, . . . ,0)T (2.26b)

to the so-called symmetric basis characterized by the charge
vector


 = (1, 1, . . . ,1)T. (2.26c)
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Example 2: The block-diagonal transformation

WT :=

⎛
⎜⎜⎜⎜⎜⎝

1m−1

0 −1

1n−1−m

+1 0

1N−n

⎞
⎟⎟⎟⎟⎟⎠ (2.27)

with 1 � m < n � N that interchanges κmm with κnn, κmn

with −κnm, while it substitutes −
n for 
m and +
m for 
n.

III. EDGE THEORY

In this section we study the quantum field theory for
2N Abelian Chern-Simons fields as defined in (2.1a) or,
equivalently, (2.2b) in a system with a boundary by following
a strategy pioneered in Refs. 49 and 50. However, before re-
laxing the condition ∂ � = Ø, we decompose the action (2.1a)
of the bulk theory into

S := SK + SQ + SS, (3.1a)

SK := − 1

4π

∫
R

dt

∫
�

d2x Kij εμνρ ai,μ ∂ν aj,ρ, (3.1b)

SQ := +
∫
R

dt

∫
�

d2x
e

2π
Qi ε

μνρ ai,μ ∂ν Aρ, (3.1c)

SS := +
∫
R

dt

∫
�

d2x
s

2π
Si ε

μνρ ai,μ ∂ν Bρ. (3.1d)

Notice that we have performed a partial integration in
Eqs. (3.1c) and (3.1d) as compared to Eq. (2.1a), so that
the gauge fields A and B enter Eq. (3.1) in an explicitly
gauge invariant form. In contrast, we are going to make a
gauge choice for the fields ai with i = 1, . . . ,2N to derive
the gauge-invariant effective theory of the edge, once we have
relaxed the condition ∂ � = Ø.

Let us choose � to be the upper-half plane of R2, that is,

� := {(x,y) ∈ R2|y � 0} (3.2)

for notational simplicity but without loss of generality. Observe
that under the 2N independent Abelian gauge transformations
of the dynamical Chern-Simons fields

ai,μ → ai,μ + ∂μχi (3.3a)

for μ = 0, 1, 2 where χi with i = 1, . . . ,2N are real valued
and smooth, the action S defined in Eq. (3.1) obeys the
transformation law

S → S + δS (3.3b)

with

δS =
∫ +∞

−∞
d t

∫ +∞

−∞
d x (χi J 2

i )(t,x,0) (3.3c)

and

J 2
i (t,x,y) := − 1

4π
Kij ε2νρ (∂ν aj,ρ)(t,x,y)

+ e

2π
Qi ε

2νρ (∂ν Aρ)(t,x,y)

+ s

2π
Si ε

2νρ (∂ν Bρ)(t,x,y). (3.3d)

The equations of motion

Kij εμνρ ∂ν aj,ρ = e Qi ε
μνρ ∂ν Aρ + s Si εμνρ ∂ν Bρ (3.4)

for the dynamical gauge field a dictate here that

J μ

i (t,x,y) = + 1

4π
Kij εμνρ ∂ν aj,ρ (3.5)

for i = 1, . . . ,2N and μ = 0, 1, 2. Hence, the 2N components
of the quasiparticle three-current Ji obey the continuity
equation ∂μJ μ

i = 0 if (∂μ ∂ν − ∂ν ∂μ)ai,ρ = 0 holds for any
i = 1, . . . ,2N and ρ = 0, 1, 2.

We now assume that the 2N -tuplet χ is constant along the
boundary ∂� for all times,

(∂xχi)(t,x,y = 0) = (∂tχi)(t,x,y = 0) = 0 (3.6)

for i = 1, . . . ,2N . In this case, each component χi can be
pulled outside the integral in Eq. (3.3c) yielding

δS = χi

∫ +∞

−∞
d t

∫ +∞

−∞
d x J 2

i (t,x,0). (3.7)

Gauge invariance, that is, δS = 0, is then achieved if, in
addition to the restriction (3.6), we demand that there is no
net accumulation of quasiparticle charge along the boundary
arising from the quasiparticle current normal to the boundary,
that is,

0 =
∫ +∞

−∞
d t

∫ +∞

−∞
d x J 2

i (t,x,0). (3.8)

Observe that the stronger condition

χi(t,x,y = 0) = 0 (3.9)

for i = 1, . . . ,2N achieves gauge invariance, that is, δS = 0,
without imposing condition (3.8).

Now that we understand under what conditions the quantum
field theory with the action (3.1) is gauge invariant with the
choice (3.2) for �, we are ready to construct the bulk-edge
correspondence. To this end, we are going to extract from the
dynamical gauge field a degrees of freedom that are localized
on the edge ∂� and invariant under the gauge transformations
induced by Eqs. (3.3a), (3.6), and (3.8) on the edge ∂�.

A. Bulk-edge correspondence

We start by fixing the gauge of the 2N Abelian Chern-
Simons fields through the conditions

a0 = K−1 V a1. (3.10a)

We demand here that V is a symmetric, positive definite 2N ×
2N matrix that satisfies

V = �1 V �1, (3.10b)

where the 2N × 2N matrices

�ρ := σρ ⊗ 1N, ρ = 1, 2, 3 (3.10c)

are defined by taking the tensor product between any of the
Pauli matrices σ1, σ2, and σ3 and the unit N × N matrix 1N .
Condition (3.10b) guarantees that the gauge condition (3.10a)
is consistent with reversal of time defined by

aμ(t,x,y)
T→ −gμν�1 aν(−t,x,y). (3.10d)
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Indeed, the gauge condition (3.10a) then transforms under
reversal of time into

−�1 a0(−t,x,y) = K−1 V �1 a1(−t,x,y), (3.11)

which, upon using K−1 = −�1 K−1 �1, coincides with
Eq. (3.10a) if and only if we impose condition (3.10b).

Next, we use the gauge conditions (3.10a) to eliminate the
time components a0 of the dynamical gauge fields from the
theory. For that, observe that their equations of motion

0 = δSK

δa0
⇐⇒ ∂1a2 − ∂2a1 = 0, (3.12a)

which require the vanishing of their field strengths, are
automatically satisfied if

a1 = ∂1�, a2 = ∂2� (3.12b)
for

(∂1∂2 − ∂2∂1)� = 0 (3.12c)

then follows if the 2N components �i of the vector field �

are smooth for i = 1, . . . ,2N .
We rewrite the kinetic part (3.1b) of the action (3.1a)

using the gauge conditions (3.10a) and the equations of
motion (3.12a) and subsequently substitute the gauge fields
� defined in Eq. (3.12b):

SK = −ε0νλ

4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ +∞

0
dy
(− aT

ν K ∂0 aλ + aT
ν V ∂λ a1

)
= −ε0νλ

4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ +∞

0
dy (∂ν�)T(K ∂0 ∂λ� − V ∂λ ∂1�)

= −ε0νλ

4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx

∫ +∞

0
dy ∂ν(�T K ∂0 ∂λ� − �T V ∂λ ∂1�). (3.13)

We shall demand that �(t,x) vanishes for |x| → ∞, in which case

SK = − 1

4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx(�T K ∂0∂1� − �T V ∂1 ∂1�)(t,x,0)

= 1

4π

∫ +∞

−∞
dt

∫ +∞

−∞
dx [(∂1�)T K ∂0� − (∂1�)T V ∂1�](t,x,0). (3.14)

Under the gauge transformation (3.3a) subject to the
constraints (3.6) and (3.8) the 2N -tuplet � transforms as

�(t,x) → �(t,x) + χ. (3.15)

The fact that χ is independent of time t and space x implies
that (a) the edge theory (3.14) is unchanged under Eq. (3.15),
as anticipated, and (b) (∂1�)(t,x,0) and (∂0�)(t,x,0) are
unchanged under Eq. (3.15) and therefore are physical degrees
of freedom at the edge. Their dynamics are controlled by the
nonuniversal matrix V , which is fixed by microscopic details
of the physical system near the edge.

So far we have discussed only the kinetic part of the
action. Let us now discuss the couplings to the external gauge
potentials A and B given by the actions (3.1c) and (3.1d),
respectively. We assume that the external gauge field A is
chosen so that (i) all its components are independent of y, that
is,

Aμ(t,x,y) = Aμ(t,x) (3.16a)

for μ = 0, 1, 2 and (ii) they generate the Maxwell equations
in a one-dimensional space defined by the boundary y = 0,
that is,

A2(t,x) = 0 (3.16b)

for all times t and for all positions x along the one-dimensional
boundary y = 0. Using (i) and (ii), we can recast SQ as

SQ = + e

2π

∫
R

dt

∫
�

d2x Qi ε
2νρ ai,2 ∂ν Aρ

= + e

2π

∫
R

dt

∫
�

d2x Qi ε
2μν ∂2 (�i∂μ Aν)

= − e

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dx (εμν Aμ QT ∂ν �)(t,x,0).

(3.17)

On the last line, the Levi-Civita tensor is defined for (1 + 1)
space and time.

Furthermore, the very same manipulations that lead to
Eq. (3.17) can be carried out on SS to deliver

SS = − s

2π

∫ +∞

−∞
dt

∫ +∞

−∞
dx(εμν Bμ ST ∂ν �)(t,x,0). (3.18)

Finally, the operation of time reversal stated in Eq. (3.10d)
in the bulk reduces on the boundary to the transformation law

a1(t,x) = (∂x�)(t,x)
T→ �1 a1(−t,x) = (∂x �1 �)(−t,x). (3.19)

The transformation law of the 2N -tuplet � under reversal
of time is thus only fixed unambiguously up to an additive
constant 2N -tuplet. The choice

�(t,x)
T→ �1 �(−t,x) + πK−1 �↓ Q, (3.20a)

with

�↑ := 1
2 (�0 + �3), �↓ := 1

2 (�0 − �3), (3.20b)
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guarantees that at least one Kramers doublet of fermions exists
as local fields in the edge theory, as was shown in Ref. 44.

B. Fermi-Bose edge correlation functions

Local excitations on the edge can be classified into two
groups. There are quasiparticle excitations that carry rational
charges and obey fractional statistics. There are Fermi-Bose
excitations that carry integer charges and obey Fermi or
Bose statistics. The former excitations are built from vertex
operators of the form

V
qp
i (t,x) := e−i�i (t,x) (3.21a)

that are labeled by the flavor index i = 1, . . . ,2N . The latter
excitations are built from the vertex operators of the form

V fb
i (t,x) := e−iKij �j (t,x), (3.21b)

that are also labeled by the flavor index i = 1, . . . ,2N . Estab-
lishing the statistics under exchange obeyed by these vertex
operators can be achieved by computing their correlation
functions, as we now show for the Fermi-Bose operators.

We shall choose for � a disk of unit radius centered at the
origin of the complex plane with coordinate z ∈ C. Thus, the
boundary ∂ � is the unit circle centered at the origin of C. We
are after the correlation function

�({z1,1,z̄1,1, . . . ,z1,n1 ,z̄1,n1}; · · · ; {z2N,1,z̄2N,1, . . . ,z2N,n2N
,z̄2N,n2N

})
:= 〈

eQ V fb
1 (z1,1,z̄1,1) × · · · × V fb

1 (z1,n1 ,z̄1,n1 ) × · · · × V fb
2N (z2N,1,z̄2N,1) × · · · × V fb

2N (z2N,n2N
,z̄2N,n2N

)
〉

(3.22)

where the angular bracket denotes an expectation value using
the quantum field theory with the action (3.14) and Q is a so-
called background charge. This correlation function fixes the
positions of ni particles of flavor i = 1, . . . ,2N at the locations
zi,1, zi,2, . . ., zi,ni

along the unit circle. We are omitting any
reference to the time t since all Fermi-Bose vertex operators
are taken at equal time.

We shall use the rules that

〈�̃I (z,z̄)�̃J (w,w̄)〉

=
⎧⎨
⎩

log(z − w), if I = J = 1, . . . ,N ,
log(z̄ − w̄), if I = J = N + 1, . . . ,2N ,
0 otherwise,

(3.23)

where the capitalized index I = 1, . . . ,2N labels the basis of
R2N for which the K matrix is represented by the diagonal
matrix made of the signature of its eigenvalues

�3 = (W−1)T K (W−1). (3.24)

Observe that the linear transformation W needs neither
be integer valued nor have unit determinant. It is a mere
useful device to compute the correlation function (3.22). The
relationship between the coordinates �̃I and �j is linear and

given by

�̃I = WIj �j , I = 1, . . . ,2N, (3.25)

where the summation convention for the repeated small case
indices is used.

In order to take advantage of Eq. (3.23) when evaluating
Eq. (3.22), we use the decomposition

Kij�j (z,z̄) = WIi (�3)IJ WJj �j (z,z̄)

= WIi (�↑
IJ − �

↓
IJ ) �̃J (z,z̄)

= (WIi �
↑
IJ �̃J )(z) − (WIi �

↓
IJ �̃J )(z̄)

(3.26a)

for i = 1, . . . ,2N where the matrices �↑ and �↓ were defined
in Eq. (3.20b). Under the decomposition (3.26a), any Fermi-
Bose vertex operator (3.21b) occurring in the correlation
function (3.22) becomes

V fb
i (z,z̄) = e−iKij �j (z,z̄) = exp[−i(WIi �

↑
IJ �̃J )(z)]

× exp[+i(WIi �
↓
IJ �̃J )(z̄)]. (3.26b)

We shall also decompose accordingly the background charge
Q = Q↑ + Q↓. Now,

�
( · · · ; zi,1, . . . ,z̄i,ni

; · · · )
= exp

{
Q↑ + 1

2

〈[
+

2N∑
i=1

ni∑
ai=1

(WIi �
↑
IJ �̃J )

(
zi,ai

)]2〉}
exp

{
Q↓ + 1

2

〈[
−

2N∑
i=1

ni∑
ai=1

(WIi �
↓
IJ �̃J )(z̄i,ai

)

]2〉}

=
⎡
⎣ 2N∏

i=1

∏
1�ai<bi�ni

(
zi,ai

− zi,bi

)WIi�
↑
IJ WJi

(
z̄i,ai

− z̄i,bi

)WIi�
↓
IJ WJi

⎤
⎦
⎡
⎣ ∏

1�i<j�2N

ni∏
ai ,bj =1

(
zi,ai

− zj,bj

)WIi�
↑
IJ WJj

(
z̄i,ai

− z̄j,bj

)WIi�
↓
IJ WJj

⎤
⎦ .

(3.27)
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The role of the background charge is to guarantee “charge
neutrality.” Observe that for any pair i,j = 1, . . . ,2N , the
exponents

αij := WIi �
↑
IJ WJj (3.28)

and

βij := WIi �
↓
IJ WJj (3.29)

can be an irrational number! Nevertheless if zi,ai
�= zj,bj

the
correlation function (3.27) is single valued, for it is the product
of functions of the form

f
(
zi,ai

,zj,bj

)
:= (

zi,ai
− zj,bj

)αij
(
z̄i,ai

− z̄j,bj

)βij

= (
zi,ai

− zj,bj

)αij −βij +βij
(
z̄i,ai

− z̄j,bj

)βij

= (
zi,ai

− zj,bj

)Kij
∣∣zi,ai

− zj,bj

∣∣2βij
, (3.30a)

where one verifies that

αij − βij = Kij (3.30b)

is integer valued. This is consistent with the fact that the vertex
operators (3.21b) describe either Fermions or Bosons.

IV. WAVE FUNCTIONS

The family of topological quantum field theories defined
by Eqs. (2.2b) and (2.25) encode the universal properties of a
family of time-reversal symmetric fractional quantum liquids.

Any connection to a microscopic realization of a time-
reversal symmetric fractional quantum liquid whose universal
properties are captured by Eqs. (2.2b) and (2.25) must,
however, be supplied.

For example, the very definition of an electron operator is
ambiguous for any equivalence class of topological quantum
field theories defined by Eqs. (2.2b) and (2.25). First, there is no
unique definition of a local fermion in any topological quantum
field theory of the form Eqs. (2.2b) and (2.25) that admits a
hierarchical representation with one type of Kramers degen-
erate pairs of fermions, for this representation is equivalent to
the symmetric representation that admits N distinct types of
Kramers degenerate pairs of fermions [see Eq. (2.26)]. Second,
for any representation of the universal data (K,Q,S) from
Eq. (2.1b) that admits fermions, a basis set of functions must
be supplied to construct a representation of the microscopic
electron operator. This basis set of functions is usually
provided by some reference single-particle electron basis.

In the context of the FQHE observed in a GaAs accumula-
tion layer, the basis set of functions is the single-particle basis
of the Landau Hamiltonian describing an electron moving in a
plane perpendicular to a uniform magnetic field. However,
the Landau basis set and, in particular, the basis set for
the lowest Landau level, is not appropriate for the recently
discovered fractional quantum Hall phases in lattice models
without external magnetic field.51–54

With this caveat in mind, we are going to construct some
wave functions using the data (K,Q,S) from Eq. (2.1b) as
the universal input and using the Landau wave functions
spanning the lowest Landau level as the microscopic input.
We do this out of simplicity in view of the elegant analytic
properties of these single-particle functions. Hence, we choose

the symmetric gauge for which the Slater determinant in the
lowest Landau level is

�νi=1
({zi,z̄i}ni

)
:=
[ ∏

1�k<l�ni

(zi,k − zi,l)

]

×
ni∏

k=1

exp

(
− z̄i,kzi,k

4�2

)
(4.1a)

for ni electrons labeled by the flavor index i = 1, . . . ,N while
it is

�νi=1({wi,w̄i}ni ) :=
[ ∏

1�k<l�ni

(w̄i,k − w̄i,l)

]

×
ni∏

k=1

exp

(
− w̄i,kwi,k

4�2

)
(4.1b)

for nN+i electrons labeled by the flavor index N + i = N +
1, . . . ,2N . Here,

{zi,z̄i}ni := {
zi,1, . . . ,zi,ni ,z̄i,1, . . . ,z̄i,ni

}
(4.2)

denotes the complex coordinates of the particles of the first
N flavors, with z̄ denoting their complex conjugates, and
likewise {wi,w̄i}ni denotes the complex coordinates for the
last N flavors; �2 := φ0/(2π |B|) is the square of the magnetic
length � in the presence of the uniform magnetic field of
magnitude |B|, φ0 := 2 π/e is the quantum of magnetic flux,
|�||B| is the magnitude of the flux threading the disk �,
and νi := (niφ0)/(|�||B|) represents the filling fraction of the
lowest Landau level.

It remains to decide on the number of electron flavors, a
microscopic input. We shall assume that the hierarchical (sym-
metric) representation corresponds to a single pair (N pairs)
of microscopic flavors of electrons forming a Kramers doublet
(N Kramers doublets). We begin with the wave function for
N = 1, in which case there is no distinction between the two
representations. We then work out examples with N = 2 in
the symmetric and the hierarchical representation.

A. Wave function for N = 1

We choose the universal data to be

K =
(+m 0

0 −m

)
∈ GL(2,Z), Q =

(
1

1

)
∈ Z2 (4.3)

for some given positive odd integer m. The spin filling fraction
defined in Eq. (2.4) is

νs = 1

m
. (4.4)

The putative ground state wave function that generalizes
the ν = 1/m single-layer wave function from Laughlin (see
Ref. 1) to the time-reversal symmetric case is

�1/m({z,z̄}n|{w,w̄}n)=
⎡
⎣ n∏

i=1

n∏
j=i+1

(zi − zj )m(w̄i − w̄j )m

⎤
⎦

×
n∏

i=1

exp

(
−|zi |2 + |w̄i |2

4�2

)
. (4.5)
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By construction, it is invariant under the operation of time
reversal represented by

zi
T→ w̄i, wi

T→ z̄i , i = 1, . . . ,n. (4.6)

It thus realizes a time-reversal symmetric fractional incom-
pressible state. Observe that this wave function factorizes into
an holomorphic and an antiholomorphic sector. Time-reversal
symmetry forbids a coupling between the holomorphic and
antiholomorphic sector when N = 1.

B. Wave functions in the symmetric representation

We choose the universal data to be

K =
(+κ +	

−	 −κ

)
∈ GL(4,Z), Q =

(






)
∈ Z4. (4.7a)

The 2 × 2 matrix κ is given by

κ =
(

m1 n

n m2

)
∈ GL(2,Z). (4.7b)

We impose that the integers m1 and m2 are odd and positive
while the integer n is positive [n � 0 is not restrictive in view
of Eq. (2.27)] whereby

m1m2 − n2 > 0 (4.7c)

in order for κ to be maximally chiral. In turn,

	 =
(

0 +d

−d 0

)
, (4.7d)

where the integer d � 0 is chosen to be nonnegative. Finally,
the charge vector


 =
(

1

1

)
(4.7e)

enforces the presence of four fermions related pairwise by
reversal of time. We assume that the fermions with the charge
vector Q in the topological quantum field theory represent
2N distinct flavors of electrons in a microscopic theory. For
example, each flavor of electrons could be constrained to
move with the dynamics dictated by the single-particle Landau
Hamiltonian in its own two-dimensional layer in the presence
of a uniform magnetic field pointing up for the first N layers
and down for the next N layers. If the lowest Landau level
of each layer is partially filled, interactions might select an
incompressible ground state. The spin filling fraction defined
in Eq. (2.4) is

νs = m1 + m2 − 2n

m1 m2 − n2 + d2
. (4.8)

The putative ground state wave function that generalizes the
(m1,m2,n) bilayer wave function from Halperin (see Ref. 2)
to the time-reversal symmetric case is

�
symm
m1,m2,n,d

({z1,z̄1}n1 ; {z2,z̄2}n2 |{w1,w̄1}n1 ; {w2,w̄2}n2

) = �1/m1

({z1,z̄1}n1 |{w1,w̄1}n1

)× �1/m2

({z2,z̄2}n2

∣∣{w2,w̄2}n2

)
×

n1∏
i=1

n2∏
j=1

(z1,i − z2,j )n(w̄1,i − w̄2,j )n(z1,i − w2,j )d (w̄1,i − z̄2,j )d . (4.9)

By construction, it is invariant under the operation of time
reversal represented by

zi,ii
T→ w̄i,ii , wi,ii

T→ z̄i,ii , ii = 1, . . . ,ni (4.10)

for i = 1, 2. It thus realizes a time-reversal symmetric frac-
tional incompressible state.

C. Wave functions in the hierarchical representation

We choose the universal data to be

K =
(+κ + 	

−	 − κ

)
∈ GL(4,Z), Q =

(






)
∈ Z4. (4.11a)

The 2 × 2 matrix κ is given by

κ =
(+m +1

+1 −p

)
∈ GL(2,Z), (4.11b)

where m is a positive odd integer and p is an even integer
larger than zero. The 2 × 2 matrix 	 is given by

	 =
(

0 +d

−d 0

)
(4.11c)

with d any positive integer. Finally, the charge vector


 =
(

1

0

)
(4.11d)

enforces the presence of two fermions related pairwise
by reversal of time. The spin filling fraction defined in
Eq. (2.4) is

νs = p

mp + 1 − d2
. (4.12)

The putative ground state wave function that generalizes
the ν = p

mp+1 single-layer wave function from Halperin (see
Ref. 2) to the time-reversal symmetric case is

�hier
m,−p,1,d ({z,z̄}pn|{w,w̄}pn) =

[
n∏

i=1

∫
�

d2 ηi

∫
�

d2 ξi

]
× �1/m({z,z̄}pn|{w,w̄}pn) × �1/p({ξ,ξ̄}n|{η,η̄}n)

×
pn∏
i=1

n∏
j=1

(zi − ηj )(w̄i − ξ̄j )(zi − ξj )d (w̄i − η̄j )d . (4.13)
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By construction, it is invariant under the operation of time
reversal represented by

zi
T→ w̄i, wi

T→ z̄i (4.14a)

for i = 1, . . . ,pn and

ξi
T→ η̄i , ηi

T→ ξ̄i (4.14b)

for i = 1, . . . ,n. It thus realizes a time-reversal symmetric
fractional incompressible state.

V. SUMMARY

In this paper we first derived a hierarchy of FQSHEs,
the universal properties of which are encoded by equivalence
classes of BF theories of the form

L = − 1

π
εμνλ a(+)T

μ κ ∂ν a
(−)
λ

+ e

π
εμνλ Aμ 
T ∂ν a

(+)
λ + s

π
εμνλ Bμ 
T ∂ν a

(−)
λ . (5.1)

The N × N invertible and integer-valued matrix κ couples
the N flavors of the dynamical gauge field a(+) to the N

flavors of the dynamical gauge field a(−). The N -tuplets a(+)

and a(−) also couple linearly to the external gauge fields
A and B, respectively, through the vector 
 ∈ ZN , where
the integer 
i shares the same parity as the integer κii for
i = 1, . . . ,N . Correspondingly, there exists two independent
conserved currents, a charge current associated to the gauge
field a(+) and a spin current associated to the gauge field a(−).

Time-reversal symmetry implies the vanishing of the charge
Hall conductivity

σH = e2

2π
× ν = 0. (5.2)

The nonvanishing spin filling fraction

νs := 
T
κ

−1 
 (5.3a)

can be interpreted as the spin Hall conductance

σsH := e

2π
× νs (5.3b)

if the U(1) conservation law associated to the current of a(−)

arises microscopically from a residual spin-1/2 U(1) (easy
plane XY ) symmetry. The topological ground state degener-
acy, if two-dimensional space � has a toroidal geometry,

(det κ)2 (5.4)

is always the square of an integer as a consequence of
time-reversal symmetry. Equivalent pairs (κ,
) and (κ′,
′),
as defined by Eq. (2.25), share the same spin Hall conductivity
and topological degeneracy.

The theory (5.1) is topological when two-dimensional space
� has no boundary, that is, the Hamiltonian density associated
to the Lagrangian density (5.1) vanishes. This is not true
anymore if the boundary ∂� is a one-dimensional manifold.
We have shown that imposing gauge invariance delivers a
gapless theory with all excitations propagating along the
boundary ∂�. These excitations can all be constructed out of N

pairs of counterpropagating chiral bosons whose nonuniversal
velocities along the boundary ∂� derive from a gauge-fixing
condition. The stability of this edge theory to the (time-
reversal symmetric) breaking of translation invariance along
the boundary (including the breaking of the spin conservation
law associated to the spin vector S) was studied in Ref. 44.
The correlation functions for the Fermi-Bose excitations along
the edge were computed and shown to be a product over the
functions (3.30a).

Finally, we have proposed a time-reversal symmetric
counterpart to the hierarchy of wave functions that have
been proposed in the context of the FQHE by way of few
examples, the νs = 1/m, νs = p/(mp + 1 − d2), and νs =
(m1 + m2 − 2n)/(m1m2 − n2 + d2) sequences.
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12J. Fröhlich and A. Zee, Nucl. Phys. B 364, 517 (1991).
13X. G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).

14X.-G. Wen and A. Zee, Phys. Rev. Lett. 69, 1811 (1992).
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