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Anomalies in the entanglement properties of the square-lattice Heisenberg model
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We compute the bipartite entanglement properties of the spin-half square-lattice Heisenberg model by a variety
of numerical techniques that include valence-bond quantum Monte Carlo (QMC), stochastic series expansion
QMC, high-temperature series expansions, and zero-temperature coupling constant expansions around the Ising
limit. We find that the area law is always satisfied, but in addition to the entanglement entropy per unit boundary
length, there are other terms that depend logarithmically on the subregion size, arising from broken symmetry in
the bulk and from the existence of corners at the boundary. We find that the numerical results are anomalous in
several ways. First, the bulk term arising from broken symmetry deviates from an exact calculation that can be
done for a mean-field Néel state. Second, the corner logs do not agree with the known results for noninteracting
Boson modes. And, third, even the finite-temperature mutual information shows an anomalous behavior as T

goes to zero, suggesting that the T → 0 and L → ∞ limits do not commute. These calculations show that
entanglement entropy demonstrates a very rich behavior in d > 1, which deserves further attention.
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I. INTRODUCTION

The study of bipartite entanglement properties in quantum
statistical models is a promising way to understand and classify
their topological and universal properties.1–3 In one spatial
dimension, the existence of finite entanglement entropy for
gapped systems and a logarithmically divergent entanglement
entropy for gapless systems is well understood. The coefficient
of the log divergence is universal in that it depends on the
central charge and not on the microscopic details of the
system. In two dimensions (2D), several gapless systems have
been shown to display an area law, where the entropy per
unit boundary length is necessarily nonuniversal, reflecting
all the microscopic degrees of freedom at the boundary.
Thus, looking for universal behavior necessitates looking
for subleading terms. The area-law coefficient will have a
subleading power-law dependence on the size of the system.
However, more interestingly, there can be terms associated
with corners on the boundary, with broken symmetry, or with
nontrivial topology in the bulk that could be universal and
allow one to classify different topological and critical phases.

The spin-half square-lattice Heisenberg model with nearest-
neighbor interactions is one of the most studied and best
understood models in 2D.4 The model has long-range order,
and spin rotational symmetry is spontaneously broken in the
ground state. This broken symmetry is well described by a
tower of rotor states,5 whose energy scales with system size
L as 1/Ld in d dimensions. For large systems, these states
are well separated from excitations around the ground state,
which in the long-wavelength limit are spin waves whose
energies scale as 1/L. These spin waves are believed to become
noninteracting in the long-wavelength limit as long as one is
away from a quantum critical point where the long-range order
might go continuously to zero.

In this paper, we have developed a number of different
computational methods to calculate entanglement properties,
which are valid for arbitrary dimensional quantum statistical

models. Stochastic series expansion (SSE), quantum Monte
Carlo (QMC),6,7 and high temperature expansions (HTE) are
methods that allow one to calculate thermodynamic properties
of the model at finite temperatures and can be used to obtain
the Renyi mutual information associated with dividing the
system into two regions A and B.8 This mutual information
should reduce to twice the entanglement entropy as T → 0.
The valence bond (VB) QMC method is a particularly powerful
tool for studying properties of the model directly at T = 0.9–11

We have developed extensions of this method that employ loop
updates12 necessary to accurately calculate the entanglement
properties for finite lattices with different bipartite divisions.
Finally, Ising expansions at T = 0 provide yet another method
to calculate properties of the Heisenberg model in its ground
state. By approaching the ground state of the Heisenberg model
from the ordered side one can calculate a specific ordered state
and its entanglement properties.

Our first result is an estimation of the leading nonuni-
versal area-law coefficient, calculated as a = 0.097 ± 0.001
in VB QMC (Sec. II) and a = 0.094 ± 0.001 in Ising series
expansions (Sec. III), which are in good agreement. The small
discrepancy shows that there are systematic errors not included
in the numerical estimates of error bars. However, these are of
order 1%.

The universal contributions to the subleading scaling come
from a number of sources. For example, one might expect the
universal entanglement properties of the model to be related
to the broken symmetry of the Néel state and to the presence
of free bosons resulting from noninteracting spin waves. The
entanglement properties of free bosons (and free fermions)
have been computed in 2D.13 Furthermore, the entanglement
properties of a mean-field Néel state, where all spins on
sublattice 1 and sublattice 2 separately form a maximal spin
state that is then combined into a singlet, can be calculated
exactly. This gives a mean-field bulk entanglement entropy
associated with broken symmetry that scales as c ln(�), with
c = 2, where � is the length of the boundary (Sec. IV). In

165134-11098-0121/2011/84(16)/165134(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.165134


KALLIN, HASTINGS, MELKO, AND SINGH PHYSICAL REVIEW B 84, 165134 (2011)

contrast, our VB QMC simulations for a bipartite division
with no corners show a logarithmic term with c = 0.74 ±
0.02. Recently, the entanglement properties of this model were
calculated using modified spin-wave theory,14 which gave an
estimate of c = 0.92. Thus, our numerical simulations are
much closer to spin-wave theory. This suggests that, in addition
to broken symmetry, there are logarithmic contributions in the
bulk that come from other sources.

The corner contributions can be obtained in QMC by
comparing the log terms in a system using a boundary with
corners to a system without boundary corners, giving an
estimate of −0.10 ± 0.02. The series estimate, −0.080 ±
0.008, gives reasonable agreement with the QMC results. In
contrast, if one takes two free boson modes contributing to the
corners, then one gets ∼−0.0496 (Sec. V).

Finally, we have studied the properties of the model at finite
temperatures and examined the approach to T → 0. This can
be done by SSE QMC and HTE. The HTE extrapolations for
the Renyi mutual information agree well with QMC down
to T ≈ 1. Below this temperature, the QMC data shows a
sudden decrease and a crossover to a lower saturation value as
T → 0. The latter is consistent with the entanglement entropy
calculated at T = 0. The HTE shows no sharp decrease.
The sharp decrease has a size dependence and could imply
the limits of T → 0 and L → ∞ do not commute. Such
noncommutation is well known for other response functions
of the Heisenberg model15,16 and also suggests a sizable
non-mean-field contribution to the area-law term.

II. VALENCE BOND QUANTUM MONTE CARLO
ALGORITHMS AND RESULTS

In order to calculate the zero-temperature scaling of the
Renyi entanglement entropy in the Heisenberg model on
finite-size lattices, we employ the VB QMC method developed
by Sandvik.9 This is a highly efficient method to project
out the model’s ground state by repeated application of the
Hamiltonian to a trial wave function through a Monte Carlo
sampling of bond operators. As an improvement on our
previous entanglement measurement procedure,17 we use a
modified version of the more efficient loop algorithm.12 This
modification allows for a change to occur in the Monte Carlo
weight by modifying the space-time topology of the simulation
cell. As in Ref. 17, this modified weight is required so one
can measure the difference between entanglement entropies
of two distinct system subdivisions instead of the absolute
entanglement entropy. Then, if the geometries of the regions
are chosen properly, the difference can converge faster than
the bare entanglement entropy measurement.

A. Valence-bond quantum Monte Carlo

First, we briefly discuss the basic VB QMC algorithm (for
more detail see Refs. 9–11) and the more recently developed
loop update (see Ref. 12) which significantly improves the
scaling of the algorithm. The foundation of the VB QMC
technique is to project out the ground state of the system, done
by applying a high power of the Hamiltonian HM to a trial
state. We use the Heisenberg Hamiltonian, rewritten in terms
of bond operators (Hab = 1

4 − Sa · Sb) acting on pairs of sites

(a and b), which are nearest-neighbor pairs in this paper. The
Hamiltonian to the power M can be written as a sum of possible
arrangements of these bond operators in a list of size M . The
Monte Carlo algorithm importance samples terms in this sum,
using a weight that depends on the number of off-diagonal
operators in the term.9

In its original form, the VB QMC scheme can be used
to project out one copy of the ground-state wave function
(single-projector) or simultaneously project two copies (dou-
ble projector) that can be used to measure expectation values
of observables in the simulation.9–11 Our previous scheme
for measuring Renyi entanglement entropy17 employed a
double-projector method for calculating the expectation value
of a SWAP operator. In this paper, we develop a highly efficient
loop variation of this measurement algorithm, outlined below.

1. The loop algorithm

The loop update for VB QMC simulations was introduced
in Ref. 12 as a highly efficient way of carrying out the sampling
procedure. In addition to working in a basis of valence bonds,
this scheme also samples over spin states. This combined
spin-bond basis is shown to eliminate the need for a rejection
step and, thus, samples operators and basis states with high
efficiency.

To begin, operators in this case are divided into two classes,

Hab(1) = (
1
4 − Sz

aS
z
b

)
, (1)

Hab(2) = − 1
2 (S+

a S−
b + S−

a S+
b ), (2)

called diagonal and off-diagonal operators, respectively, where
the sum Hab(1) + Hab(2) is equal to the bond operators Hab

from the standard VB QMC algorithms mentioned above.9–11

The loop algorithm is best visualized using a diagram of the
simulation cell showing the placement of valence bonds, spins,
and operators, as depicted in Fig. 1. This diagram represents
two VB trial states, which are the left and right edges of the
figure, each projected “inward” (by M = 3 operators). The
projected state occurs in the center of the diagram, denoted
by the dashed line. Along with the trial VB states, initial spin
states are selected at random, with the condition that the two
spins in a single VB must be antiparallel. For each trial state,
M operators are chosen such that they each act on a pair of
antiparallel spins (in the initial step of the algorithm, these are
all diagonal operators). There are then two types of updates in
this algorithm: spin updates and operator updates.

For the spin update, loops are first constructed by linking the
operators and valence bonds (shown in Fig. 1). Then, for each
loop that is built, a decision is made to flip all the spins in that
loop, with probability 1/2. This update samples possible spin
states for the given valence bond configuration. In the second
type of update, the operators in the list are changed so diagonal
operators are resampled at random, subject to the condition
that they remain acting on antiparallel sites. This reconfigures
the propagated valence bond states and the topology of the
simulation cell loops for future updates. Measurements can be
computed as usual9 using the propagated valence bond states,
|VL〉 and |VR〉, which can be extracted from the simulation
cell diagram by following the loops crossing the dotted line in
Fig. 1.
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FIG. 1. (Color online) A possible simulation cell diagram for a
six-site system, including loops, operators, the initial valence bond
states, and the compatible initial spin states. Up (down) spins are
shown in gray (black). (Off-) diagonal operators are shown in (blue)
black, giving a total of M = 3 operators in this example. The dashed
line denotes |VL〉 (propagated from the trial state on left) and |VR〉
(similarly from the right).

In the next section we discuss the measurement of Renyi
entanglement entropies with either the double-projector or
loop algorithms. In the following section we describe this
measurement with the loop algorithm using a modified VB
QMC simulation cell.

B. Measuring Renyi entropies with VB QMC

Numerical techniques such as exact diagonalization or
density matrix renormalization group (DMRG) simulations
are able to directly measure entanglement entropy, since the
calculation provides access to the density matrix. In contrast, it
is typically a challenge to measure entanglement entropy with
QMC, as the density matrix is not sampled in a straightforward
way. Over the past few years there have been several proposals
of entanglement measures in Monte Carlo simulations.18–20

Recently, methods to measure Renyi entanglement entropy
using a SWAP (or more generally a permutation)21 operator have
been developed and implemented in several types of Monte
Carlo methods.8,17 Next, we outline the basic methodology
relevant for VB basis QMC,17 based on the expectation
value of the SWAP operator before detailing current advances
for improving the measurement efficiency using a hybrid
loop-ratio trick estimator.

1. Renyi entropies and the SWAP operator

We are interested in the generalized Renyi entropies, which
quantify entanglement between a system subdivided into two
regions, A and B. They are defined as

Sα(A) = 1

1 − α
ln

[
Tr

(
ρα

A

)]
, (3)

where ρA = TrB(ρ) is the reduced density matrix of the total
system traced out over region B and the standard von Neumann
entanglement entropy is recovered in the limit as α → 1.

Despite the inaccessibility of the full wave function of the
system in Monte Carlo techniques, it is possible to sample
Tr(ρα

A) for integer α > 1. This is accomplished by taking
the expectation value of a SWAP operator17 for α = 2 or
permutation operator for α > 2;21 e.g.,

S2(A) = − ln(〈SWAPA〉), (4)

S3(A) = − 1
2 ln

(〈
�A

3

〉)
. (5)

To measure the αth entropy, each projected state must
be composed of α noninteracting copies of the system. The
permutation operators �A

α act to cyclicly exchange the state
in region A between the α different copies of the system and
are constructed such that 〈�A

α 〉 = Tr(ρα
A). In the case of spin

states (which for each MC step in the simulation is a product
state) we can simply swap the states within region A between
copies of the system. For valence bond states the application
of the permutation operator also has a simple result; it acts
to exchange the endpoints of valence bonds within region A

between copies of the system and as such can create bonds
between the noninteracting copies.17

The bare measurement of the SWAP operator has been
shown17 to have problems with convergence for large region
A, while, in principle, the measurement should be symmetric
such that 〈SWAPA〉 = 〈SWAPB〉, since the two density matrices
ρA and ρB have the same eigenvalues. This is because the
exchange of a larger region gives a larger number of different
states as a result of that SWAP and, thus, a larger range
and number of possible values in the expectation value. It
simply takes more Monte Carlo steps to converge on the
same result. Another way to think of it is that, even though
Tr(ρ2

A) = Tr(ρ2
B), if region A is much larger than region B then

Tr(ρ2
A) contains exponentially more terms than Tr(ρ2

B). Getting
the value to converge by a stochastic sampling of these terms
takes much longer. However, it is possible to instead sample a
series of smaller regions and greatly improve the convergence
time. This technique is described in the following section.

2. The ratio trick

The convergence issue mentioned above can be addressed
by a reweighting of the Monte Carlo sampling scheme.
Begin by considering the double-projector method, where one
measures the expectation value of SWAP by sampling terms
from

〈SWAPA〉 =

∑
lr

wrwr〈Vl|Vr〉 〈Vl |SWAPA|Vr〉
〈Vl|Vr〉∑

lr

wlwr〈Vl |Vr〉,
(6)

where |Vl〉,|Vr〉 are the states obtained by applying lists of bond
operators to the trial states and wl,wr are the weights accrued
by applying those operators. Terms are sampled proportional
to the total weight W = wlwr〈Vl|Vr〉 by accepting a new
configuration with probability W new/W old. Thus one can
simply measure 〈Vl |SWAPA|Vr 〉

〈Vl |Vr 〉 once per Monte Carlo step, and
the average value will give us 〈SWAPA〉.

The convergence difficulties can be combatted by using the
ratio trick.17 One modifies the sampling weight to include the
expectation value of a SWAP operator for a region A that is
close in size to the region we intend to measure. One can then
measure the ratio of these two operators, e.g.,

〈SWAPA〉
〈SWAPA′ 〉 =

∑
lr

wrwr〈Vl|SWAPA′ |Vr〉 〈Vl|SWAPA|Vr〉
〈Vl|SWAPA′ |Vr〉∑

lr

wlwr〈Vl|SWAPA′ |Vr〉
. (7)
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This improves the sampling since, if regions A and A′ are
similar in size, the measurement 〈Vl |SWAPA|Vr 〉

〈Vl |SWAPA′ |Vr 〉 will have fewer

possible values than 〈Vl |SWAPA|Vr 〉
〈Vl |Vr 〉 , and those values will have

a smaller variance.
Note, however, that one is only measuring a ratio of

expectation values. That is, to obtain 〈SWAPA〉, one must know
the value of 〈SWAPA′ 〉. If 〈SWAPA′ 〉 was also obtained by a
ratio trick simulation, the expectation value for the smaller
component of A′ must be determined, and so on. Thus, the
procedure that we use in this paper is to measure a range
of sizes for region A, beginning with a measurement of the
bare SWAP for a small region size, and increase the size
of regions A and A′ over several simulations in sequence.
That is, we measure SWAP for a sequence of different region
sizes, A1,A2, . . . ,An, where the number of lattice sites in
Ai+1 is greater than the number of sites in region Ai . Then,
the Renyi entropy of an arbitrary region An is calculated
through

S2(An) = − ln

( 〈SWAPAn
〉

〈SWAPAn−1〉
)

− ln

( 〈SWAPAn−1〉
〈SWAPAn−2〉

)

− · · · − ln

( 〈SWAPA2〉
〈SWAPA1〉

)
− ln

(〈SWAPA1〉
)
, (8)

where each ratio is calculated via Eq. (7), and the last
expectation value for A1 via Eq. (6). Note that each term
in the sum requires a different VB QMC simulation, since,
although we can measure the entropy for any region A within
one simulation, we can use only one size of A′ per simulation,
since it affects the sampling of the valence bond states as
described below. The scaling cost of the Ratio trick is therefore
n; however, the gain in sampling efficiency is demonstrated to
more than compensate for this additional simulation cost.

C. The loop-ratio algorithm

In order to calculate Renyi entanglement entropy with
maximal efficiency in VB QMC simulations of the Heisenberg
model, an algorithm should be employed that combines the
loop update with the ratio trick. When modifying the loop
algorithm to use the ratio trick, the same principles as in
the double-projector algorithm (above) apply; however, the
sampling weight [from Eq. (6)] is not explicit since one instead
samples over spin states whose overlap is always unity.

In order to made the necessary modification to the loop
algorithm, the system should first be replicated so two
noninteracting copies are present, as usual for measurements
of the SWAP operator.17 Links in the simulation cell then are
reconnected as if there were a SWAP operator permanently
applied to the projected state |Vr〉, shown in Fig. 2. This causes
spins from different noninteracting copies of the system to
be connected via loops, which means they can be flipped
together, and, thus, the spin states are sampled according
to the swapped system 〈Vl|SWAPA′ |Vr〉. The measurement
of 〈Vl|SWAPA|Vr〉/〈Vl |SWAPA′ |Vr〉 is then accomplished by
measuring an operator that swaps the states of the sites in
region A that were not already swapped in region A′, assuming
A′ ⊂ A.

This method has the same limitation of the double-projector
ratio trick, whereby only one value of A′ can be used per

FIG. 2. (Color online) One possible simulation cell configuration
for the loop ratio algorithm on a six-site system where α = 2 and
region A′ contains the first two sites of the system. Spins between
the usually noninteracting copies are connected through loops via the
SWAP operator (red). The green and orange links are used to show the
connections between the sheets. The loop on the left side of the SWAP

operator on the top sheet is connected to the right side on the bottom
sheet and so forth.

simulation, so the region to be measured must be built up from
a small region A according to Eq. (8). In our results below,
we use two geometries for building the region A: “strips” and
“squares” (see Fig. 3 or Ref. 22). Strips refer to geometries
where region A has one dimension equal to the linear size of
the toroidal system itself and is, therefore, without corners.
The Renyi entropy S2(A) is built up through the ratio trick
by systematically adding subregions of size L × 1. Squares
refer to geometries where the linear size of A is increased
symmetrically, starting from size 1 × 1. Square regions A

necessarily have four corners.

D. Results

We begin by testing some basic properties of the Renyi
entropy as calculated through the VB basis QMC with the loop-
ratio trick outlined above. First, we examine the convergence
of the Renyi entropy as a function of operator list length per
site, m = M/N , as illustrated in Fig. 4. Using several system
sizes, both periodic and open boundaries, and strip and square
geometries (described above and in Fig. 3), we see very good
convergence by m = 10. This value of m was used for all
the following VB QMC simulations, as the measurements are
able to converge with that number of operators, but additional
operators would detract from the algorithm’s efficiency.

Figure 3 shows examples of S2(A) for regions A of both
strip and square geometries of increasing width for a 20 × 20
toroidal system. The length of the boundary for all strip regions
in this plot is � = 40, whereas for the square regions � = 4x.
The area law scaling of S2 is apparent in that the strip and
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FIG. 3. (Color online) (Left) The Renyi entropy for a 20 × 20
PBC system versus the width (x) of region A for both the square
and strip geometries. The boundary length does not change with
the region width for strip geometry (since its height y traverses the
periodic lattice), thus the entropy approaches a constant value. For
square geometry the boundary length is 4x. In both geometries the
entropy scales with the length of the boundary, with that scaling
becoming better as the width of region A approaches half the system
size. At right, the “strip” (top) and “square” (bottom) geometries on
a 6 × 6 lattice.

square geometries both approach a straight line with zero and
nonzero slope, respectively.

To determine the scaling of entanglement entropy in
two dimensions, we examine L × L systems with periodic
boundary conditions, the results of which are shown in Fig. 5.
Region A was systematically built up according to the square
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FIG. 4. (Color online) Percentage error in S2 versus the number of
operators per site (m) for different L × L lattices. For L = 4,6,8 the
lattices have open boundaries and region A is half the system using
the strip geometry. The exact values were found using density matrix
renormalization group (DMRG) simulations. The L = 20 lattice has
periodic boundaries and A is a 2 × 2 square. The “exact” value
is taken from the m = 10 simulation. Each data set was fit to an
exponential function.
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FIG. 5. (Color online) S2/� vs. �, where � is the boundary length
of region A, for regions with square and strip geometry embedded
in L × L systems with periodic boundary conditions. The data sets
outlined in black correspond to region A with width x = L/2 for
both geometries. The other data sets use smaller region A of the
same geometries. Fits to Eq. (9) are included for all data, and the
coefficients found are listed in Table I.

and strip geometries as defined in Fig. 3. Since each region is
built to satisfy Eq. (8), one can perform fits for several sizes of
subregion for each lattice size. In this case (as opposed to the
plot in Fig. 3), for each set of data in Fig. 5 we use a region
A with width proportional to the system size. This is done in
an attempt to overcome finite-size effects, and the interaction
of boundaries (that can be seen for the strip geometry in
Fig. 3). Figure 5 includes data for S2(A) using regions with
width x = L/2 as well as smaller regions x < L/2. A smaller
region A has the advantage that S2(A) converges faster, but
the drawback is it brings one into the regime of finite-size
effects, apparent in Fig. 3 with small x, where S2 is lower than
the area-law value found at x = L/2. This deviation seems to
depend on the fraction of the system contained within region
A which is why, for the square case (where both the size of
region A and the boundary length are scaled with system size),
the different region widths do not change the entropy scaling
very much. However, for the strip geometry with a region A

width of x = L/2 − n, the fraction of the system contained in
region A changes with L and approaches 1/2 as L increases,
i.e., when L/2 
 n. This effect is evident in the top panel of
Fig. 5, where for n �= 0 the entropy is diminished for smaller
system sizes but approaches the n = 0 values as system size
increases.

As is clear, the data give excellent fits to the function

f (�)

�
= a + c

�
ln(�) + d

�
, (9)

where � is the length of the boundary between regions A and
B, provided that the very smallest lattice sizes are excluded.

165134-5



KALLIN, HASTINGS, MELKO, AND SINGH PHYSICAL REVIEW B 84, 165134 (2011)

TABLE I. The coefficients a, c, d found by fitting the data in Fig. 5
to Eq. (9). The fits were done for both strip and square geometries,
beginning at x = L/2 for both and decreasing the region sizes until
x = L/2–4, where x is defined in Fig. 3 as the width of region A.

Geometry L/2 − x a c −d

Strip 0 0.096(5) 0.7(4) 1.2(2)
1 0.095(6) 0.7(9) 1.3(6)
2 0.092(3) 0.9(6) 1.8(8)
3 0.08(8) 1.2(0) 2.(6)
4 0.08(2) 1.5(4) 3.(7)

Square 0 0.097(6) 0.64(2) 1.0(6)
1 0.097(6) 0.62(1) 0.9(5)
2 0.097(7) 0.61(7) 0.9(1)
3 0.097(6) 0.62(6) 0.9(3)
4 0.097(5) 0.6(3) 0.9(4)

The values obtained for coefficients a, c, and d are listed in
Table I.

III. SERIES EXPANSIONS

A. Expansion methods

We have developed two different types of series expansions
to calculate the entanglement properties of the Heisenberg
model. The first is the high temperature expansions. This
method was introduced in Ref. 8 for the XXZ model, of which
the Heisenberg model is a special case. In this method, the
mutual information between two regions A and B associated
with their boundaries or corners can be expanded in powers of
inverse temperature β. The calculation can be done for Renyi
mutual information of index α by introducing α replicas of the
system. The coefficient of βα is a polynomial in α of order
α − 1 so the limit α → 1 can be readily taken to calculate the
von Neumann mutual information as well.

Since there is no finite-temperature phase transition in the
Heisenberg model on the square lattice, the expansions in
β can, in principle, be extrapolated down to T = 0. It is
well known that the correlation length of the system grows
exponentially at low temperatures as exp (C/T ). Hence, we
expect corrections to leading behavior to be exponentially
small at low temperature, exp (−C/T ). For this reason,
a change of variables w = tanh β is applied before Pade
approximants are used. This extrapolation method has been
used in the past for other properties of the Heisenberg model23

and also shows good convergence between different Pade
approximants when applied to mutual information.

In addition, we have developed a series expansion directly
for the entanglement entropy at T = 0 using Ising anisotropy
parameter λ = Jxy/Jz of the XXZ model. When λ = 0, we
pick one of the two Ising states to expand around. That unique
state factorizes for any two regions A and B. Therefore, any
entanglement entropy vanishes in that limit. For any α � 2, the
series expansion for the Renyi entropy can be calculated as a
power series in λ using a linked cluster expansion.24,25 Unlike
HTE, the coefficients of the Renyi entropies for different α are
not related by a simple polynomial relation and for every α a

different calculation is needed. Here, we will restrict ourselves
to the calculation of Renyi entropy with α = 2.

The Ising series expansions work in the thermodynamic
limit, starting with a system that has a short correlation length
and long-range order along a particular direction. Since a
specific ordered state is picked out, their major limitation is that
they cannot be used to study any bulk entanglement properties
associated with broken symmetry. In any finite order of pertur-
bation theory, contributions can come only from the boundary
between regions A and B. The series are nonsingular as long
as the system has a gap. The singular dependence on the size
L of the system is replaced in the series expansion studies by a
dependence on the correlation length ξ , which diverges as the
gapless Heisenberg point is approached. By scaling, the depen-
dence on L should translate into a similar dependence on ξ . An
advantage of series expansions is that entanglement associated
with different surface manifolds such as surfaces, lines, and
corners can be analytically separated and separate expansions
can be obtained for the entropy associated with them.

B. Results from series expansions

Pade extrapolation of HTE in the variable w = tanh β

are compared with the data from SSE QMC simulations in
Fig. 6. The agreement is excellent down to temperatures
below J . At low temperatures the QMC data show dramatic
finite-size effects, with a maximum and a minimum, followed
by a slow rise at lower temperatures. In contrast, the Pade
approximants show a steady monotonic rise and saturation
at low temperatures. These results suggest that the limit of
T → 0 and L → ∞ do not commute for these quantities.
We note that such noncommuting limits are well known for
other properties of the Heisenberg model.15,16 However, these
noncommuting limits have not been anticipated for the mutual
information. In Fig. 7, we plot the crossover temperature,
as defined by the temperature of the local maximum in

0.1 1 10 100
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QMC 8x8
QMC 12x12
QMC 16x16
QMC 24x24
QMC 32x32
Pade Approximants

I 2
/L

T

FIG. 6. (Color online) The finite-temperature Renyi mutual infor-
mation for L × L periodic systems with strip geometry (note � = 2L)
for region A with SSE QMC results for L = 8,12,16,24,32, and
[4/6], [5/5], [6/5], and [6/4] Pade approximants for the HTE in
the variable w = tanh β. The horizontal lines on the left-hand side
correspond to the zero temperature results (from VB QMC) for each
of the finite-temperature SSE data sets.
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FIG. 7. (Color online) The inverse crossover temperature of
Renyi mutual information for the system sizes shown in Fig. 6, where
the crossover temperature is taken as the temperature at the highest
point of the T > 0 mutual information peak. The x axis is logarithmic,
showing that the crossover temperature scales as ∼log(L).

mutual information at T > 0 as a function of L. We see
that the crossover temperature scales inversely with log(L) or,
equivalently, L scales exponentially in the inverse temperature.
Such a length scale agrees with the correlation length in the
Heisenberg model, which also scales exponentially at nonzero
temperature, and so, at first sight, it is natural to ascribe this
peak in the mutual information to the size of the correlation
domains. One might imagine the following argument: when
the size of the system is larger than the correlation domain
size, there are many correlation domains along the boundary.
Since the direction of the spin in a correlation domain can be
viewed as roughly uncorrelated with that in other correlation
domains, this contributes an additional term to the entropy of
both regions. However, the correlation domains that cross the
boundary produce some correlations between the two regions,
leading to a positive contribution to the mutual information.
While this argument captures the correct qualitative scaling,
suggesting that the mutual information should drop at lower
temperatures, it fails on quantitative grounds. The contribution
to the entropy of a correlation domain from the random
ordering direction of that domain should scale something like
the logarithm of the correlation volume (see, for example, the
mean-field theory calculation of the next section, where at
low temperatures the entire system comprises one correlation
domain) and hence should be proportional to β. However, the
density of these correlation domains (the number of domains
per unit boundary length, which is inversely proportional to
the correlation length) is exponentially small in β, and so we
should expect that this contribution to the entropy per unit
length should become negligible as � gets larger. In contrast,
the numerical data shows the difference between the T > 0
maximum and the T = 0 limit increasing with increasing �,
so this difference remains as an unexplained phenomenon.

Let the expansions around the Ising limit for the second
Renyi entropy per unit length of the boundary be given by

S2l/� =
∑
n=2

anλ
n,

TABLE II. Ising series expansion coefficients for the line and
corner terms

n an bn

2 0.05555556 0
4 0.00314815 0.00913580
6 0.00558342 −0.00542753
8 0.00353554 −0.00126847
10 0.00220329 −0.00172570
12 0.00186784 −0.00170418
14 0.00144690 −0.00144091

and, for a single corner,

S2c =
∑
n=4

bnλ
n.

The nonzero coefficients up to n = 14 are given in Table II.
Note that all odd order terms are zero, so the expansion is in
the variable λ2. The series for the line term S2l are evaluated by
first performing a change of variables δ = λ2 − 2λ4 to remove
a square-root singularity at λ = 1 and then calculating Pade
approximants. From these we estimate

S2l/� = 0.094 ± 0.001,

for the Heisenberg model. Here, the error bars represent spread
in values obtained from different Pade approximants.25 For
the corner term, we expect a logarithmic singularity of the
form

S2c = x ln ξ ∼ −x

2
ln (1 − λ2),

where we have used the fact that the correlation length diverges
as (1 − λ2)−1/2. Given the anticipated logarithmic singularity,
we first differentiate the series with respect to the variable λ2

and then use Pade approximants biased at λ2 = 1 to estimate
the residue. From these, we estimate

x = −0.020 ± 0.002.

Numerical values for S2l/� and x will be compared to VB QMC
results and other calculations later in the discussion section.

IV. MEAN-FIELD THEORY AND TOWER-OF-STATES
MODES

A. Tower of states and thermodynamics

One starting point for a theoretical treatment of the
Heisenberg model is a mean-field theory. This mean-field
theory provides a simple framework for understanding some
logarithmic bulk corrections associated with spontaneous
symmetry breaking, as well as providing some understanding
of the low energy “tower-of-states” modes (first identified by
Anderson5) which are present even in the two-dimensional
model.

In mean-field theory we consider the model Hamiltonian

H = J

N

∑
i∈1,j∈2

Si · Sj , (10)

where the sum ranges over spin i in one sublattice and j in
the other sublattice (we use 1 and 2 to denote sublattices), and
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there are total of N spins, with N/2 spins in each sublattice.
The ground state of this Hamiltonian corresponds to taking all
spins in sublattice 1 in a symmetric state, with total spin N/4,
and, similarly, taking all spins in sublattice 2 in a symmetric
state and then pairing the two spins to form a singlet. We begin
by working out thermodynamic properties of the model and
we discuss their impact on QMC simulations using SSE and
VB projector methods. We then turn to the question of the
entanglement entropy.

First, we work out the energy of the aforementioned
singlet state as follows: let S1 denote the total spin oper-
ator in sublattice 1 and S2 denote the same for sublattice
2. The Hamiltonian then can be written as (J/N )S1 · S2.
This equals (J/2N )[(S1 + S2)2 − S2

1 − S2
2 ]. The singlet state

has S1 + S2 = 0. Looking at states with spin N/4 in each
sublattice, we have S2

1 = S2
2 = (N/4)(N/4 + 1), so the energy

is −(J/N)(N/4)(N/4 + 1), which is of order N .
One can now look at excited states. The excited states where

both sublattices have total spin N/4, but the whole system is
not in a singlet, give the “tower states”: we find that in this
case S1+S2 is not equal to zero. Indeed, the energy difference
of this state, compared to the ground state, is simply given by

E − Eground = (J/2N )(S1 + S2)2. (11)

That is, the energy is equal to (J/2N ) times the total spin
squared. In real two-dimensional systems, a similar low-
energy structure of states is observed, with the energy of
these states proportional to total spin squared divided by N ,
although the coupling constant J describing the energy of these
modes may be renormalized compared to the coupling constant
appearing in the lattice Hamiltonian. These low-energy states
can be observed in exact diagonalization, and, in fact, they
are one of the best checks for the presence of symmetry
breaking.26 Note that these states are much lower energy than
the spin-wave states: In a 2D system with linear size L, they
have energy of order 1/L2, while the lowest energy spin wave
has an energy of order 1/L.

There are also excited states where a given sublattice does
not have total spin N/4. That is, not all spins in the same
sublattice are in a symmetric state. One can check in this
case that the energy of these states is increased above the
ground-state energy by an amount that is of order 1 (or more, if
the spin is reduced a lot compared to N/4). These states can be
viewed as a mean-field theory analog of the spin-wave states;
that is, the mean-field theory raises the energy of the spin waves
from order 1/L to order 1. Therefore, at a temperature of order
1, it becomes reasonable to ignore those states in mean-field
theory [more precisely we need a temp of order 1/ ln(N )]. In
a two-dimensional system, the temperature needs to become
of order 1/L to ignore the spin-wave modes.

We now consider the effect of the tower of states on the
bulk entropy at temperatures sufficiently low that the spin
waves can be ignored. We emphasize that this estimate is not a
calculation of the entanglement entropy but rather a calculation
of a bulk thermodynamic entropy. Considering the tower states,
the total entropy is not hard to work out: The allowed states
are one state (the ground state) which is a singlet, three states
with spin 1 and energy increased by JS(S + 1)/2N = 2J/2N ,
five states with spin 2 and energy 6J/2N , and so on (in this

case, the Clebsch-Gordon coefficients work out simply, so the
number of states with spin S is exactly 2S+1). As a rough
approximation, at temperature T , we expect to excite states
with spin such that JS2/N is of order T . Therefore, S is of
order

√
T N/J or less. The number of such states is of order

S2 and, hence, of order T N/J . Thus, at a temperature T much
larger than 1/N , but sufficiently small that the spin waves can
be ignored, the entropy is equal to

log(T N/J ) + const. (12)

B. Effect of tower of states on QMC simulations

In QMC simulations, if we want to access the ground state,
it is important to access a temperature sufficiently small that
these tower-of-states modes can be ignored. Since the energy
of the tower-of-states modes is so small (of order 1/N) this
can require a prohibitively small temperature. However, we
will see that this is not as big a problem as it might seem.

First, consider the VB projector method. The projector
method starts with a trial wave function and then applies a
large power of the Hamiltonian to this wave function. The
Hamiltonian is appropriately scaled such that its ground state
will have the largest eigenvalue, so this high power of the
Hamiltonian, acting on the trial wave function, produces a
state close to the ground state. This is essentially the power
method of finding largest or smallest eigenvalues of a matrix.
Given that the Hamiltonian has tower-of-states modes with
energy very close to the ground state, it would seem that we
would have to apply a very high power of the Hamiltonian,
a power that is of order N , in order to produce a final state
close to the ground state. However, the trial wave function in
the VB projector method has total spin 0, and the Hamiltonian
conserves spin. Thus, the wave function produced by acting on
the trial wave function with a high power of the Hamiltonian
also has total spin 0. However, all the tower-of-states modes
have nonzero spin, and, hence, the wave function we produce
has no overlap with the tower-of-states modes. This is the
reason why it suffices to simply go to high-enough order
to project out the spin-wave modes, as once the spin-wave
excitations are projected out, the tower of states are also
projected out by symmetry (note that we do have excited states
with total spin 0 that excite both a spin-wave and a tower
mode, but such states have energy of order 1/L or higher,
not 1/N ).

Consider, finally, the SSE method. As discussed above,
the tower-of-states modes do have a noticeable effect on the
calculation of the bulk entropy. However, as we will see
below, at least in mean-field theory, they have only a small
effect on the calculation of the entropy of the reduced density
matrix, suggesting that the SSE calculations of the reduced
density matrix entropy converge well even without accessing
temperature of order 1/N .

C. Entanglement entropy

We now consider the entanglement entropy in the mean-
field model. The entanglement between the 1 and 2 sublattices
is the simplest to calculate. Each sublattice has total spin N/4
and, hence, has N/2+1 states. The ground state, which we
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call ψ0, is maximally entangled and, hence, has entanglement
entropy ln(N/2+1), with all different Renyi entropies equal.

The more interesting entanglement entropy to calculate is
to imagine dividing the system into two halves, A and B, with
each half having N/4 spins in sublattice 1 and N/4 spins in
sublattice 2. This is, in our opinion, the simplest mean-field
model that is relevant to the numerical calculations on the
two-dimensional Heisenberg model, as in that case each region
A and B contains spins from both sublattices. We will see that
this calculation gives a logarithmic dependence on N also,
although the result is more complicated.

The ground state ψ0 can be obtained by taking any state
that has spin N/4 in each sublattice and that has nonzero
overlap with the ground state and projecting it into the total
spin zero sector. We choose to use a Néel state as our
state before projection, where we define this state ψNéel as
a state in which all spins in sublattice 1 are pointing up
and all spins in sublattice 2 are pointing down. We do this
projection by averaging over different rotations of the Néel
state, so

ψ0 = Z−1/2
∫

dθdφR(θ,φ)ψNéel, (13)

where R(θ,φ) is the rotation by angles θ and φ, and the measure
is chosen to be uniform over all rotations (that is, we choose
the Haar measure), and where Z is a normalization factor so
|ψ0|2 = 1.

We compute the second Renyi entropy, S2. The calculation
of other Renyi entropies are similar; in this case, in contrast to
the previous entropy calculation above, Renyi entropies differ,
so S2 is not equal to the von Neumann entropy. To calculate
the Renyi entropy, we must calculate

〈ψ0 ⊗ ψ0|SWAPA|ψ0 ⊗ ψ0〉, (14)

where SWAPA is the swap operator used in Ref. 17.
This expectation value is equal to

Z−2
∫

dθ1dφ1dθ2dφ2dθ3dφ3dθ4dφ4

×〈ψNéel ⊗ ψNéel|R(θ1,φ1)† ⊗ R(θ2,φ2)†|SWAPA|
×R(θ3,φ3) ⊗ R(θ4,φ4)|ψNéel ⊗ ψNéel〉. (15)

We first estimate Z as follows. We have

Z =
∫

dθ1dφ1dθ2dφ2〈ψNéel|R(θ1,φ1)†R(θ2,φ2)|ψNéel〉. (16)

We can combine the rotations R(θ1,φ1)†R(θ2,φ2) into one
rotation by a pair of combined angles, R(θ,φ). Equiva-
lently, we note that the integral

∫
dθ2dφ2〈ψNéel|R(θ1,φ1)†

R(θ2,φ2)|ψNéel〉 is independent of θ1,φ1, so we can fix θ1 =
φ1 = 0. Thus, up to constant factors, we have

Z =
∫

dφdθ〈ψNéel|R(θ,φ)|ψNéel〉. (17)

The expectation value in the above integral is just the
N -th power of 〈↑ |R(θ,φ)| ↑〉. This is approximated by (for
small θ,φ) exp[−N (θ2 + φ2)]. Because of the factor of N in
the exponent, the restriction to small θ,φ is justified as the

expectation value is negligible for large θ,φ. The integral over
θ,φ then is Gaussian and the result is that

Z ∝ N−1. (18)

We now estimate the integral in Eq. (15). In this case, we
have an integral over four pairs of angles. For the spins not in
region A the expression is small unless θ1 is close to θ3 and φ1

is close to φ3 and also θ2 is close to θ4 and φ2 is close to φ4.
Similarly, for the spins in region A we need θ1 close to θ4 (and
φ1 close to φ4) and θ2 close to θ3 (and φ2 close to φ3). Thus, the
overlap of spins in region A forces certain pairs of angles to
be close and the overlap of spins not in region A forces other
pairs of angles to be close. So, in fact, all the angles need to be
very similar. So, we get (approximately) a Gaussian integral
over three pairs of relative angles and one overall rotation that
we can factor out. The result is proportional to 1/N3, then, up
to constant factors.

Thus, the expectation is 1/N3/(1/N2) = 1/N , giving,
again, an entropy that scales as ln(N ) + const for large N .
Finally, we can consider this entropy at a nonzero temperature.
The effect of a nonzero temperature (high enough to excite the
tower modes but low enough to avoid exciting spin-wave states
so the total spin in each sublattice will still equal N/4) is to
give a global density matrix

ρ = Z−1
∫

dθ1dφ1dθ2dφ2F (θ1,φ1,θ2,φ2)

×R(θ1,φ1)|ψNéel〉〈ψNéel|R(θ2,φ2)†, (19)

for some function F , which depends only on the relative angles
between the two rotations. That is, at higher temperatures the
rotation angles in the bra and ket vectors become coupled,
while at zero temperature F is a constant. One can check that
this still leaves us with an entropy of region A which is equal
to ln(N ) + const, so, at least in mean-field theory, the ln(N )
term in the entropy of region A does not depend on whether
or not the tower modes are excited.

V. SPIN-WAVE THEORY

In understanding the area law for the Heisenberg model, an
immediate question arises: what is the entanglement entropy
in spin-wave theory? After all, spin waves are gapless, and
gapless modes might make one concerned whether an area
law holds. In fact, the entanglement entropy of gapless
modes depends strongly on dimension. Free bosons with a
linear dispersion relation have a logarithmically divergent
entanglement entropy in one dimension, following conformal
field theory,1,27 but in two or more dimensions they obey an
area law.28

In Ref. 29, it was shown numerically that the Heisenberg
model itself obeyed an area law using density matrix renor-
malization group and a spin-wave calculation also led to an
area law. In Ref. 14, a spin-wave calculation was carried
out for a finite-size system and was shown to roughly
match the qualitative behavior from a quantum Monte Carlo
simulation.17

While gapless bosons with linear dispersion do produce
an area law in two dimensions, they also produce nontriv-
ial exponents associated with corners.30 The entanglement
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entropy of a region A has a term equal to the log of the length
scale of A, multiplied by the sum over corners of a scaling
function of angle of each corner. For the entropy S2, this term is
equal to

≈ −0.0062 ln(�) (20)

for each 90◦ corner for a real scalar field with linear
dispersion.30 Note that the sign of this correction is negative.

For the system we are concerned with, we must multiply
this result by 2. There are two ways to understand this counting
of modes to see why the result must be multiplied by 2. On
the one hand, we can consider an O(3) nonlinear σ model. In
2+1 dimensions, this model has a symmetry broken phase,
and the Heisenberg model ground state corresponds to this
phase. In the symmetry broken phase, there are two Goldstone
modes, corresponding to two different transverse directions
in which the order parameter can move. In the Hamiltonian
spin-wave language, this factor of 2 again arises, but for a
reason that initially might seem to differ. Suppose we use
a spin-wave representation in which the operator b

†
i always

creates an excitation on site i (we are choosing to follow
the notation of Ref. 14, though, of course, the Hamiltonian
spin-wave calculation is a textbook calculation); that is, if
we do a spin-wave expansion about a state with spins up
on the 1 sublattice and down on the 2 sublattice, then this
operator b

†
i corresponds to a lowering operator on the 1

sublattice and a raising operator on the 2 sublattice. We
then find gapless modes at momenta near (0,0) and (π,π )
on a two-dimensional square lattice. Thus, we again see a
factor of 2 arising from the existence of two different gapless
points.

We can clarify the relation between the factor of 2 in
these two different approaches. These gapless modes in
the Hamiltonian model correspond to the following states,
respectively. Acting with the operator

∑
i b

†
i on the ground

state, which creates a zero-energy excitation with momentum
(0,0), produces a state that is a superposition of all possible
ways of flipping one spin. Acting with the operator

∑
i(−1)ib†i ,

which creates a zero-energy excitation with momentum (π,π ),
produces a state that again is a superposition of all possible
ways of flipping one spin but with a plus sign for flipping
a spin in the 1 sublattice and a minus sign for flipping a
spin in the 2 sublattice. The first of these states corresponds
to acting with the operator

∑
i σ

x
i on the ground state and

the second to acting with the operator
∑

i σ
y

i on the ground
state. Thus, they correspond to two different ways of rotating
the symmetry broken ground state, either in the YZ plane
or the XZ plane, matching the two different Goldstone
modes above.

Therefore, for a square region, which has four such corners,
we expect a correction of

≈ −0.0496 ln(�). (21)

As we saw above, numerical results disagree with this,
suggesting some nontrivial effects that are not accounted for
by this framework.

VI. SUMMARY AND DISCUSSION

In this paper, we have presented several computational
methods to calculate the entanglement properties of lattice
statistical models, in dimensionality greater than 1, in a
systematic manner. The stochastic series expansion QMC and
high-temperature expansions are finite-temperature methods.
Since the former works with finite systems, it is possible to
calculate the ground-state properties by going to sufficiently
low temperatures. The latter is a series expansion, defined in
the thermodynamic limit. It can, in principle, be extrapolated to
T → 0 limit if there is no finite-temperature phase transition.
An interesting finding of our paper is that the limits T → 0
and L → ∞ need not commute in these calculations.

We have also developed computational methods that work
directly at T = 0. The valence bond QMC is an exact ground-
state projection method for a finite system. The Ising series
expansions represent an expansion in exchange anisotropy
around a given classical state. Using these methods we have
calculated the area law associated with the boundary, as well as
subleading logarithmic terms associated with the corners and
the bulk. Whenever quantities are calculated by two different
methods, there is good quantitative agreement.

We have also discussed a mean-field calculation of the
entanglement properties as well as the results expected from
noninteracting bosons. Here, we find a surprise insofar as
the numerical results disagree with simple expectations. The
mean-field state, where all spins on one sublattice are equally
entangled with spins on the other sublattice, predicts a bulk
log term of 2 ln �, whereas our valence bond QMC results
give c ln �, with c = 0.74 ± 0.02. The latter is closer to a
recent spin-wave calculation, where an estimate of c = 0.92
was obtained.14 The discrepancy is even more puzzling for
the corner terms. If long-wavelength spin waves act as
noninteracting bosons, they should contribute a log term with
a coefficient of −0.0496. That number should be compared
with −0.080 ± 0.008 obtained in Ising series expansions and
≈−0.1 in the QMC studies. These disagreements suggest the
need for further theoretical study.
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