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Sine-square deformation of free fermion systems in one and higher dimensions
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We study free fermion systems with the sine-square deformation (SSD) in which the energy scale of local
Hamiltonians is modified according to the scaling function f (x) = sin2[ π

L
(x − 1

2 )], where x is the position of
the local Hamiltonian and L is the length of the system in the x direction. It has been revealed that when applied
to one-dimensional (1D) critical systems, the SSD realizes the translationally-invariant ground state which is the
same as that of the uniform periodic system. In this paper, we propose a simple theory to explain how the SSD
maintains the translational invariance in the ground-state wave function. In particular, for a certain 1D system
with SSD, it is shown that the ground state is exactly identical to the Fermi sea of the uniform periodic chain.
We also apply the SSD to 2D systems and show that the SSD is able to suppress the boundary modulations from
the open edges extremely well, demonstrating that the SSD works in any dimension and in any direction.
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I. INTRODUCTION

The boundary condition has a crucial influence on proper-
ties of quantum systems. For example, the periodic boundary
condition (PBC) realizes a translationally-invariant system
with the geometry of the ring or torus, while the open
boundary condition (OBC) results in the chain or cylinder with
open boundaries with the boundary-induced modulation such
as the Friedel oscillations. The thermodynamic properties,
i.e., the expectation values of observables in the bulk of
infinite-size systems, are believed to be the same irrespective
of the boundary conditions employed. However, the way that
the expectation values approach the thermodynamic limit is
usually distinct for OBC and PBC, which requires a different
treatment of finite-size scaling. Furthermore, at the level
of the wave function, the difference between the critical
systems under OBC and PBC remains sizable even at the
thermodynamic limit. That is clearly demonstrated by the
different scaling behavior of the entanglement entropy in
one-dimensional (1D) critical systems with and without open
boundaries.1

Attempts to control the boundary and finite-size effects have
been made in the studies of lattice fermion and/or spin models.
One example is the so-called smooth boundary condition,
which succeeded pretty well in suppressing the boundary
effects by smoothly decreasing the energy scales near the edges
of the system.2,3 Similar but modified boundary conditions
were applied to transport problems such as the conductance of
1D interacting systems.4 Another example is the hyperbolic
deformation in which the ground-state expectation values of
local observables are nearly uniform in the bulk, whereas the
interaction strength is enhanced rather than suppressed at the
boundaries.5–7

Recently, a more efficient scheme to suppress the boundary
effects, which is called the sine-square deformation (SSD), has
been proposed for 1D critical systems. In the system with SSD,
the energy scale of the local Hamiltonian is rescaled according
to the scaling function,

f (x) = sin2

[
π

L

(
x − 1

2

)]
, (1)

where L is the length of the system, and x is the center
position of the local Hamiltonian. Note that since f (x) = 0
for x = 1/2 (mod L), the SSD disconnects the link between
the sites at x = 1 and L, resulting in the open edges. The
SSD was first applied to the 1D free-fermion system.8 It
was found there that in the system with SSD, the local
observables such as the bond strength are translationally
invariant, suggesting that the SSD was able to remove the
open-boundary effects almost completely. Furthermore, the
effects of SSD in several quantum spin models at criticality
were examined numerically.9 In addition to the translational
invariance of the observables such as spin correlations, it was
further revealed that the wave-function overlap between the
ground state of the open system with SSD and that of the
uniform system with PBC is very close to (almost exactly)
unity. This means that the SSD does not disturb the periodic
ground state at the level of the wave function and keeps the
state as the true ground state even after the model Hamiltonian
loses the translational symmetry by the energy deformation.
This striking feature of the SSD was proven rigorously for the
spin-1/2 XY chain, which is equivalent to the free fermions in
one dimension.10 It has also been shown that the SSD works
well for other strongly correlated systems including the 1D
Hubbard model11 and Kondo-lattice model.12

While the efficiency of the SSD has been confirmed for
several 1D systems, it remains a puzzle why the ground state of
the system with SSD is (almost) identical to that of the periodic
system. Since the system with SSD is no longer translational
invariant, its one-particle eigenstates are distinct from the plane
waves. However, when (and only when) the fermions are filled
up to the Fermi level, the many-particle ground states of the
system with SSD and the uniform periodic system become
equivalent. It is desirable to clarify the mechanism of the SSD
to leave the ground state under PBC unchanged.

In this paper, we propose a simple theory which explains
how the SSD realizes the energy-scale deformation with
keeping the ground state of the original free-fermion model
with PBC as an eigenstate. The key idea is that the amplitudes
of active processes in the Hamiltonian with SSD vanish,
therefore the Hamiltonian does not disturb the Fermi sea of the
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original model with PBC. For a certain class of 1D systems, it
is also proven that the Fermi sea of the original uniform system
is not only an eigenstate but also the unique ground state of the
Hamiltonian with SSD. For two-dimensional (2D) systems, the
ground state of the system with SSD is found to be very close to
the Fermi sea of the original periodic system accompanied by
edge states localized around open edges. We emphasize that the
SSD works well to suppress the boundary effect induced by the
OBC in any dimension and in any direction. The SSD thereby
reduces the number of directions under PBC while maintaining
the ground-state properties in the bulk. For example, applying
the SSD to a 2D model changes its geometry from a torus to a
cylinder, then to a rectangle.

The paper is organized as follows. In Sec. II, we discuss the
Hamiltonian with SSD in the momentum space and show that
the Fermi sea of the uniform system remains an (approximate)
eigenstate through the energy deformation. The results for
the 1D and 2D systems are presented in Secs. II A and II B,
respectively. In Sec. III, we study numerically the effects of the
SSD on the energy-level structure as well as the ground-state
properties of 2D systems. By investigating several quantities
such as the one-particle eigen-energies, eigen-wave functions
and the ground-state density profiles, we examine how the
ground state is modified by the SSD. We conclude with some
remarks in Sec. IV.

II. SSD IN MOMENTUM SPACE

A. One-dimensional systems

In this section, we develop a theory of the mechanism of
the SSD applied to free spinless fermions on a lattice. We first
focus on the simplest model, i.e., the 1D tight-binding model
with only nearest-neighbor hopping. For the model, it was
rigorously proved that the model with SSD shares the same
ground state with the model under PBC.10

The model Hamiltonian of the tight-binding chain is given
by

H = −t
∑

x

[c†(x)c(x + 1) + H.c.] − μ
∑

x

c†(x)c(x), (2)

where c†(x) and c(x) are respectively the creation and
annihilation operators of the fermion at the site x. We consider
the L-site system and impose the PBC. The Hamiltonian in
momentum space is obtained as

H̃ =
∑

k

ε(k)c†kck, (3)

with the dispersion relation

ε(k) = −2t cos k − μ. (4)

A key ingredient of the construction of SSD is to introduce
the chiral deformation, which leads to the chiral Hamiltonian
of the form,

H(±) = −t
∑

x

e±iδx[c†(x)c(x + 1) + H.c.]

−μ
∑

x

e±iδ(x− 1
2 )c†(x)c(x), (5)

where δ = 2π/L. The chiral Hamiltonian H(±) is nothing
but the Fourier component of the local Hamiltonians and is
apparently non-Hermitian.13 In the basis where the original
Hamiltonian H is diagonal, H(±) is represented as

H̃(±) =
∑

k

e∓i δ
2 ε(k ∓ δ/2)c†kck∓δ. (6)

The point to be noted here is that the chiral Hamiltonian
includes only the terms with momentum transfer �k = ±δ,
which connects the nearest-neighbor sites in k space, and their
amplitude is proportional to the dispersion function [Eq. (4)]
of the original uniform system. Hence, when applied to the
Fermi sea of the original model, most of the transfer processes
are prohibited by the Pauli principle; only the processes across
the Fermi point k = ±kF can be active. (The schematic picture
of the active processes is shown in Fig. 1.) However, for such
processes, the amplitudes are, at most, of the order of O(1/L).
Indeed, one can make these amplitudes be exactly zero by
fine tuning of the chemical potential μ so that ε(k ∓ δ/2) = 0
for the active processes. This means that the Fermi sea
of the original uniform chain is an exact eigenstate of the
chiral Hamiltonian H(±) and is not disturbed by the chiral
deformation at all. The same result holds for any 1D systems
having a single Fermi momentum kF and symmetric dispersion
ε(k) = ε(−k).

Now, we are ready to consider the system with SSD. The
Hamiltonian with SSD is constructed from the original and
chiral Hamiltonians as

HSSD = 1

2
H − 1

4
[H(+) + H(−)]

= −t
∑

x

f (x + 1/2)[c†(x)c(x + 1) + H.c.]

−μ
∑

x

f (x)c†(x)c(x), (7)

where the scaling function f (x) is given by Eq. (1). Here,
the chemical potential μ has been chosen in such a way
that the Fermi sea of H for a fixed number of particles is
annihilated by H(±). Since f (x) = 0 for x = 1/2 (mod L), the
links between the sites with x = 1 and L are disconnected by

k / π

ε (k )

−1 10

FIG. 1. (Color online) Dispersion curve and Fermi sea of the
1D tight-binding model (2) with t > 0 and μ < 0. Dark (blue) and
light (green) arrows represent, respectively, the processes in the chiral
Hamiltonian H̃(+) and H̃(−) allowed by the Pauli principle.
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the SSD, resulting in open boundaries at the edges x = 1 and
L. From the argument for the chiral Hamiltonians above, it
follows that the Fermi sea of the original periodic model is an
exact eigenstate of the Hamiltonian with SSD.

So far, we have seen that the Fermi sea of the uniform
periodic system is an exact eigenstate of the system with SSD.
For the model with the only nearest neighbor hopping, one can
further show that the Fermi sea is indeed the exact ground state
of the SSD Hamiltonian. The proof is essentially the same as
the one presented in Ref. 10, and we briefly review it here. We
first transform both the original and SSD Hamiltonians into
the XY spin chains using the Jordan-Wigner transformation.
Then, for fixed magnetization (for fixed number of fermions),
it can be shown that (i) all of the off-diagonal elements of
the Hamiltonian are nonpositive, and (ii) the Hamiltonian
satisfies the connectivity condition, for both the PBC and SSD
cases. Therefore, the Perron-Frobenius theorem applies and
guarantees that the ground state is unique in each case. Since
the Perron-Frobenius theorem tells us that the ground state
is nodeless, i.e., can have only positive components in an
appropriate basis, the Fermi sea of the PBC Hamiltonian is
the ground state of the SSD Hamiltonian if it has the Fermi
sea as an eigenstate.

B. Two and higher dimensions

In the preceding section, we have shown for the 1D free
fermion system that the chiral and SSD Hamiltonians have
the Fermi sea of the uniform periodic system as an exact
eigenstate. In this section, we extend the theory to 2D or
higher-dimensional systems. We focus on the single-band
model, having a single site in each unit cell. (The multiband
case will be discussed in the end of this section.) We employ
the 2D square lattice as a typical example, but the extension to
the other lattices and dimensions is straightforward.

Let us consider the tight-binding model in the square lattice,

H = −t
∑

r

[c†(x,y)c(x + 1,y) + H.c.]

− t⊥
∑

r

[c†(x,y)c(x,y + 1) + H.c.]

− t1
∑

r

[c†(x,y)c(x + 1,y + 1) + H.c.]

− t2
∑

r

[c†(x,y)c(x + 1,y − 1) + H.c.]

−μ
∑

r

c†(x,y)c(x,y). (8)

We set the lengths of the system along the x and y directions Lx

and Ly , respectively, and impose the PBC in both directions.
In addition to the nearest-neighbor hoppings t and t⊥ in the
x and y directions, we have included the diagonal hoppings
t1 and t2 for generality. The schematic picture of the model is
shown in Fig. 2(a). In momentum space, the Hamiltonian is
diagonalized as

H̃ =
∑

k

ε(k)c†kck, (9)

t

t t1t2

(a) x

y

−1
−1

0

1

kx /π

k y
 /π

(b) 0 1

FIG. 2. (Color online) (a) Schematic picture of the square-lattice
model (8). (b) Fermi sea of the model (8) with t = t⊥, t1 = t2 = 0,
and μ < 0. Dotted line shows the Fermi surface. Dark (blue) and
light (green) arrows represent, respectively, the processes allowed
by the Pauli principle in the chiral Hamiltonian H̃(+)

δ and H̃(−)
δ with

δ = (2π/Lx,0).

with the dispersion relation

ε(k) = −2t cos kx − 2t⊥ cos ky

− 2t1 cos(kx + ky) − 2t2 cos(kx − ky) − μ, (10)

where k = (kx,ky).
Similar to the 1D case, one can introduce the chiral

deformation to the system. The resulting Hamiltonian is

H(±)
δ =−t

∑
r

e±i[δxx+δy (y− 1
2 )][c†(x,y)c(x + 1,y) + H.c.]

− t⊥
∑

r

e±i[δx (x− 1
2 )+δyy][c†(x,y)c(x,y + 1) + H.c.]

− t1
∑

r

e±i(δxx+δyy)[c†(x,y)c(x + 1,y + 1) + H.c.]

− t2
∑

r

e±i[δxx+δy (y−1)][c†(x,y)c(x + 1,y − 1) + H.c.]

−μ
∑

r

e±i[δx (x− 1
2 )+δy (y− 1

2 )]c†(x,y)c(x,y), (11)

where we consider the cases of δ = (δx,δy) =
(2π/Lx,0),(0,2π/Ly), or (2π/Lx, ± 2π/Ly). From the
usual Fourier transformation, the chiral Hamiltonian in k
space is obtained as

H̃(±)
δ =

∑
k

e∓i 1
2 (δx+δy )ε(k ∓ δ/2)c†kck∓δ. (12)

Hence, we find again that the chiral Hamiltonian contains
only the processes connecting the sites k and k ± δ with an
amplitude proportional to the dispersion function Eq. (10).
Among them, the processes being active are only those
across the Fermi surface, whose amplitudes are of the order
of O(1/Lx) or O(1/Ly). Therefore, the chiral Hamiltonian
does not disturb the Fermi sea very much; the effect of the
mixing is of the order of O(1/Lx,y) and vanishes in the limit
Lx,y → ∞.

Here, the difference from the 1D case should be noted. For
1D systems, one can make all the amplitudes of the disturbing
processes be exactly zero by tuning the chemical potential μ

as discussed above, and then the Fermi sea can be an exact
eigenstate of the chiral Hamiltonian even at finite Lx or Ly .
For systems in higher dimensions, on the other hand, it is
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impossible to achieve ε(k ∓ δ/2) = 0 for all the processes on
the Fermi surface by tuning a single parameter μ, except for
some cases in which the Fermi surface takes a special shape.
Therefore, the Fermi sea is an approximate eigenstate of the
chiral Hamiltonian, and the correspondence becomes exact
only asymptotically in the limit Lx,y → ∞. We note that one
can achieve the exact correspondence at finite Lx and/or Ly

by introducing momentum-dependent chemical potential. For
example, when the chiral deformation in the x direction with
δ = (2π/Lx,0) is applied, one may introduce ky-dependent
chemical potential μ(ky), which leads to long-range hoppings
along the y direction in real space, and fine-tune them to
realize the zero amplitude for all active processes in the chiral
Hamiltonian.

Another notice for higher dimensions concerns the order
of taking the infinite-size limits in the x and y directions. For
example, let us consider the case of δ = (2π/Lx,0). In this
case, the amplitudes of the active processes are of the order of
O(1/Lx) and vanish at Lx → ∞. However, since the number
of these processes is proportional to Ly , their effect may be
amplified as Ly increases. In the argument of this section,
we take the limit Lx → ∞ first then consider large enough
Ly . Taking the limit Lx = Ly → ∞ simultaneously is rather
subtle, however, the numerical results presented in Sec. III
suggest that the SSD works well also for the case of Lx = Ly .

Let us move to the system with SSD. By taking an
appropriate linear combination of the original and chiral
Hamiltonians, one can construct various kinds of the SSD
Hamiltonian, which has the form

HSSD = −t
∑

r

F
(

x + 1

2
,y

)
[c†(x,y)c(x + 1,y) + H.c.]

− t⊥
∑

r

F
(

x,y + 1

2

)
[c†(x,y)c(x,y + 1) + H.c.]

− t1
∑

r

F
(

x + 1

2
,y + 1

2

)

× [c†(x,y)c(x + 1,y + 1) + H.c.]

− t2
∑

r

F
(

x + 1

2
,y − 1

2

)

× [c†(x,y)c(x + 1,y − 1) + H.c.]

−μ
∑

r

F(x,y)c†(x,y)c(x,y). (13)

The scaling function F(x,y) can take various forms; for
example, F(x,y) = fx(x) for the SSD only in the x direction,
and F(x,y) = fx(x)fy(y) for the SSD in both the x and y

directions, where fx(x) [fy(y)] is given by Eq. (1) with L = Lx

(Ly). It is clear that these SSD Hamiltonians have the Fermi
sea of the original model as an approximate eigenstate.

We have shown that the chiral and SSD Hamiltonians
have the Fermi sea of the uniform periodic system with
small disturbance of O(1/Lx,y) as an eigenstate. However,
the argument does not tell us whether the Fermi sea is the
ground state of the system with SSD. As mentioned in the
preceding section, for the 1D system, the Perron-Frobenius
theorem is applicable and enables us to prove that the Fermi
sea is the ground state of the SSD Hamiltonian. In contrast, in

higher dimensions, it is in general impossible to find a basis
in which all of the off-diagonal elements of the Hamiltonian
are nonpositive, due to fermion signs. Therefore, the ground
state of the SSD Hamiltonian is not necessarily the Fermi sea
of the periodic system, and one must examine how the ground
state evolves by the SSD using some other methods. We will
show in Sec. III numerically that in two dimension the ground
state of the system with SSD is not exactly the Fermi sea but
its slight modification accompanied by edge modes localized
at boundaries.

The result above is valid regardless of the boundary
conditions in the direction to which the SSD is not applied.
For example, when applying the SSD in the x direction, one
can develop the same logic for the system with OBC in the
y direction as long as the magnitude of the momentum of the
direction is a good quantum number. The SSD thus changes
the boundary condition in a direction from PBC to OBC with
the energy deformation, leaving the boundary conditions in
the other directions unchanged.

An interesting question is whether one can extend the above
argument to the multiband cases where there are more than
one site per unit cell. Unfortunately, it turns out that the chiral
deformation gives rise to interband hopping terms in the dual
lattice (k space) in these cases. Since the Pauli principle does
not prohibit the interband hopping processes, the Fermi sea
is not expected to be an approximate eigenstate of the SSD
Hamiltonian except for some special cases. Therefore, we can
conclude that the validity of the SSD is basically limited to
single-band systems.

III. NUMERICAL RESULTS

In this section, we discuss how the ground state changes
when we apply the SSD to the 2D system under PBC. For
the purpose, we introduce the model connecting the uniform
system and the system with SSD,

H(a) = (1 − a)H + aHSSD, (14)

where we consider the case that the SSD is applied in the x

direction. Therefore, H(a) is given by the r.h.s. of Eq. (13) by
replacing the scaling function F(x,y) by

f (x; a) = (1 − a) + afx(x). (15)

Note that a = 0 corresponds to the uniform system with PBC,
while a = 1 gives the system with SSD.

First, we consider the simple square lattice with Lx =
Ly = L, t = t⊥ = 1 and t1 = t2 = μ = 0, where the Fermi
surface has the diamond shape for infinite L. For finite and
odd L, the amplitude ε(kx ∓ δx

2 ,ky) in the chiral Hamiltonian,
Eq. (12), becomes exactly zero for the processes across the
Fermi surface, therefore the Fermi sea of the uniform model
with a = 0 is an exact eigenstate for arbitrary a. For even L, the
Fermi sea at a = 0 becomes an exact eigenstate for arbitrary a

when the boundary condition in the y direction is antiperiodic.
We again emphasize that an exact eigenstate does not mean
the ground state. In fact, the Fermi sea at a = 0 is, in general,
not the ground state but an excited state for a = 1 due to the
level crossing, as shown below.

Figures 3(a) and 3(b) show the energy levels of the
one-particle eigenstates of H(a) for L = 7 with PBC in
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FIG. 3. (Color online) (a) Energy levels of the one-particle
eigenstates of H(a) for t = t⊥ = 1,t1 = t2 = μ = 0, and Lx = Ly =
7 and (b) its enlarged view around a = 1. In (b), thin-dashed and
bold lines represent single and doubly-degenerate levels, respectively.
(c) Fidelity between the Fermi sea at a = 0 and the many-particle
ground state of H(a) at a > 0 with N = 25 particles. (d) Normalized
density profiles LxLy |ϕi(x,y)|2 of 25, 26, and 27th one-particle
eigenstates at a = 1 as a function of x. Note that the profiles are
independent of y because of the PBC imposed in the y direction.

the y direction. With increasing a, many energy levels are
approaching E = 0. At a = 0.982, a state crosses the Fermi
energy E = 0, leading to the change of the particle number
of the ground state filling the negative energy. Furthermore,
at a = ac = 0.996, the level crossing occurs. Therefore, even
if the particle number N is fixed at that of a = 0, the ground
state changes abruptly at a = ac, and the Fermi sea at a = 0 is
no longer the ground state for a > ac. To elucidate it, we plot
in Fig. 3(c) the fidelity, i.e., wave-function overlap, between
the Fermi sea at a = 0 and the ground state of H(a) for fixed
N = 25 particles. The fidelity jumps from 1 to 0 at the level
crossing point a = ac. We also confirmed numerically that the
Hamiltonian H(a) has the Fermi sea at a = 0 as an exact,
first-excited eigenstate for a > ac.

Here, it is nontrivial that the ground state at a = 0 defined by
the Slater determinant of the negative-energy states is the exact
eigenstate of H(a) in spite that the one-particle eigenstates
are different. While the local density of one-particle states at
a = 0, which are a simple plane wave, does not depend on
the spatial position (x,y), the density for a > 0 depends on x

due to the energy deformation in the x direction. In Fig. 3(d),
we show the normalized density profiles LxLy |ϕi(x,y)|2 of
three low-energy one-particle states ϕi(x,y) at a = 1, which
states undergo the level crossing at a = ac. As shown in
the figure, those states are localized at the boundaries at
x = 1 and L. The result implies that the difference between
the Fermi sea of the uniform system H = H(0) and the
ground state of HSSD = H(1) manifests itself in the boundary
region.

Next, we show that the above features of SSD are commonly
seen in the more generic case t = t⊥ = 1, t1 = t2 = 0.5, and
μ = 0.3, where the Fermi sea of H(0) is not the exact ground
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FIG. 4. Numerical results for the square-lattice model with diago-
nal hoppings, t = t⊥ = 1,t1 = t2 = 0.5,μ = 0.3, and Lx = Ly = 60;
(a) Density of state, where we use the Gaussian broadening with
σ = 0.5. (b) Fidelity between the Fermi sea at a = 0 and the
many-particle ground state at a > 0 with fixed particle number.
(c) Normalized density profiles LxLy |ϕi(x,y)|2 at a = 1. The results
for eleven states with the smallest |Ei | are plotted. (d) �2

i as a
function of |Ei |. The data are normalized by the value for the uniform
periodic system, �2

i (a = 0) = (Lx − 1)(Lx − 2)/12. The horizontal
dotted line is a guide for the eye.

state nor even an exact eigenstate for a > 0 due to the small
disturbance ofO(1/Lx) by the chiral Hamiltonians. Figure 4(a)
shows the density of states at a = 0 and a = 1 for the systems
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with Lx = Ly = 60. The prominent peak at E = 0 for a = 1
indicates that many levels approach E = 0 after the SSD, as
in Fig. 3(a).

Figure 4(b) shows the fidelity between the Fermi sea at
a = 0 and the ground state at a > 0 with the fixed particle
number. Due to the small disturbance mentioned above, the
fidelity is not exactly one even for small a in contrast to
Fig. 3(b). In the usual perturbation theory via small a, the
fidelity is linear in a, and its gradient is determined by
the expectation value of the perturbative Hamiltonian in the
unperturbed ground state. Therefore, the fact that the fidelity
at small a remains almost unity means that the expectation
value of H(±) is very small. The fidelity exhibits a continuous
decrease from unity at a = 0 to almost zero at a = ac =
0.9991, followed by a small jump to zero at a = ac [which
is almost invisible in Fig. 4(b)]. We have observed that the
finite jump of the fidelity, which is due to the level crossing
of the ground state and excited state, generally occurs at
a = ac ∼ 1.

We present in Fig. 4(c) the normalized density profiles of
the one-particle states with smallest |Ei | at a = 1, which are
expected to be the most responsible for the change in the
ground-state properties. We note that the figure plots eleven
states locating closest to the Fermi energy. It is clear that
the profiles of those states are almost identical and strongly
localized around the open boundaries x = 1 and Lx , in marked
contrast to the plane waves for a = 0 whose profiles are a
constant. We note that the decay of the profiles from the open
edges seems to be algebraic, while determining the detailed
form of the decay function as well as the decay exponent
requires a more systematic analysis, which is left for future
studies.

To further clarify the edge-localized nature of the low-
energy eigenstates, we introduce a measure of the localization,

�2
i =

∑
x,y

|ϕi(x,y)|2min[(x − 1)2,(x − Lx)2]. (16)

Note that �2
i is small for localized states while it becomes large

for the states extended to the bulk. For the uniform systemH =
H(0), �2

i is easily obtained to be �2
i = (Lx − 1)(Lx − 2)/12

for even Lx since |ϕi(x,y)|2 = 1/(LxLy) for all eigenstates.
For a = 1, we obtain numerically all of the eigen-energies and
eigen-wave functions (Ei,ϕi) and calculate �2

i . Figure 4(d)
indicates that all the eigenstates with small |Ei | have very
small �2

i .14 This means that the states around the Fermi level,
which get closer and converge to E = 0 as a increases from
0 to 1, are strongly localized around the open edges. The
localization of low-energy states can be naturally understood
from the fact that the scaling function of the SSD, fx(x),
is small around the open edges, therefore the excitations
around the edges can appear with an extremely low energy
cost.

Finally, we investigate how the SSD affects properties of
the many-body ground state. In Fig. 5, we show the density
profiles

ρ(x,y) = 〈c†(x,y)c(x,y)〉 =
∑

i(Ei<0)

|ϕi(x,y)|2 (17)
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FIG. 5. (Color online) Density profiles ρ(x,y) in the ground state
of (a) the square-lattice model, t = t⊥ = 1, t1 = t2 = 0, and μ = 0.3,
(b) the square-lattice model with diagonal hoppings, t = t⊥ = 1, t1 =
t2 = 0.5, and μ = 0.3, and (c) the triangular-lattice model, t = t⊥ =
t1 = 1, t2 = 0, and μ = 0. The system size is Lx = Ly = 60. Solid
and open circles, respectively, show the results for the system with
SSD and the uniform system with OBC in the x direction. The PBC
is imposed for the y direction, therefore ρ(x,y) is independent of y.
Insets present the enlarged figure of the same data for 15 � x � 46.

in the ground state of the system with SSD in the x direction
[Eq. (13) with F(x,y) = fx(x)] for several typical parameter
sets. The density ρ(x,y) in the ground state of the uniform
system with OBC in the x direction is also shown for
comparison. Remarkably, the density profile ρ(x,y) in the
systems with SSD is almost a constant in the bulk, and
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FIG. 6. (Color online) Density profiles ρ(x,y) in the ground state
of the square-lattice model, t = t⊥ = 1, t1 = t2 = 0, μ = 0.3, and
Lx = Ly = 60; (a) the result for the OBC imposed in both the x and
y directions, and (b) for the SSD in both directions. The data for
30 � y � 60 are plotted while those for 1 � y < 30 are symmetric
with respect to y = (Ly + 1)/2.

the Friedel oscillations pronounced in the uniform system
with OBC are strongly suppressed. The steep change in
ρ(x,y) from the constant is found only in the vicinity of the
open edges. The results indicate that the SSD preserves the
translationally-invariant nature of the Fermi sea of the periodic
ground state in the bulk, and the deviation appears only around
the open edges.

Figure 6 shows the density profiles in the square-lattice
system with SSD in both the x and y directions, whose
Hamiltonian is given by Eq. (13) with F(x,y) = fx(x)fy(y).
The result for the system with OBC in both directions is also
shown. Again, we find that ρ(x,y) is nearly a constant in the
bulk of the system with SSD, and the Friedel oscillations,
which are conspicuous in the system with OBC, are removed
almost completely. In the system with SSD, the deviation in
ρ(x,y) from the constant is sizable only around the open edges
as well as the corners. We have observed essentially the same
results for the square-lattice model with diagonal hoppings and
triangular-lattice model. The completely flat profiles strongly
suggest that the ground state of the systems with SSD is
very close to the translationally-invariant ground state of the
uniform periodic system superposed by the small disturbance
of the edge states. The SSD thereby realizes the topology
change of the system from a torus to a cylinder, and then, to a
rectangle with keeping the ground-state properties in the bulk
unchanged.

IV. CONCLUSION

We have studied effects of the SSD on the free fermion
systems. We have proposed a simple theory of the mechanism
of the SSD to realize the energy deformation while keeping
the ground state of the periodic system unchanged. For a
certain class of 1D systems, it is shown that the Fermi
sea of the uniform system remains an exact ground state
of the system with SSD. For 2D systems, it is numerically
found that the SSD realizes almost flat density profiles in
the bulk, suggesting that the ground-state properties in the
bulk are translationally invariant in spite that the system
has open edges. The ground state of the two- and higher-
dimensional systems with SSD can be regarded as a Fermi sea
of the uniform periodic system superposed by edge-localized
states.

As we have shown, in one dimension, the Fermi sea is
not only an exact eigenstate but also the ground state of the
Hamiltonian with SSD if the chemical potential μ is chosen so
that ε(k ∓ δ/2) = 0 for the processes in the SSD Hamiltonian
allowed by the Pauli principle. One can explicitly confirm this
correspondence in a class of exactly solvable spin chains.15

It is worth mentioning that the Hamiltonian with SSD is
distinct from the inhomogeneous integrable models obtained
from the quantum inverse scattering method and the algebraic
Bethe ansatz.16,17 From the point of view of conformal
field theory, the chiral Hamiltonian has a definite meaning,
which accounts for the correspondence between the PBC and
SSD Hamiltonians in a wide class of 1D critical systems.
A detailed discussion will also be given in a subsequent
paper.15

Our results demonstrate that the SSD works extremely
well for free fermions in any dimension. A natural ques-
tion to ask is whether the results generalize to systems
with interactions. In one dimension, it has been confirmed
numerically for several strongly-correlated fermion11,12 and
spin9 systems that the SSD works efficiently to realize the
translationally-invariant ground state, and the results are
well founded by a field-theoretical analysis.15 Extending
the analysis to multileg ladder systems,18 and then, to 2D
systems, must be an intriguing problem. It would also be
interesting to explore the generalizations of other deformations
such as the hyperbolic,5–7 exponential,19 and sinusoidal11

deformations, to higher-dimensional and/or interacting
systems.

An experimental study of the SSD in real systems should
also be a challenge of great interest. Considering the fact that
hopping strength and coupling parameters can be tuned in
systems of ultracold atoms in optical lattices as demonstrated
in Refs. 20–22, they can be promising candidates for the
realization of the system with SSD studied in our work.
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