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Direct minimization of the optimized effective problem based on efficient finite differences
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To avoid the difficult-to-solve optimized effective potential (OEP) integral equation, we introduce an efficient
direct minimization scheme for performing OEP calculations within Kohn–Sham density functional theory
(KS-DFT). We reformulated the functional derivative of the total energy with respect to the KS effective potential
in terms of efficient finite differences. Our method only uses the orbitals involved in the construction of the KS
exchange-correlation functionals. We demonstrate our scheme by performing exact-exchange OEP for sodium
clusters, in which only occupied KS orbitals are needed to obtain the OEP. Our efficient direct minimization
scheme should aid future development of orbital-dependent density functionals and render OEP to be a practical
choice for various applications.
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I. INTRODUCTION

Kohn–Sham density functional theory (KS-DFT) is for-
mally an exact theory1 based on the Hohenberg–Kohn
theorems.2 In practice, the accuracy of KS-DFT is severely
limited by the approximations used in the exchange-correlation
(XC) functionals. To improve the accuracy of KS-DFT, we
may think of climbing a so-called Jacob’s ladder3 for XC
functionals, from the local density approximation (LDA),
the semilocal generalized gradient approximation (GGA), to
meta-GGAs that depend on the Laplacian of the density and KS
kinetic energy densities, to orbital-dependent XC functionals4

(ODXCFs), that explicitly depend on the KS orbitals, in-
stead of only on the density. One straightforward example
of ODXCFs is the EXact-eXchange (EXX) functional, i.e.
Hartree–Fock exchange with KS orbitals as input. It has
been demonstrated that ODXCFs are critical to describing
many physical phenomena, such as the discontinuity of the
XC potential during electron transfer,5 electrical response of
molecules,6 and spin dynamics in noncollinear magnets,7 to
name a few. For all these cases, KS-DFT using LDA or
GGA XC often fails completely. Even though ODXCFs are
highly desirable for performing reliable KS-DFT calculations,
we have to find the effective XC potential vxc(�r) associated
with ODXCFs by solving the cumbersome optimized effective
potential (OEP) equations. An early formulation of such an
OEP equation8 is a Fredholm integral equation of the first kind
that is difficult to solve9 and engenders huge computational
costs in constructing the KS Green’s function, which in
principle requires calculating not only the occupied but also
all virtual KS orbitals. By introducing orbital shifts, the OEP
equation can be reformulated as a set of two coupled integral
equations for vxc(�r) and orbital shifts.10 One advantage of this
reformulation is that only the orbitals used in the definition of
XC functionals are needed in the OEP calculations. However,
the resulting equations remain challenging to solve. More crit-
ically, the equation for vxc(�r) is numerically unstable for finite
systems.11 To avoid such numerical instabilities, Kümmel and
Perdew11 solved for vxc(�r) iteratively by correcting it with a

scaled residual. It can be shown that this residual is exactly the
gradient of the total energy with respect to the KS effective
potential vS(�r) at that iteration, even though they did not claim
this. Therefore, their iterative method searches for the vxc(�r) in
the steepest decent direction and is inefficient when far away
from the solution.

To avoid solving OEP equations, a general and promising
approach is to perform a direct minimization of the total
energy with respect to vS(�r).12–15 Hyman et al.16 demonstrated
quite some time ago a simple, general, and efficient direct
minimization scheme in which the gradient of total energy
with respect to the KS effective potential was obtained by
solving the orbital shift equations (they called these quantities
Lagrange functions instead of orbital shifts), which are nearly
the same as the orbital shift equations derived by Kümmel
and Perdew.11 In this paper, instead of solving orbital shift
equations, we reformulate the gradient of the total energy
in terms of easy-to-compute finite differences, completely
eliminating the use of perturbation theory present in Yang and
Wu’s direct minimization scheme.15 Our work is an extension
of Gonze’s work17 for treating ODXCFs.

II. THEORY

We start with the collinear spin-polarized case. The KS
equations are

ĤKS,σ φK,σ (�r) = εK,σ φK,σ (�r). (1)

Here, σ is the spin index, K is an orbital index, ĤKS,σ =
− 1

2∇2 + vs,σ (�r) is the KS one-electron Hamiltonian, φK,σ (�r)
and εK,σ are the eigenfunction and eigenvalue of Eq. (1), and
therefore functionals of vs,σ (�r). We define the orbital energy
as a functional of vs,σ (�r) :

EK,σ [vs,σ ] = 〈φK,σ [vs,σ ]| − 1
2∇2 + vs,σ (�r)|φK,σ [vs,σ ]〉.

(2)
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The orbital density is defined as ρK,σ (�r) = |φK,σ (�r)|2.
The Hellmann–Feynman theorem18 allows us to write the
functional derivative of EK,σ [vs ,σ ] as

δEK,σ [vs,σ ]

δvs,σ (�r)
= ρK,σ (�r). (3)

Using Eq. (3), we reformulate the gradient of the total
energy with respect to vs,σ (�r) in terms of finite differences
as follows:

δEtot

δvs,σ (�r)
=

∑
K

∫
δEtot

δρK,σ (�r ′)
δρK,σ (�r ′)
δvs,σ (�r)

dr ′3

=
∑
K

∫
δEtot

δρK,σ (�r ′)
δ2EK,σ [vs,σ ]

δvs,σ (�r)δvs,σ (�r ′)
dr ′3

=
∑
K

∫
δEtot

δρK,σ (�r ′)
δρK,σ (�r)

δvs,σ (�r ′)
dr ′3

≈
∑
K

1

λK,σ

{ρK,σ [vs,σ + λK,σ�vs,K,σ ](�r)

− ρK,σ [vs,σ ](�r)}, (4)

where λK,σ is a small step size for the finite difference and
�vs,K,σ (�r) = δEtot/δρK,σ (�r). From the third line to the fourth
line in Eq. (4), we have used the definition of the functional
derivative. Here, ρK,σ [vs,σ + λK,σ�vs,K,σ ] means that a new
electron density is calculated for a slightly changed potential:
vs,σ + λK,σ�vs,K,σ . At the minimum of Etot, �vs,K,σ (�r) is
equal to the chemical potential, which is a constant in space,
and therefore, Eq. (4) becomes equal to zero.

When computing δEtot/δρK,σ , one complication that arises
is the need to evaluate δTS/δρK,σ ; all other components in
Etot are explicit functionals of ρK,σ (�r ′) that are straightfor-
wardly calculated. Because the KS orbitals are solved for by
minimizing the nonself-consistent (NSC) energy functional17

ENSC = ∑
σ

∑
K=occ

〈φK,σ | − 1
2∇2 + vs,σ |φK,σ 〉, then the func-

tional derivative of the KS kinetic energy functional
is simply δTS/δρK,σ (�r) = δENSC/δρK,σ − vs,σ (�r) = εK,σ −
vs,σ (�r). Now, with the gradient in Eq. (4) in hand, efficient
OEP calculations can be performed.

III. NUMERICAL METHODS

We demonstrate the above direct minimization method
by performing non-spin-polarized exchange-only KS-DFT
calculations for the Na4 and Na8 clusters. Our method is
implemented in the ABINIT19 plane-wave-based KS-DFT
code. The EXX functional is used

EX = −1

4

∑
m=occ

∑
n=occ

fnfm

×
∫ ∫

φ∗
m(�r)φm(�r ′)φn(�r)φ∗

n(�r ′)
|�r − �r ′| dr3dr ′3,

where fn is the occupation number for orbital n. To evaluate
EX, we compute the integral over �r ′ with the Poisson solver20

in ABINIT19 and then the integral over �r is obtained by direct
summation in the real space. The total energy Etot is minimized
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-
Newton method.21 To calculate the new orbital densities for

FIG. 1. (a) The convergence of the total energy, �E = Etot

− Etot,final, vs BFGS iterations for the Na8 cluster. Inset shows
the geometry of the cluster. (b) The convergence of eigenvalue
differences �ε21 = (ε2 − ε1) − (ε2 − ε1)final (solid circle) and �ε31 =
(ε3 − ε1) − (ε3 − ε1)final (hollow circle) vs BFGS iterations for the
Na8 cluster.

these slightly changed potentials vs,σ (�r) + λK,σ�vs,K,σ (�r) in
Eq. (4), we use the spectrum-folding method,22 in which
the new φnew

K,σ is obtained by minimizing the square resid-
ual min

φK,σ

〈φK,σ |(ĤKS + λK,σ�vs,K,σ (�r) − εK,σ )2|φK,σ 〉. The

spectrum-folding method delivers the eigenfunction that is
closest to εK,σ , which renders the calculations of the new
φnew

K,σ to be highly efficient. A conjugate gradient method is
employed to perform the spectrum folding. The step size λK,σ

is determined by setting the quantity 〈φK,σ |λ�vs,K,σ (�r)|φK,σ 〉
equal to 3 mHa. This quantity is in fact the first order
correction to εK,σ with respect to the change of potential. This
self-adjusted step size λK,σ guarantees a moderate change of
φK,σ .

To compare our results with previous calculations, the Na
local pseudopotential and the geometries for Na4 and Na8

clusters in Ref. 11 are used. The kinetic energy cutoff for the
size of plane wave basis set is 600 eV. For Na8 (see the inset
of Fig. 1 for the structure), the simulation box is 30 × 30 ×
30 Å. For Na4, the cluster is a planar rhombus and is placed
on the x-z plane (see the inset in Fig. 2 for the structure). The
simulation box is 40 × 20 × 40 Å.
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IV. RESULTS AND DISCUSSION

To demonstrate the feasibility and accuracy of our direct
minimization method, we compare the total energies and
eigenvalues of the Na4 and Na8 clusters to the previous
calculations by Kümmel et al.11 (Table I). Since vs(�r) is only
determined up to a constant shift, we report the eigenvalue
differences ε4 − ε1, ε3 − ε1, and ε2 − ε1, where εi , i =
1, . . . ,4 are the eigenvalues of the four lowest eigenstates (see
Table I). All the eigenvalue differences and total energies
agree very well with Kümmel et al.’s11 results, with a
maximum difference of 0.3 mHa. The virial theorem,23 EX +∫

dr3ρ(�r)�r · �∇vX(�r) = 0, is satisfied with a relative error
(defined as (EX + ∫

dr3ρ(�r)�r · �∇vX(�r))/EX) of 3% and 0.1%
for the Na4 and Na8, respectively. The errors are mainly due
to the slightly inaccurate asymptotic behavior of XC potential
away from the clusters, which causes Na4 to have a relatively
larger error, while the error of the larger cluster Na8 is rather
small. However, this slightly inaccurate asymptotic behavior
has a very small effect on the total energies and eigenvalue
differences as demonstrated here. For the Na4 cluster, the
total energy and the eigenvalue differences converge to within
1 mHa after only six and four iterations, respectively. For
the Na8 cluster, the total energy and eigenvalue differences
converge quickly to within 1 mHa after only 10 iterations [see
Fig. 1(a)] and seven iterations [see Fig. 1(b)], respectively. This
swift convergence does not require a very good initial guess
for vs(�r). The vs(�r) is initialized based on the total electron
density from a superposition of Gaussian-like atomic electron
densities, and LDA XC functional is used for initializing
vxc(�r). Therefore, our direct minimization is numerically more
appealing than Kümmel et al.’s approach,11 in which a good
initial guess for vs(�r) obtained using the Krieger−Li−Iafrate
(KLI) approximation was used to accelerate the OEP con-
vergence. However, the KLI approximation has exhibited
convergence problems in some cases.6

In Fig. 2, our vx(�r) goes to zero in all directions. By contrast,
Kümmel et al.11 found a nonvanishing asymptotic behavior of
vx(�r) in the nodal plane of the p-like highest occupied orbital
even far away from the cluster. The reason for this discrepancy
is twofold. (i) In the direct minimization scheme, the vx(�r) is
obtained by minimizing the total energy, which is not sensitive
to the asymptotic behavior of vx(�r) far from the cluster where
the wave function decays to zero. Therefore, the program stops
searching for the optimal vx(�r) before such distant nonuniform
asymptotic behavior of vx(�r) develops. (ii) The nonuniform
asymptotic behavior of vx(�r) only exists in the nodal plane of

TABLE I. Comparison of the OEP-EXX total energies Etot and
eigenvalue differences obtained from our direct minimization and
Kümmel et al.11 All results are in Hartrees.

Na4 Etot ε2 − ε1

Direct −0.7529 0.0359
Kümmel −0.7531 0.0361

Na8 Etot ε2 − ε1 ε3 − ε1 ε4 − ε1

Direct −1.5282 0.0361 0.0492 0.0494
Kümmel −1.5285 0.0362 0.0495 0.0495

FIG. 2. (Color online) Contour plot of the exchange potential
vx(�r) of the Na4 cluster in the cluster plane (x-z plane). (Top left)
Two occupied orbitals calculated by KS-DFT-EXX. (a) The lowest
energy orbital with s character. (b) The highest occupied orbital, with
p character. Sodium atoms are shown as yellow balls. The nodal plane
of the p-like orbital is marked with black dashed line. (Main plot) The
black arrow points out the barrier-well structure, which disappears
away from the cluster.

measure zero, which in turn produces the so-called barrier-well
structure in the near-asymptotic region.24 Far away from the
cluster, this barrier-well structure should become thinner such
that its contribution to the total energy lessens. Nevertheless,
near the cluster, we indeed observe this barrier-well structure
(see black arrow in Fig. 2). In our numerical tests, we find that
quantities related to the ground state, such as the total energy
and eigenvalues of occupied KS orbitals, can be obtained very
accurately.

V. EXTENSION TO CURRENT-SPIN DENSITY
FUNCTIONAL THEORY

Finally, we show that the direct minimization method
introduced in this paper can be generalized to many other
KS systems. Here, we extend it to the current-spin density
functional theory (CSDFT).25 This is an important extension.
For example, use of the OEP-EXX has been found to be critical
for producing spin dynamics in SDFT and CSDFT calculations
that are absent when LDA and GGA are used.7 In CSDFT, the
total energy, subject to an external scalar potential vext(�r), a
magnetic field �Bext(�r), and a vector potential �Aext(�r), in the
KS form is25

Etot[ρ, �m, �jp]

= TS[ρ, �m, �jp] + EXC[ρ, �m, �jp] + J [ρ]

+
∫

vext(�r)ρ(�r)dr3 +
∫

�m(�r) · �Bext(�r)dr3

+ 1

c

∫
�jp(�r) · �Aext(�r)dr3 + 1

2c2

∫
ρ(�r)Aext(�r)2dr3.

(5)

The KS orbitals are two-component spinors 	K (�r) =(
φK,α (�r)
φK,β (�r)

)
for which K is the orbital index. The magnetization is

�m(�r) = μB

∑
K=occ

	+
K (�r)�σ	K (�r) with �σ being the Pauli matrix.

The current is �jp = 1
2i

∑
K=occ

{	+
K

�∇	K − ( �∇	+
K )	K}. Here,
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TS[ρ, �m, �jp],EXC[ρ, �m, �jp], and J[ρ] are the KS kinetic energy,
XC functional, and classical Hartree electron repulsion energy,
respectively.25 Then the CSDFT KS equation is

ĤKS	K = εK	K, (6)

with

ĤKS = −1

2
�∇2 + vs(�r) + μB �σ · �Bs(�r)

+ 1

2ic
[ �As(�r) · �∇ + �∇ · �As(�r)].

The KS effective fields are defined as

vs(�r) = vext(�r) + δJ [ρ]

δρ(�r)
+ δEXC[ρ,m, �jp]

δρ(�r)

∣∣∣∣∣
�m, �jp

+ 1

2c2
Aext(�r)2,

�Bs(�r) = �Bext(�r) + δEXC[ρ,m, �jp]

δ �m(�r)

∣∣∣∣∣
ρ, �jp

,

�As(�r) = �Aext(�r) + c
δEXC[ρ,m, �jp]

δ �jp(�r)

∣∣∣∣∣
ρ, �m

.

Note that the total energy is therefore an implicit functional
of vs(�r), �Bs(�r), and �As(�r) via the density matrix ραβ =∑
K=occ

φK,αφ∗
K,β and current �jp. Following a similar procedure,

we define the orbital-related quantities: orbital energy EK [vs ,
Bs , As], orbital density matrix ραβ,K (�r), and orbital current
�jp,K (�r)

EK [vs,Bs,As] = 〈	K [vs,Bs,As]|
�

HKS |	K [vs,Bs,As]〉, (7)

ραβ,K (�r) = φK,α(�r)φ∗
K,β(�r), (8)

�jp,K (�r) = 1

2i
{	+

K (�r) �∇	K (�r) − [ �∇	+
K (�r)]	K (�r)}. (9)

The Kth orbital density is ρK (�r) = ∑
σ

ρσσ,K (�r). Making use

of the Hellmann–Feynman theorem,18 we perform functional
derivatives of EK [vs , Bs , As] with respect to these KS effective
fields, and define new variables �aK (�r), �bK (�r), and cK (�r)

δEK

δ �As(�r)
= 1

c
�jp,K (�r) ≡ �aK (�r), (10)

δEK

δ �Bs(�r)
= μB	+

K �σ	K ≡ �bK (�r), (11)

δEK

δvs(�r)
= ρK (�r) ≡ cK (�r). (12)

The gradient of Etot with respect to As,1(�r) (the x component
of �As(�r), and similar procedures forAs,2(�r) andAs,3(�r)), by the
chain rule, is

δEtot

δAs,1(�r)
=

∑
K

3∑
j=1

∫
δEtot

δaK,j (�r ′)
δaK,j (�r ′)
δAs,1(�r)

dr ′3

+
∑
K

3∑
j=1

∫
δEtot

δbK,j (�r ′)
δbK,j (�r ′)
δAs,1(�r)

dr ′3

+
∑
K

∫
δEtot

δcK (�r ′)
δcK (�r ′)
δAs,1(�r)

dr ′3. (13)

The derivative of Etot with respect to �aK (�r), �bK (�r), and
cK (�r) can be calculated by the chain rule after expressing
ραβ,K (�r) and �jp,K (�r) in terms of �aK (�r), �bK (�r), and cK (�r) with
the help of Eqs. (10)–(12). The index K only runs over all
the orbitals used in the construction in the XC functionals.
The first integral in Eq. (13) can be reformulated with finite
differences, with the help of Eq. (10)

∫
δEtot

δaK,j (�r ′)
δaK,j (�r ′)
δAs,1(�r)

dr ′3

=
∫

δEtot

δaK,j (�r ′)
δ2EK

δAs,1(�r)δAs,j (�r ′)
dr ′3

=
∫

δEtot

δaK,j (�r ′)
δaK,1(�r)

δAs,j (�r ′)
dr ′3

≈ 1

λ

(
aK,1

[
As,j → As,j + λ

δEtot

δaK,j

]
(�r) − aK,1(�r)

)
.

(14)

Above, aK,1[As,j → As,j + λ δEtot
δaK,j

](�r) means that a new
aK,1(�r) is calculated using Eq. (6) with As,j being replaced
by As,j + λ δEtot

δaK,j
, and the other components of effective fields

are unchanged. Again, λ is a small finite difference. The same
notation is used throughout this work.

Similarly, using Eq. (11), the second integral in Eq. (13) is
reformulated to

∫
δEtot

δbK,j (�r ′)
δbK,j (�r ′)
δAs,1(�r)

dr ′3

≈ 1

λ

{
aK,1

[
Bs,j → Bs,j + λ

δEtot

δbK,j (�r)

]
(�r) − aK,1(�r)

}
.

(15)

Using Eq. (12), the third integral in Eq. (13) becomes

∫
δEtot

δcK (�r ′)
δcK (�r ′)
δAs,1(�r)

dr ′3

≈ 1

λ

{
aK,1

[
vs → vs + λ

δEtot

δcK (�r)

]
(�r) − aK,1(�r)

}
.

(16)
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With a similar procedure, we derive the gradient associated with �Bs(�r) (only the x component is shown here)

δEtot

δBs,1(�r)
≈

∑
K

3∑
j=1

1

λ

{
bK,1

[
As,j → As,j + λ

δEtot

δaK,j

]
(�r) − bK,1(�r)

}

+
∑
K

3∑
j=1

1

λ

{
bK,1

[
Bs,j → Bs,j + λ

δEtot

δbK,j

]
(�r) − bK,1(�r)

}

+
∑
K

1

λ

{
bK,1

[
vs → vs + λ

δEtot

δcK

]
(�r) − bK,1(�r)

}
. (17)

The gradient associated with vs(�r) is

δEtot

δvs(�r)
≈

∑
K

3∑
j=1

1

λ

{
cK

[
As,j → As,j + λ

δEtot

δaK,j

]
(�r) − cK (�r)

}

+
∑
K

3∑
j=1

1

λ

{
cK

[
Bs,j → Bs,j + λ

δEtot

δbK,j

]
(�r) − cK (�r)

}

+
∑
K

1

λ

{
cK

[
vs → vs + λ

δEtot

δcK

]
(�r) − cK (�r)

}
. (18)

These gradients [(13), (17), and (18)] can be evaluated
efficiently with methods such as spectrum folding.22 With
similar procedures as in the collinear case, the functional
derivatives of the KS kinetic energy with respect to ραβ,K (�r)
and �jp,K (�r) are

δTS

δραβ,K (�r)

∣∣∣∣
{ �jp,K }

= εKδαβ − vs(�r)δαβ − μB(�σ · �Bs(�r))βα,

δTS

δ �jp,K (�r)

∣∣∣∣∣
{ραβ,K }

= −1

c
�As(�r).

It is then straightforward to minimize the total energy Etot

with respect to KS effective fields.

VI. CONCLUSIONS

In conclusion, we present an efficient direct minimization
method for performing OEP calculations. We completely avoid
using the time-consuming perturbation theory in the original
Yang and Wu formalism15 and reformulate the problem in

terms of easy-to-calculate finite differences. We demonstrate
the fast convergence and high accuracy of our method with the
non-spin-polarized KS-DFT-EXX calculations on two sodium
clusters. Like all other OEP techniques, our approach will
encounter numerical difficulties if the KS orbitals do not
evolve smoothly with the change of KS effective potential;
however, we expect such cases to be exceptional. Our method
can be applied immediately to OEP correlation functionals
by accounting for both occupied and virtual orbitals, and a
straightforward extension to CSDFT has been derived. This
efficient direct minimization method should allow OEP to
be used more broadly in future for tackling many practical
problems where standard exchange-correlation pure density
functionals are insufficient.
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We acknowledge Stephan Kümmel for providing the Na8

cluster geometry and thank Florian Libisch for a critical
reading of the manuscript. We are grateful for support from the
Office of Naval Research and the National Science Foundation.

*eac@princeton.edu
1W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
2P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

3John P. Perdew and Karla Schmidt, in Density Functional Theory
and Its Applications to Materials, edited by V. Van Doren, C. Van
Alsenoy, and P. Geerlings, AIP Conference Proceedings, Vol. 577
(American Institute of Physics, New York, 2001), pp. 1–20.
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