
PHYSICAL REVIEW B 84, 165119 (2011)

Metal-insulator transition in a two-band model for the perovskite nickelates
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Motivated by recent Fermi-surface and transport measurements on LaNiO3, we study the Mott metal-insulator
transitions of perovskite nickelates, with the chemical formula RNiO3, where R is a rare-earth ion. We introduce
and study a minimal two-band model, which takes into account only the eg bands. In the weak to intermediate
correlation limit, a Hartree-Fock analysis predicts charge and spin order consistent with experiments on R = Pr,
Nd, driven by Fermi surface nesting. It also produces an interesting semimetallic electronic state in the model
when an ideal cubic structure is assumed. We also study the model in the strong-interaction limit and find that
the charge and magnetic order observed in experiment exist only in the presence of very large Hund’s coupling,
suggesting that additional physics is required to explain the properties of the more insulating nickelates, R = Eu,
Lu, Y. Next, we extend our analysis to slabs of finite thickness. In ultrathin slabs, quantum confinement effects
substantially change the nesting properties and the magnetic ordering of the bulk, driving the material to
exhibit highly anisotropic transport properties. However, pure confinement alone does not significantly enhance
insulating behavior. Based on these results, we discuss the importance of various physical effects and propose
some experiments.
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I. INTRODUCTION

The Mott metal-insulator transition (MIT) is a central
subject in the physics of correlated electron phenomena and
transition metal oxides.1 The perovskite nickelates, RNiO3,
where R is a rare earth atom, constitute one of the canonical
families of materials exhibiting such an MIT. One of the most
interesting features of the nickelates is the charge and spin
ordering in the insulating state, which is relatively complex yet
in the ground state is robust across the entire family.2–7 The
explanation of this ordering is still in many ways controversial.
While the MIT in bulk nickelates is an old subject, the topic
has been reinvigorated recently by attempts to grow thin-film
heterostructures and observe unique quantum confinement
effects.8–17 In this paper, we revisit the problem of the MIT and
ordering in the nickelates, both in bulk and in heterostructures,
from a very simple theoretical viewpoint.

We begin by summarizing some salient features of the
nickelates. First, as the rare-earth ionic radius decreases, the
MIT temperature increases. Starting from R = La which is
metallic at all temperatures, R = Pr, Nd have finite MIT tem-
peratures TMIT = 120 and 180 K, respectively, (R = Eu has the
highest MIT temperature TMIT = 480 K) and finally, R = Lu
is insulating at all temperatures. This trend is understood due to
the increasing distortions introduced in the smaller rare-earth
materials, which increase the Ni-O-Ni bond angle and hence
reduce the bandwidth. In the materials with R = La, Pr, Nd,
the electrons can therefore be understood as more itinerant
and bandlike, while they are increasingly “Mott-like” for the
smaller rare earths.

Second, at low temperature, all the nickelates display a
magnetic ordering pattern with an “up-up-down-down” spin
configuration, which quadruples the unit cell relative to the
ideal cubic structure.2–7 This pattern coexists with a “rock-salt”
type charge order—what is actually observed is expansion

or contraction of the oxygen octahedra—which alternates
between cubic sites. Such charge order must, indeed, always
be present for this magnetic state, on symmetry grounds, and
can therefore be considered to this extent as a secondary order
parameter.18 Interestingly, for the more metallic nickelates,
both charge and spin order appear simultaneously, consistent
with this view, while for the more insulating nickelates, R =
Eu, Ho, the charge ordering occurs independently in an inter-
mediate temperature insulating phase without magnetism.6,7,19

A variety of microscopic physical mechanisms have been
proposed for the nickelates. A naive view of the material
would be to consider the nickel d electrons only, occupying the
nominal Ni3+ valence state, which would place one electron
in the eg doublet, which is degenerate with cubic symmetry.
Early studies attributed the complex spin pattern to orbital
ordering, perhaps induced by Jahn-Teller or orthorhombic
distortions that split the eg degeneracy. However, no Jahn-
Teller distortion was observed, and it was later suggested that
orbital degeneracy is removed by a separation of charge into
Ni2+ and Ni4+ states (an extreme view of the charge order),
which have no orbital degeneracy.20 This was attributed to
strong Hund’s rule exchange on the nickel ion,21 but phonons
may also be involved. However, the observed and robust
magnetic ordering is not so natural in this picture. Another
question is raised by spectroscopic measurements, which seem
to observe a significant Ni2+ occupation, suggesting that a
model with holes on the oxygens may be more appropriate.22

In this paper, we reconsider the mechanisms for spin and
charge ordering in the nickelates, and specifically highlight the
distinctions between an itinerant and localized picture of the
electrons. Our main conclusion is that, at least for the R = La,
Pr, Nd materials where the MIT transition temperature is low
or zero, and in which a broad metallic regime is observed, the
itinerant picture is more appropriate. We summarize the main
content of the paper below.
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The contrasts between the aforementioned models are really
sharp, only deep in the Mott limit in which orbital degeneracy,
ionic charge, and Hund’s rule versus superexchange are clearly
defined and distinct. In an itinerant picture, the precise atomic
content of the bands is not in itself important, but rather the
physics should be constituted from a model of the dispersion of
the states near the Fermi energy and the interactions amongst
these same states. In this view, the observed ordering may
be considered as spin and charge density waves (SDWs and
CDWs), and are tied to the Fermi surface structure. Recent
soft x-ray photoemission23 indeed observed large flat regions
of Fermi surface in LaNiO3, which appear favorable for a
nesting-based spin-density-wave instability.

Specifically, in Sec. II, we introduce a minimal two-band
model for the electronic states near the Fermi energy in the
nickelates. While it is easiest to motivate such a model from
the naive view of Ni3+ valence states—which is questionable,
as noted above—it can be considered just as the simplest phe-
nomenological tight-binding Hamiltonian, which can produce
electronic bands with the appropriate symmetry, in agreement
with LDA calculations.24 Within this model, the crucial
parameter controlling the shape of the bands is the ratio of the
second-neighbor to first-neighbor d-d hopping. With a small
and reasonable ratio, the large closed Fermi surface observed
in experiments and LDA calculations is reproduced.23,24 In ad-
dition, the same fermiology reasonably explains the resistivity,
Hall effect, and thermopower measurements on LaNiO3

10 as
well as the main features of the optical conductivity below
2 eV.11 We study the effect of interactions in this model
by a simple random-phase approximation (RPA) criterion
for the spin-density-wave instability, and by more detailed
Hartree-Fock calculations in Sec. III. These mean-field type
approaches are, we believe, reasonably appropriate for the
itinerant limit. Interestingly, we find that the same hopping
ratio that reproduces the experimental Fermi surface also turns
out achieves nearly optimal nesting, which further supports the
itinerant view. The Hartree-Fock calculations then predict the
phase diagram as a function of spin-independent and spin-
dependent interactions, which we include microscopically by
Hubbard U and Hund’s rule JH couplings in the tight-binding
model.

We find that the Hartree-Fock calculations produce two
possible explanations for the observed spin and charge or-
dering in the more itinerant nickelates. Theoretically, these
two scenarios can be best understood by considering a
hypothetical ideal cubic sample (the real materials undergoing
MITs are orthorhombic even in the metallic state). In such
a sample, we obtain two distinct insulating ground states,
characterized by “site-centered” and “bond-centered” SDWs.
If it occurred within an otherwise cubic sample, the bond-
centered SDW would have equal magnitude of moments
on all sites, and would not induce charge ordering. In the
site-centered SDW, charge ordering is present, and there
would be a vanishing moment on one rock-salt sublattice.
In real orthorhombic samples, the bond-centered SDW will
be driven off center, and charge order is induced. The latter
off-center SDW appears most consistent with experiment. It
is also the most favorable SDW state in the Hartree-Fock
calculations and dominates in the regime of relatively small JH

coupling.

For completeness, in Sec. IV we study the two-band
model in the strong-coupling limit in which U and/or JH

are much larger than the bandwidth. In this limit, we find
that an insulating state with charge order consistent with
experiment can be obtained, but only for very large Hund’s
exchange, JH /U > 4. The magnetic order is found to be either
ferromagnetic or of the site-centered SDW type. While the
latter is quite close to what is observed in experiment, it does
not appear fully consistent, and, moreover, the requirement
of such large JH to stabilize a charge-ordered state seems to
reaffirm the unphysical nature of this limit.

After this detour to strong coupling, we return to the reason-
ably successful model and Hartree-Fock approach, and apply
it to finite thickness slabs in Sec. V. This provides a minimal
and highly idealized model for a nickelate film. We find that
quantum confinement leads to substantial changes of the nest-
ing properties of ultrathin slabs. The predicted consequences
are modified magnetic ordering compared to bulk and highly
anisotropic transport properties. One result we do not find
from this calculation is a substantial enhancement of the Mott
insulating state in films of just a few monolayers, a phenomena
for which there is gathering experimental evidence.10,12–14,25

We take this as evidence that the putative Mott insulating
state in ultrathin LaNiO3 (LNO) films is driven not only by
confinement but by additional interface-sensitive effects.

Finally, we conclude in Sec. VI with a discussion of
experiments, models, and some open issues. In particular, we
discuss the role of oxygen 2p orbitals, and a possible physical
mechanism behind the insulating state. We also describe some
experimental probes of the Mott transition, which may help to
distinguish different mechanisms.

II. TWO-BAND MODEL AND NESTING PROPERTIES

The simplest tight-binding model for the nickelates is
constructed based on the naive Ni3+ valence. In this ionic
configuration, the only partially occupied orbitals are the
two members of the eg doublet, containing one electron. We
consider the hopping through the neighboring oxygen p states
(σ bonding) as dominant, and treat it as virtual. This leads to
strongly directional hopping, described as

Htb = −
∑
ij

tab
ij c

†
iaσ cjbσ , (1)

where i,j are site indices, a,b = 1,2 are orbital indices for
2z2 − x2 − y2 and x2 − y2, respectively, and σ =↑ , ↓ is
the spin index. Comparison with LDA band calculations and
with the experimentally measured Fermi surface indicates that
the nearest-neighbor hopping t and the next-nearest-neighbor
hopping t ′ with σ -type bonding is the most dominant. In
detail, tab

i,i±μ̂ = tφa
μφb

μ and ti,i±μ̂±ν̂ = t ′(φa
μφb

ν + φb
μφa

ν ), where

φx = (− 1
2 ,

√
3

2 ),φy = (− 1
2 , −

√
3

2 ), and φz = (1,0) are the or-
bital wave functions for the 2x2 − y2 − z2,2y2 − x2 − z2, and
2z2 − x2 − y2 σ -bonding orbitals along the three axes. We
estimated t ′/t ≈ 0.05 by fitting our tight-binding model with
LDA band calculation, while the best fits to experimentally
measured Fermi surface gives t ′/t ≈ 0.15.23,24

The range 0.05 � t ′/t � 0.2 reasonably explains the ob-
servation of a holelike Hall coefficient but an electron-like
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FIG. 1. Fermi surfaces for the tight-binding model. In (a) and
(b), we show the conduction and valence band Fermi surfaces,
respectively, for t ′/t = 0. For larger t ′/t , the conduction band Fermi
surfaces become large and holelike, as shown in (c) and (d) for
t ′/t = 0.15. The approximate nesting in the latter case is indicated
schematically in (d).

thermopower in LaNiO3.10,26 This apparently contradictory
behavior of the Hall conductivity and thermopower arises from
the mixed electron and hole character of the eg Fermi surface.
The model also predicts interband optical spectral weight in
reasonable correspondence with experiment at low energy (less
than 2 eV).11

We now examine the Fermi surface in more detail in search
of nesting tendencies. Figure 1 shows representative Fermi
surfaces obtained from the tight-binding model as a function of
the ratio t ′/t . With increasing t ′/t from 0 to 0.15, the topology
of the large Fermi surface is changing as seen in Figs. 1(a),
1(c), and 1(d). In the absence of next-nearest-neighbor hopping
t ′/t = 0, the conduction band Fermi surface has an open
topology as seen in Fig. 1(a). With increasing t ′/t , this Fermi
surface becomes closed, comprising a large “pocket” centered
at the zone corner. In the intermediate range (especially
0.1 � t ′/t � 0.2), the pocket resembles a cube, as seen in
Figs. 1(c) and 1(d) [Fig. 1(d) shows both valence band and
conduction band Fermi surfaces]. Contrary to the conduction
band Fermi surface, the valence band Fermi surface retains its
spherical topology for all t ′/t [see Fig. 1(b)]. The experimental
Fermi surface of LaNiO3 observed by Eguchi et al. strongly
resembles Fig. 1(d).23

The presence of large flat regions leads to nesting and
a tendency for CDW and/or SDW instabilities.27 A simple
understanding of the effect of nesting is obtained from the
random phase approximation (RPA), in which the effect of
interactions on the spin susceptibility is approximated by

χ (ω,k) = χ0(ω,k)

1 − Uχ0(ω,k)
, (2)

where χ0(ω,k) is the noninteracting spin susceptibility, and
we took for simplicity a spin and momentum-independent
interaction U . An instability is signaled by a divergence of
χ (0,k), which occurs on increasing U when the denominator
in Eq. (2) vanishes. This occurs for the k that maximizes
χ0(k) ≡ χ0(0,k), which determines the wave vector of the
spin ordering. In the case of perfect nesting, Eq = Eq+k for
every q on Fermi surface with the nesting vector k, and the
noninteracting susceptibility is itself divergent at this nesting
wave vector, indicating an instability for arbitrarily small U .
Although this is not true in general due to imperfect nesting,
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FIG. 2. Zero-frequency spin susceptibility for the tight-binding
Hamiltonian for t ′/t = 0.05, 0.1, and 0.15, as a function of mo-
mentum k in the cubic Brillouin zone. Note that for the best nested
situation, t ′/t = 0.15, the susceptibility is sharply peaked close to the
wavevector 2π ( 1

4 , 1
4 , 1

4 ).

the flatness of the Fermi surface greatly strengths the tendency
to instability.

To check this directly, we calculate the zero-frequency spin
susceptibility, which in general in the Matsubara formulation,
is given by

χ0(iωn,k) = 〈
Sz

kS
z
−k

〉
(3)

= 1

2

∫
d3q

(2π )3

1

β

∑
	n

Tr{G0(i	n,q)G0[i(	n + ωn),q + k]},

(4)

where the free-electron Green’s function is defined as
G0(iωn,q) = 〈c†qcq〉 = (iωn − Eq)−1. More details are ex-
plained in Appendix A. Figure 2 shows the calculated zero-
frequency spin susceptibility χ0(k) as a function of k for
different ratios of t ′/t . As expected, the spin susceptibility
is sharply peaked at a particular certain wave vector in the
physical range of t ′/t . Specifically, χ0(k) for t ′/t = 0.15
shows the highest peak at k = Qn = 2π ( 1

4 , 1
4 , 1

4 ), which defines
the nesting vector. Note that this is precisely the magnetic
ordering wave vector (in the cubic convention) observed in the
insulating low-temperature phase of the nickelates. Estimating
the instabilty from Eq. (2), we obtain Uc ≈ 1/χ0(Qn) ≈ 2 (see
Fig. 2).

III. HARTREE-FOCK THEORY

A. Restricted Hartree-Fock method

Having established the nesting wave vector, we proceed
to a (restricted) Hartree-Fock treatment of the ordering and
MIT. We include interactions in the two-band model via an
on-site Coulomb term U and Hund’s coupling JH , defined
from H = Htb + Hint,

Hint = U
∑

i

n2
i − JH

∑
i

S2
i , (5)

where ni = ∑
aα niaα and Si = ∑

aαβ c
†
iaα

σ αβ

2 ciaβ . As dis-
cussed earlier, what is important here, because of the nesting
physics, is the interaction between states near the Fermi
surface. As such, the U and JH terms may be thought of as
simply a convenient parameterization of the spin-independent
and spin-dependent parts of these interactions rather than
literally in terms of atomic Coulomb and Hund’s rule terms.
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FIG. 3. Spin configurations depending on the phase of ψ , θ ,
along x̂ axis. (a) Shows “site-centered” spin ordering for θ = 0,
(b) for intermediate θ = π/8, and (c) is “bond-centered” ordering
for θ = π/4.

To treat the problem in Hartree-Fock, we define a variational
wave function as the ground state of a fiducial mean-field
Hamiltonian, which has the form of a noninteracting two-band
hopping model plus linear “potentials” arising from coupling
to SDW and CDW order parameters. Experimental results
predominantly favor collinear magnetic ordering, of the form

〈Si〉 ∝ hi = ẑRe(ψeiQn·ri ) (6)

with complex variable ψ ≡ |ψ |eiθ . Figure 3 shows different
spin configurations, which depend on the phase of θ . For
instance, θ = 0 corresponds to “site-centered” spin ordering in
which the spin pattern is “up-zero-down-zero” moving along
a cubic axis, while θ = π/4 gives “bond-centered” ordering
and an “up-up-down-down” pattern. In the intermediate regime
0 < θ < π/4, the order is “off-center” as shown in Fig. 3(b).

As already discussed above and in Ref. 18, a CDW order
parameter will be induced with Qcdw = 2Qn = π (1,1,1) as
observed in experiment. This charge ordering is commonly
known as “rock-salt” ordering and implies that the electron
density at site i is represented as

〈ni〉 ∝ ρi = (−1)xi+yi+zi �, (7)

where � is an Ising-type order parameter for the charge
ordering.

The full mean-field Hamiltonian from which the Hartree-
Fock variational ground state is constructed then takes the
form:

Hvar = H̃tb + Hdw, (8)

Hdw = −
∑

i

hi · Si −
∑

i

ρini . (9)

The local exchange field hi and the charge ordering ρi couple
to the spin operator Si and the electron number operator
ni , respectively. Note that we allow additional freedom
in the variational state by letting the hopping parameters
renormalize. That is

H̃tb = Htb(t → t̃ ,t ′ → t̃ ′). (10)

The restricted Hartree Fock calculation proceeds by finding
the ground state of Hvar:

Hvar|�0〉 = E0|�0〉, (11)

with the constraint of quarter filling, i.e., one electron per site,∑
i ni = N , where N is the number of sites. The Hartree-Fock

ground state |�0〉 is then a function of four dimensionless
parameters: t̃ ′/t̃, |ψ |/t̃, �/t̃ , and θ . For each set of parameters,
we calculate the variational energy

EHF = 〈�0|H |�0〉, (12)

which is then minimized over the dimensionless parameters,
for fixed physical parameters t, t ′, U , and JH .

To find |�0〉 in practice, we work in the reduced Brillouin
zone (BZ) determined by the four-site magnetic unit cell. We,
thereby, end up with instead of two bands, with eight magnetic
ones, constructed from the different pieces of the original BZ
folded into the magnetic one,

cnaα(k) = caα(k + nQsdw), (13)

with n = 0,1,2,3 (for four magnetic sublattices), where a is
for two eg orbitals and α is for spin ↑↓. In this basis,

H̃tb =
′∑
k

∑
n

H̃ab(k + nQsdw)c†naα(k)cnbα(k). (14)

The prime on k sum means the sum over the reduced BZ.
In the same way, the density-wave Hamiltonian in k space is
represented as

Hdw =
′∑
k

∑
n

αψ

4
c
†
n+1aα(k)cnaα(k) + H.c.

+�c
†
n+2aα(k)cnaα(k). (15)

We then find the single-particle eigenstates by diagonalizing
the 8 × 8 matrix of the variational Hamiltonian (9) and
construct |�0〉 by filling the states up to the Fermi energy,
determined by the requirement of 1/4 filling. It is then
straightforward to express EHF in terms of the single-particle
states and occupation numbers, and perform the minimization
procedure (see Appendix B for more details).

B. Hartree-Fock phase diagram

1. Two SDW states

The resulting Hartree-Fock phase diagram for a typical
situation with t ′/t = 0.15 is shown in Fig. 4. We observe a
metallic regime at small U and JH , and two main ordered
phases with stronger interactions. For large JH , site-centered
SDW ordering with θ = 0 occurs, concurrent with strong
charge order, generating an insulating state. This is natural
because the large JH favors pairing of electrons into spin
S = 1 moments, requiring neighboring empty sites. More
mathematically, such Hartree-Fock states minimize the Hund’s
term. For large U , the bond-centered SDW with θ = π/4
occurs instead. This is again natural because the U term prefers
uniform charge density, and with θ = π/4 in the cubic system
(which we discuss here) no CDW order occurs.

2. Semimetallic B-SDW

Somewhat surprisingly, the bond-centered SDW state
remains semimetallic even at relatively large U within the
Hartree-Fock approximation. Indeed, examination shows that
the density of states is almost linearly vanishing approaching
the Fermi energy in this region, with a small nonzero value at
EF , which decreases with increasing U . This unusual behavior
arises from the specific “up-up-down-down” magnetic order-
ing in this phase. To understand it, recall that the cubic lattice,
viewed from the [111] direction, forms stacks of triangular
lattice layers. In the limit of strong bond-centered ordering, the
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FIG. 4. MIT bulk phase diagram for the model with cubic
symmetry as a function of U/t and JH /t , with t ′/t = 0.15. Here,
U is the on-site Coulomb interaction, JH is the Hund’s coupling, and
t is the nearest-neighbor hopping magnitude. The main phases that
appear are paramagnetic metallic state (M), metallic SDW (wavy
region close to M), insulating site-centered SDW (S-SDW), and
semimetallic bond-centered SDW (B-SDW). In between the S-SDW
and B-SDW state, one observes an off-center SDW phase with
0 < θ < π/4 (shaded region). The black colored shapes show the
points for which the optical conductivity is plotted in Sec. VI.

spins on each triangular plane are fully polarized. Moreover,
electrons of one spin polarization are confined to a pair of
parallel [111] planes, which together forms a honeycomb
lattice when connected by the dominant nearest-neighbor
hopping t . Thus in the limit of large U/t in the bond-centered
SDW state, the appropriate tight-binding model is that of
doubly degenerate eg orbitals on a honeycomb lattice:

H� = −
∑
ij

tab
ij c

†
iacjb. (16)

This model has four orbitals per unit cell due to the doubly
degenerate eg orbitals and the bipartite honeycomb lattice.
Figures 5(a), 5(b), 5(d), and 5(e) shows the dispersion and the
DOS of this tight-binding model for the cases t ′/t = 0 and
0.15. Without second-nearest-neighbor hopping t ′/t = 0, the

result contains two bands, which are identical to those of the
canonical nearest-neighbor tight-binding model for graphene,
possessing two Dirac cones with linear dispersion at Fermi
level. The similarity with graphene has led to the suggestion
that such systems might be used to engineer a topological
insulator.28 With increasing t ′/t , the DOS saturates at a small
nonzero value approaching the Fermi level. This is because
finite t ′/t introduces both second-nearest-neighbor hopping
and, more importantly, coupling between the honeycomb
bilayers. The latter expands the Dirac points into small electron
and hole pockets, in a similar manner as interlayer coupling
does in graphite.

3. Effects of orthorhombicity

As discussed in Ref. 18, the bond-centered ordering in
the large U region is actually unstable to orthorhombicity
(GdFeO3 distortion), which is present in all the nickelates
save LaNiO3. This is expected on symmetry grounds to drive
the SDW off center. The off centering in turn induces charge
order. Thus at the symmetry level, when orthorhombicity is
taken into account, the large U region is completely consistent
with experiment.

What of the metallicity in this region? In the graphene-like
honeycomb bilayer, the Dirac-point degeneracy is protected,
as it is in graphene, by inversion symmetry. Inversion is indeed
preserved by the bond-centered SDW in the ideal cubic system.
It is, however, violated when both the SDW and orthorhombic
distortions are present. Hence, we expect that orthorhombicity
not only affects the centering of the SDW, it also tends to
open a gap in the electronic density of states, converting the
semimetal to a true insulator.

We now study this microscopically. A leading effect of
the orthorhombic distortion is expected to be a crystal-field
splitting of the eg orbitals at each Ni site. Therefore we add
the on-site orbital splitting term

Hortho =
∑

i

Di · c
†
iaτabcib. (17)

FIG. 5. (Color online) Dispersion [panels (a), (b), and (c)] and density of states [DOS, panels (d), (e), and (f)] for the eg tight-binding model
on honeycomb lattice. In (a) and (d), t = 1 and t ′ = 0, we observe Dirac points with clear linear dispersion and corresponding linear DOS. The
Dirac cone is stable to small t ′ = 0.15 as shown in (b) and (e). In (c) and (f), an orbital splitting induced by the orthorhombic distortion of the
lattice is included, with t ′ = 0.15 and D = 1.5/

√
3(1,1,1). An induced gap is clearly seen.
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FIG. 6. Plot of the single-particle gap � vs the orbital field
|D|, for the honeycomb model with nearest-neighbor t = 1 and
t ′ = 0.15. Here, we have arbitrarily taken the orbital field of the form
D = (D,D,D)/

√
3.

Here, we have suppressed the (diagonal) spin indices, and
introduced Pauli matrices τ in the orbital space. Using the
symmetries of the Pbnm space group of the orthorhombic
structure, we find (see Appendix C) that the “orbital fields” Di

are all expressible in terms of a single vector D:

Di = ((−1)xi+yi Dx,(−1)xi+yi Dy,Dz) (18)

For simplicity, we consider this term in the effective honey-
comb lattice model, Eq. (16), relevant for the large U case.
Figure 5 shows how the the DOS changes in the presence of
an orthorhombic distortion. A gap indeed opens for sufficiently
large D, as plotted in Fig. 6.

4. Limitations of the restricted HF theory

Because we consider a restricted Hartree-Fock ansatz,
some lower-energy states that do not fit this ansatz may
be missed in Fig. 4. For example, near the onset of SDW
order, at relatively weak interactions, there is the possibility
of an incommensurate SDW. This may be expected since
the best nesting vector determined by the maximum of the
susceptibility is not exactly at the commensurate value, but
rather at Q ≈ 0.4π (111) (see Fig. 2). Generally, commensurate
states are preferred at strong coupling, and if incommensurate
phases exist, they would be expected to change to the
commensurate ones with increasing interaction strength, via a
commensurate-incommensurate transition.29

We have also neglected the possibility of spontaneous
orbital ordering, which could occur in the cubic model at large
U . Indeed, orbital degeneracy is crucial to the semimetallicity
found in the B-CDW phase, as we have seen above via the
introduction of orthorhombicity. Spontaneous orbital splittings
(ordering) provide a mechanism for the cubic model to achieve
a truly insulating state, which it must at sufficiently large U .
However, we argue that the absence of any observed orbital
ordering or Jahn-Teller distortion is evidence that this physics
is not relevant for the nickelates.

IV. STRONG-COUPLING LIMIT

The Hartree-Fock approach of the previous section is rea-
sonable for weak to intermediate strength interactions, which

we believe is most relevant for the more itinerant nickelates
with R = Pr, Nd. For completeness, in this section, we study
the complementary limit of strong interactions, U/t,JH /t �
1. Here, the two-band model is suspect, so the connection to
experiment is less clear. However, we can at least qualitatively
attempt to address the question of the interplay of charge and
spin order in the strong-coupling regime. Specifically, note that
in the more insulating nickelates, with R = Eu, Ho,30 charge
ordering appears first upon lowering temperature from the
paramagnetic metallic state, with magnetism occurring only at
lower temperature. Thus it seems that in these materials there
is a separation of scales, with the primary mechanism for the
MIT being charge ordering, and magnetism being secondary.
In this section, we will see that this is indeed the case in one
regime of the strong-coupling limit of the two-band model.
The specific parameters of this region do not, however, seem
very physical, supporting the idea that in the more insulating
nickelates a description beyond the two-band model is needed.

The strong-coupling limit may be considered an expansion
in the hopping t,t ′ about the limit t = t ′ = 0. In the extreme
limit, the behavior is determined entirely by the “atomic”
Hamiltonian Hint in Eq. (5), which can be solved independently
at each site, subject to the constraint of proper total electron
occupation (quarter filling). There are two regimes, determined
by the parameter α = U/JH . For α > 1/4, the atomic ground
state is one with one electron per site. In this regime, every
site is equivalent and has four states available to it due to
the spin and orbital degeneracy. Further perturbation in t,t ′
will therefore result in a spin-orbital Hamiltonian of the
Kugel-Khomskii type.

The other regime occurs when α < 1/4, and in this case, the
electrons prefer to segregate into two sets of sites with equal
numbers in each: doubly occupied sites with total spin S = 1
and empty sites. The ground-state energy in this regime is E0 =
−(1 − 2α)NJH , where N is the number of sites. Here, there
are two sorts of degeneracies. First, for t = t ′ = 0 the location
of the paired sites is undetermined, so there is a degeneracy of
N !/[(N/2)!]2 associated with the different possible location
of the pairs. In addition, for each of the paired sites, there are
three spin states available.

In the remainder of this section, we will focus on this latter
regime. Physically, we may consider the paired sites as bosons
with spin S = 1. By introducing hopping perturbatively, we
may introduce hopping and interactions between the bosons. In
the perturbative treatment, we will, in addition to t/U,t/JH 
1, further assume t ′/t  1, which simplifies the algebra
considerably. Below, we argue that the leading effects of
hopping, at O(t2), induce charge ordering of the bosons,
reducing the problem to an effective spin S = 1 model. The
spin degeneracy of the bosons is split only at the next nontrivial
order, O(t4). This qualitatively agrees with the separation
of scales observed between charge and spin order in the
nickelates.

A. O(t2/JH ): charge ordering

We first consider the effective Hamiltonian for the system at
the leading nonvanishing order in perturbation theory, which is
second order in hopping, for the case of α < 1/4. To formulate
the perturbation theory, we treat the Hund’s and Coulomb part

165119-6



METAL-INSULATOR TRANSITION IN A TWO-BAND . . . PHYSICAL REVIEW B 84, 165119 (2011)

as the unperturbed Hamiltonian,H0 = Hint, and the hopping as
the perturbation, H1 = H0. We denote the projection operator
onto the ground-state manifold of H0 at quarter filling by P . If
|�〉 is an exact eigenfunction of the system with energy E, then
its projection into the ground-state subspace, |�0〉 = P|�〉
satisfies(

E0 + PH1
1

1 − RQH1
RH1

)
|�0〉 = E|�0〉, (19)

where R = (H0 − E)−1 is the resolvent and Q = 1 − P .
Equation (19) is an implicit nonlinear eigenvalue problem and
we will only evaluate it perturbatively in H1, then it becomes

Heff|�0〉 ≡ (E − E0)|�0〉

≈ PH1

3∑
n=0

(−1)n (RQH1)n |�0〉, (20)

where to this order of accuracy, we can safely approximate
R ≈ (H0 − E0)−1.

The second-order term in degenerate perturbation theory
corresponds to n = 1 in Eq. (20) in which electrons make two
consecutive virtual hopping transitions. The terms for three
different types of hops can be combined (see Appendix D for
more details), up to an additive constant, into

H(1–3)
eff =

∑
〈ij〉

[
4t2

JH

1

1 − 4α
+ 2t2

JH

1

5 + 4α
(�Si · �Sj−1)

]
NiNj .

(21)

Equation (21) gives the effective Hamiltonian at leading
order for α < 1/4. To solve it, we note that Ni commutes
with H(1–3)

eff and is thus a good quantum number at every site.
We then can easily see that the charge-ordered states with
Ni = 0,2 on the two rock-salt fcc sublattices saturate a lower
bound on the energy of H(1–3)

eff = 0. This follows because,
since the eigenvalues of �Si · �Sj are bounded by −2, hence
the effective boson-boson repulsion [the term in the square
brackets in Eq. (21)] obeys

Veff =
[

4t2

JH

1

1 − 4α
+ 2t2

JH

1

5 + 4α
(�Si · �Sj − 1)

]
> 0. (22)

Thus, regardless of the specific spin states of the boson
pairs, their nearest-neighbor interaction is always repulsive
for 0 � α < 1/4. The lower bound and hence charge order in
the ground state follows.

B. Magnetic interactions

Notably, although the effective interaction Veff ∼ t2/JH

determines the charge order in the ground state (and defines
the energy scale separating it from uniform states), the spin
degrees of freedom on the doubly occupied sites remain
undetermined at leading order. The spin physics is dictated
by subdominant terms. Thus the appearance of charge order at
a higher temperature than magnetism is a feature of this limit
of the two-band model. Let us now consider the magnetic
interactions in more detail.

First, we focus on the spin exchange between nearest-
neighbor sites on the fcc sublattice, i.e., second nearest-
neighbor sites on the original cubic lattice. There are three

lowest orders that we will consider: O(t4/J 3
H ), O(t2t ′/J 2

H ), and
O(t ′2/JH ). Although the effects of the t ′ hopping is a relatively
small correction to the dominant t hopping, in the strong J

limit, it is not negligible because it can contribute at second
and third order to the exchange between spins. Formally, all
these terms are on an equal footing if we take t ′ ∼ t2/JH .
We combine the contributions from different orders together
(see Appendix D for more details). The total spin exchange
between nearest-neighbor sites on the fcc sublattice is

J1 = − t4

J 3
H

1

(1 − 4α)2

[
8(5 + 4α)

(1 − 4α)(5 − 4α)
− 5

5+4α
− 1

1−4α

]

+ t2t ′

J 2
H

1

1−4α

[
10

5+4α
+ 5

1−4α

]
+ t ′2

JH

5

5 + 4α
. (23)

Next, we focus on the spin exchange between next-nearest-
neighbor sites. Calculation then shows

J2 = t4

J 3
H

1

(1 − 4α)2

[
16

5 − 4α
+ 8

5 + 4α

]
. (24)

From the expression of J1 and J2, we obtain that if
both t ′ and α are reasonably small, there are ferromagnetic
interactions between nearest neighbors and antiferromagnetic
interactions between second nearest neighbors on the fcc
lattice. For the J1 exchange, O(t4/J 3

H ) term is the dominant
term for the ferromagnetic interaction. The negative sign for
that case can be understood as arising due to the Hund’s rule
coupling on the intermediate k site, which prefers the two
transferred virtual electrons to be in a triplet state. For the J2

exchange, however, because i,j,k are all along a single cubic
axis, only one orbital can hop. For this reason, in the first
hopping procedure (which is dominant) that contributes to J2,
it is impossible to obtain a triplet intermediate state, since
two electrons in a single orbital must form an antisymmetric
singlet. This explains the antiferromagnetic sign of this
exchange.

Let us see what magnetic structure is expected from this
exchange Hamiltonian. Since the fcc lattice is a Bravais lattice,
we can use the Luttinger-Tisza method to find the classical
ground states. We simply Fourier transform the exchange
couplings to obtain the energy of spiral states with wave vector
k. One finds

Ek = −6J2 + 4J2

3∑
μ=1

x2
μ + 4J1

∑
μ>ν

xμxν, (25)

where xμ = cos kμ. Since this energy is quadratic in the xμ, we
can consider it as a quadratic form. The eigenvalues of the form
are 8(J1 + J2) and 8J2 − 4J1 (the latter is twofold degenerate).
It is therefore positive definite if J2 > max(−J1,J1/2). When
this is satisfied, the minimum energy states are those with
xμ = 0, i.e., kμ = ±π/2. These are exactly the magnetic states
observed experimentally. The phase diagram in Fig. 7 shows
the classical magnetic ground state for different values of α

and β ≡ t ′JH /t2. We note that if t ′ = 0 (β = 0) and α = 0,
the ground state appears to be ferromagnetic. When t ′(β) is
included, the ferromagnetic J1 interaction is decreased, and
the antiferromagnetic state will be stabilized. For the region
α < 0.1, the magnetic ground state is antiferromagnetic when
t ′ ∼ t2/JH . It is remarkable that one can obtain in this way the
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FIG. 7. Phase diagram of the classical ground state as a function
of two dimensionless parameters α ≡ U/JH and β ≡ t ′JH /t2.

same magnetically ordered state as found from the itinerant
nesting picture.

C. Comparison with weak-coupling limit

According to the perturbation theory of the large Hund’s
coupling, charge order first appears at O(t2/JH ) and then
magnetic ordering occurs due to perturbation at O(t4/J 3

H ),
O(t ′2/JH ), and O(t2t ′/J 3

H ). Since the magnetic ordering
arises from a temperature scale smaller than the charge-
ordering phase, this agrees with the experimentally observed
intermediate charge-ordering phase without magnetism. On
the other hand, in the weak-coupling limit, the charge ordering
is always slaved to the primary magnetic ordering.18

V. CONFINEMENT EFFECTS IN THIN FILMS

The success of the Hartree-Fock theory in reasonably
predicting the charge and spin ordering in the more-itinerant
nickelates undergoing an MIT suggests that the approach may
also be successfully applied to films. Recently, various growth
issues have been overcome leading to epitaxial films of good
quality on several substrates with layer-by-layer control. One
may expect that the MIT and related charge and spin ordering
can be strongly modified in thin films, due to both distortions
(dependent on details of the substrate and growth conditions),
effects of changes in chemistry at interfaces, and quantum
confinement effects. Because of the difficulty of controlling
the former two effects (which in any case are better studied
by first-principles methods), we focus here entirely on the
latter, and consider in this section the simplest possible model
of a finite thickness film. That is, we simply take the bulk
tight-binding Hamiltonian and apply it to a finite thickness
slab consisting of L unit cells in the confined direction, with
effectively “vacuum” outside the slab, i.e., open boundary
conditions. Given the importance of Fermi surface shape in
determining the nesting properties, we expect that quantum
confinement alone can significantly modify the MIT properties
and the ordering in the insulating state.

A. Single layer, L = 1

First of all, we consider the extreme case of a single
NiO2 layer, following the methods used for the bulk. Here
and throughout this section, we will neglect the symmetry-

FIG. 8. Panel (a) shows the zero-temperature phase diagram for
a single layer L = 1 with the nesting vector Q2d

sdw = 2π ( 1
4 , 1

4 ). As in
the bulk case, the paramagnetic metallic phase (M) is stable for weak
interactions. The wavy region indicates a metallic SDW state, and
the shaded region indicates an insulating off-center SDW. Panel (b)
shows the phase diagram for three layers, L = 3, with the nesting
vector QL=3

sdw = 2π ( 1
4 ,0,0). This nesting vector leads to a metallic

B-SDW phase, which persists even for large U/t . The dark gray
region between the S-SDW and B-SDW phases is a metallic off-center
SDW.

lowering effects that must be present in such a two-dimensional
structure, and in particular any tetragonal orbital splitting,
which is likely to be the dominant effect of this type. With this
proviso, the Fermi surface and nesting properties are shown
in Fig. 9(a). The two-dimensional Fermi surfaces show large
flat regions similar to the bulk case. The zero-frequency spin
susceptibility χ2d

0 (k) is shown in Fig. 9(e) (see Appendix A).
It is sharply peaked at Q2d

sdw = 2π ( 1
4 , 1

4 ). Repeating the Hartree-
Fock calculations for this case, using this SDW vector, we
obtain the phase diagram in Fig. 8(a). The results are quite
similar to the bulk case, except that the bond-centered SDW
is insulating in this case, as the honeycomb lattice structure
does not arise for a single square lattice layer. Somewhat
surprisingly, the location of the MIT (U/t)c ≈ 2 at JH /t =
0 remains almost unchanged from the bulk case. Naively,
one would expect a decrease in (U/t)c in 2D, because the
bandwidth is reduced by confinement. We attribute the lack of
such a decrease to decreased nesting in the 2D case, as can
be seen by comparing Figs. 2 and 9: the susceptibility has a
higher peak in bulk than in the single layer.

B. Intermediate thickness films

We now consider the intermediate cases with L � 2 NiO2

layers along the ẑ direction. In this case, the single-particle
states can be taken as standing waves in the vertical (ẑ)
direction, with kz = πl/(L + 1) where l = 1,2, . . . ,L. One
obtains correspondingly 2L subbands (two arising from
the orbital degeneracy), each of which may have a Fermi
surface. The calculated noninteracting Fermi surface and spin
susceptibility for several values of L are shown in Fig. 9 (see
Appendix A for more details of the calculation of the spin
susceptibility).

From Fig. 9(g), we see that the peak of the susceptibility
varies considerably and in a nonmonotonic fashion with L.
While the case L = 2 [open circles in Fig. 9(f)] is quite similar
to the result for the single layer, L = 3 and 4 are considerably
distinct. For larger L, there is a slower variation of behavior,
and by increasing the thickness to L = 30 [filled circles in
Fig. 9(f)], the bulk behavior [black line in Fig. 9(f)] is almost
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FIG. 9. The zero-frequency spin susceptibility, χ0(k), for finite thickness slabs of L layers, for the free-electron tight-binding Hamiltonian
with t ′/t = 0.15. Plot (a) shows the purely two-dimensional single-layer case. Here, χ0(k) is sharply peaked at k = Q2d

sdw = π/2(11). Plot
(b) shows several cases with varying thickness with 2 � L � 30, compared with the bulk case L = ∞. One sees that large L = 30 (filled
circles) agrees well with the bulk susceptibility (black solid line). For smaller L, we see that the nesting properties change considerably. This
is especially pronounced for L = 3 (filled squares), for which χ0(k) is sharply peaked at k = Q ≈ π/2(100) and for L = 4 (open squares), for
which it is peaked at k ≈ 0.

perfectly recovered. Thus we expect particularly distinct phase
diagrams for the cases L = 3 and 4, and focus on these below.

1. L = 3

For L = 3, one observes comparable peaks in the suscepti-
bility at two wave vectors: Q = π/2(100) and Q = π/2(110).
The former is quite distinct from the ordering in the single-
layer and bulk cases. To decide amongst the two possibilities,
we compared the variational energy in the Hartree-Fock
approximation for the two choices, and found that, over the full
range of U and J , the total energy is lower for Q = π/2(100).
Thus the model predicts quite distinct ordering in the trilayer
case.

The full Hartree-Fock phase diagram, assuming this wave
vector, is shown in Fig. 8(b). Details of the calculations
for finite L, which are somewhat complicated by the many
subbands, are given in Appendix B. Once again, both site-
centered and bond-centered SDW states appear, but the site-
centered SDW occurs here only at very large values of the
Hund’s coupling, JH /t � 10, making it probably entirely
unphysical. Another distinction from the cases discussed
previously is that the bond-centered SDW for L = 3 appears
to be fully metallic. This is because the SDW with wave
vector Q = π/2(100) describes stripes of electrons with all
spins parallel in vertical stripes along the y direction. Thus
the electrons are free to hop in this direction—actually they
form “ladders” of two parallel spin-aligned chains—and one
has a sort of quasi-one-dimensional metallic state. Instabilities
of the one-dimensional ladders would probably be expected
beyond the Hartree-Fock approximation, and could lead to
further charge/spin/orbital ordering and insulating behavior,
but this is not within the scope of our study.

2. L = 4

One more noticeable feature in the spin susceptibility
plotted in Fig. 9(f), is the large Q ≈ 0 peak for L = 4 (see open
squares). The Q = 0 (uniform) susceptibility is simply propor-
tional to the density of states, which is apparently enhanced

for this film thickness. The origin of this enhancement is seen
by inspecting separately the Fermi surfaces associated with
individual subbands with discretized kz = πlz/(L + 1), shown
in Fig. 10. One sees that the L = 4 case is unique in having
three distinct Fermi surfaces (two hole and one electron) for the
lz = 1 subband. Since the density of states is proportional to the
Fermi surface area, this explains the observed enhancement.
Some understanding of this is obtained by inspecting the bulk
Fermi surface, Fig. 1(d). It contains a large holelike surface,
which has rather flat faces parallel to [001] planes. For the
specific case L = 4 and lz = 1, the discretized kz = 0.2π cuts
across this rather flat when lz = 1. As a result, there is the flat
face, leading to the multiple two-dimensional subband Fermi
surfaces. This enhanced density of states could potentially lead
to ferromagnetism for this case, but since ferromagnetism is
notoriously overestimated by the Hartree-Fock approximation,
we do not pursue this further here.

VI. DISCUSSION

In the prior sections, we have studied a minimal two-band
model for the perovskite nickelates with a focus on the MIT
and the spin and charge ordering in the insulating state.

A. Do we need the oxygen orbitals?

In the minimal model used in this paper, we have eliminated
the oxygen orbitals to obtain an effective two-orbital Hubbard
model. Several papers in the literature, however, claim that
the oxygen states are crucial for the physics of the nickelates.
Here, we will discuss this issue, and argue that the importance
of explicit inclusion of the oxygen states depends upon the
questions being asked.

In general, in the Fermi liquid paradigm, which applies
to weakly to moderately correlated itinerant systems, the
behavior of the electrons is dictated by the vicinity of the Fermi
surface(s) only, and by the effective interactions amongst
these states near the Fermi surface. The great insight of
Landau in developing Fermi liquid theory was that the actual

165119-9



SUNGBIN LEE, RU CHEN, AND LEON BALENTS PHYSICAL REVIEW B 84, 165119 (2011)

FIG. 10. The Fermi surfaces for different subbands in the kx-ky plane with discretized kz = πlz/(L + 1) for the cases L = 3, 4, and 5. The
dotted (solid) lines correspond to conduction (valence) subbands. In the case L = 4, we see two valence subband Fermi surfaces at kz = 0.2π

(lz = 1), which is responsible for an enhancement of the DOS at Fermi energy.

wave functions of these “quasiparticle” states are largely
unimportant. Thus when it applies, any model that properly
mimics the band dispersion near the Fermi surface (and its
symmetry), and which captures sufficiently the interactions
amongst the near-Fermi surface states, serves to correctly
model the electronic behavior. It is well established now that
LaNiO3, the metallic end-member of the RNiO3 series, has
a Fermi surface which is obtained from the intersection of
just two bands with the Fermi energy. These bands have
eg character, which can be mimicked by the minimal tight-
binding model used in this paper. Provided the band picture
of the important electronic states near EF is adequate, this
basis is sufficient to describe the nickelates. The extent of the
microscopic oxygen versus nickel character of the states is
subsumed into the Bloch wave functions, which do not appear
in the band Hamiltonian, and to a lesser extent in the effective
interactions. We conclude that for low to intermediate energy
properties for which the two-band description is adequate,
explicit treatment of the oxygen states is not important.

However, one may ask questions—and conduct
experiments—for which the oxygen states are obviously
essential. For instance, inelastic x-ray scattering can measure
the relative fraction of Ni2+ and Ni3+ occupation of the Ni
3d states. Estimates for NdNiO3 show that there is as much
as 40% Ni2+. By neutrality, the Ni2+ can only arise through
the presence of holes in the oxygen states. This implies the
Bloch wave functions associated with the the “oxygen bands”
and “nickel bands” have in fact considerably mixed character.
However, this does not affect the reliability of the two-band
model for the states near the Fermi energy. Indeed, the
measurement of the Ni valence state is actually a measure of
the occupied states, and hence is really related to the character
of the filled valence band Bloch wave functions, not to that
of the near-Fermi surface states. Of course, by orthogonality,
if the nominally oxygen states have mixed character, so too
must the nickel states.

Other high-energy related questions may be sensitive to the
oxygen character. For instance, let us consider the properties of
an interface. In standard semiconductor systems, an interface

can be understood through band diagrams, which include
only the energies of the bands, and not their wave functions.
Thus when this approach applies, the oxygen character is not
important. In fact, band diagrams rely upon a semiclassical
treatment, which assumes that the electrostatic potential,
carrier density, etc., vary slowly with respect to the lattice
spacing. This in turn is correct in semiconductors due to their
small effective mass and large dielectric constant. There is no
need for this to apply to nickelate interfaces.

In fact, it would be natural to expect a change in the oxygen
character at an interface.31 Consider an interface with a band
insulator such as LaAlO3 (LAO), in which there are no 3d

orbitals near the Fermi energy. By neutrality, in LAO the
oxygen valence should be “exactly” (or at least much more
so than in the nickelates) O2−. This implies that the Ni 3d

orbitals in the plane adjacent to the LAO are less able to
hybridize with the intervening oxygens, since these states are
“blocked.” One can consider a simple model in which this
physics is accounted for by ascribing an oxygen orbital energy
εp′ for the intervening oxygens, which is lower (so that here
the electrons are more strongly bound to their oxygen) than
the energy εp for the same orbitals inside the nickelate, i.e.,
εp′ < εp. The larger energy separation εd − εp′ > εd − εp for
the interfacial states implies reduced mixing of the nickel and
oxygen states. Thus we expect that the Ni2+ character of the
interfacial nickel ions should be reduced. As already remarked,
this is a high-energy property, related to the occupied states.
However, the reduced mixing has implications at low energy
as well. It implies reduced-level repulsion between the 3d

(specifically the dz2 ) and 2p states, so that the partially filled
orbitals corresponding to the near Fermi energy states should
be lowered relative to bulk nickelates near the interface. That
is, the conduction electrons feel an attraction to the dz2 orbitals
in the interfacial NiO2 plane. Note that, although oxygen
physics induces corrections to its Hamiltonian parameters, the
two-orbital model remains valid even for the interface.

This physics may be relevant to recent experiments on
LNO heterostructures. Several experiments have indicated the
formation of an insulating state for very thin LNO films with
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only a few unit thickness. This appears at odds with the
calculations in Sec. V, which find that the metal-insulator
transition point is largely unchanged by confinement, even
for very thin films. This model, however, neglects the induced
orbital potential at the interface. One would expect this orbital
potential to partially polarize the orbitals at the interface
in favor of the dz2 states, which conduct poorly in the xy
plane. Moreover, the shift of these orbitals renders interlayer
tunneling nonresonant, which will further reduce the kinetic
energy. Thus it is natural to expect the insulating state to be
enhanced by this effect. In the future, we plan to investigate
this in more detail by including the interfacial orbital attraction
explicitly in the Hartree-Fock calculation.

B. Strong versus intermediate correlation

In this paper, we have contrasted the limits of weak to
intermediate correlation (and Hartree-Fock theory) and strong
correlation (the perturbative approach in Sec. IV). It was
argued that the strong-coupling limit seems not very realistic.
However, there are indications that something beyond the
weak-coupling view is needed, at least for the more insulating
nickelates, with R = Lu, Ho, and Y. In these materials, the
charge-ordering and insulating transition occurs above 500 K
but magnetism only sets in around 100 K. A factor of five or
more discrepancy between these two scales is hard to reconcile
with a weak-coupling picture. One type of strong-coupling
picture is discussed by Anisimov et al.,32 in which the nickel
charge state is regarded as Ni2+, which forms an S = 1 spin,
while the mobile charge is actually in the form of holes on
the O sites. The corresponding model would be a type of
underscreened Kondo lattice. Charge ordering of the type seen
in experiment is certainly possible, and would be viewed as
the formation of collective Kondo singlets between two holes
and a Ni2+ spin on half the lattice sites.33 To our knowledge,
whether this actually occurs for a Kondo model of this type
has not been established theoretically. This is an interesting
problem for future study. A likely issue with such a Kondo
description is that the band structure appears very different
from the bands with eg character predicted and observed in
LaNiO3. Instead, the itinerant carriers must arise from oxygen
bands, and it is not clear why this should in any way mimic the
eg structure. But perhaps the bands in LuNiO3 are radically
different from those in LaNiO3. If so, this should be testable
experimentally.

Some sort of intermediate-coupling picture is also possible.
Indeed, even if the most insulating materials are at strong
coupling, and, as we have suggested, PrNiO3 and NdNiO3

are better thought of in the SDW (weak to intermediate
coupling) limit, then there are compounds in between. Here
presumably, a full description with all the orbital involved
and charge fluctuations allowed in all orbitals is needed, and
there is little simplicity to be found. Probably, an approach
that combines elements of ab initio theory and reasonable but
ad hoc treatment of interaction physics such as DMFT is the
best in this regime.34 In this situation, it will, unfortunately,
probably, be difficult to identify any single mechanism for
charge ordering.

In our opinion, it is likely that one physical effect we
have not so far discussed, the coupling to lattice phonons,

is important. The Kondo singlet formation mentioned above
would obviously benefit from a contraction of the neighboring
oxygens around the Ni2+ spin in question. Indeed, it is this
contraction that is actually observed experimentally, rather
than any real electric charge density. The same local phonon
mode that would couple to the Kondo singlet would also favor
charge ordering in the intermediate coupling view. It may
be that this electron-phonon interaction gives a reasonable
mechanism for the more insulating nickelates.

C. Experimental signatures

It is desirable to understand how the different scenarios
might be distinguished experimentally. We will focus here
primarily on the expected consequences in the itinerant regime
as the primary focus of this work. However, we briefly discuss
expectations for the strong-coupling limits. In the strong-
coupling picture, we would presumably expect the insulating
states to have a full gap to electron and hole quasiparticles.
Moreover, local S = 1 moments would be well formed on half
the Ni sites (forming an fcc sublattice), prior to ordering into
an antiferromagnetic ground state. With these site-center local
spins, it seems difficult to imagine an antiferromagnetic state
with the symmetry of the bond-centered or off-center SDW,
and we would expect a site-centered SDW (antiferromagnetic)
order. This particular symmetry could be distinguished by a
careful determination of local moments at all the nickel sites
from neutron or NMR/μSR measurements.

Turning now to the itinerant regime, we consider the
experimental consequences of the nesting scenario. First, we
discuss the thermal phase transition. In this limit, since the
SDW drives the charge order, the two types of order should set
in simultaneously at a single critical temperature. In Ref. 18,
it was shown that this transition is theoretically expected to
be first order for several reasons. These two observations are
consistent with experiment.

More detailed comparison can be made with electronic
structure. We discuss in particular the implications of the
nesting scenario for dc transport and optical measurements
in the following.

1. Transport anisotropy

Transport is an important probe of the electronic structure.
In the nesting picture, the SDW order is directly and strongly
coupled to the quasiparticles, and hence should strongly
influence the transport. The most qualitative feature of this
coupling is that the SDW order imposes its lower lattice
symmetry, and in particular, spatial anisotropy, upon the
quasiparticles. In contrast, within the strong-coupling view,
the charge ordering is dominant, and this charge ordering itself
is not anisotropic (it doubles the unit cell but is compatible
with cubic symmetry). We therefore expect that, when the
nesting picture is valid, prominent transport anisotropy should
be observed to set in for T < TMIT.

We focus first on the bulk case, for which the SDW
wave vector Qsdw = 2π (1/4,1/4,1/4) obviously breaks cubic
symmetry. As discussed in Sec. III B 2, the electronic structure
in the B-SDW phase is describable as a set of weakly coupled
honeycomb [111] bilayers, leading (neglecting orthorhombic-
ity) to a semimetallic state. Hence we expect the B-SDW
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FIG. 11. Bulk conductivity anisotropy in the B-SDW state as a
function of the amplitude |ψ | of the SDW order parameter.

ordering to be accompanied by strong electrical anisotropy,
with much larger conductivity within the [111] plane than
normal to it.

We have calculated this conductivity at zero temperature
using the Hartree-Fock quasiparticle Hamiltonian. From the
Boltzmann equation within relaxation time approximation,
one has

σμν =
∑

n

e2τ

∫
d3k

8π3
[−f ′(εn)]vn,μ(k)vn,ν(k), (26)

where τ is a constant relaxation time, f is the Fermi
distribution f (ε) = 1/[eβ(ε−μ) + 1], and vn,μ = ∂εn(k)/∂kμ,
where n is a band index. We have a total of eight bands
(2 eg orbitals × 4 magnetic sublattices = 8), and the band
energies and velocities must be found numerically. Using
k · p perturbation theory,35 one has:

vn,μ(k) = 〈ψnk|∂H(k)

∂kμ

|ψnk〉, (27)

where H(k) is the 8 × 8 matrix Bloch Hamiltonian. From the
above formulas, we calculated the conductivity σ‖ parallel
to the [111] axis and σ⊥ normal to it. The ratio is plotted in
Fig. 11 for the B-SDW state. As expected, a large anisotropy
is observed once a significant magnetic order develops.

Note that the same result would be expected for a thick
film, where the behavior is predominantly bulklike. In this
case, the measureable quantity is the effective two-dimensional
conductivity tensor for the plane of the layer, which is usually a
[001] plane. By symmetry, we expect the principle axes of the
2D conductivity to be the 11 and [11̄] directions, with different
conductivities along each in the SDW state. Note that in
practice, this is complicated by the effects of orthorhombicity,
which already should induce transport anisotropy even in the
metallic state. However, we expect that this intrinsic anisotropy
is probably mild, and that a pronounced effect due to SDW
ordering should be observable below TMIT.

For thin films, confinement effects may contribute to or
modify the anisotropy. For instance, in the three-layer case,
we observed a change in the nesting wave vector to QL=3 =
2π (1/2,0,0). In this state, the anisotropy axes imposed by
the SDW are different. In particular, an “up-up-down-down”
magnetic configuration along the x̂ axis is stabilized, so that
the spin-polarized electrons are free to hop along ŷ direction.

0 1 2 3 4 5 6
0.00
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0.30
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e2

Bulk

yy
L 3

xx
L 3

FIG. 12. Electrical conductivity for L = 3 and bulk with fixed
t̃ = 1, t̃ ′ = 0.15, θ = π/4, and � = 0. The isotropic conductivity in
the bulk case (dotted line), σ Bulk, decreases to zero as a gap in the
DOS develops with increasing SDW order. For the three-layer case,
L = 3, the conductivity shows a large anisotropy in the xy plane once
the SDW develops.

Hence, in this case the low- and high-conductivity axes are
the [10] and [01] axes, respectively. This is shown in Fig. 12,
in which the magnitude of SDW, |ψ |, is varied while fixing
t̃ = 1, t̃ ′ = 0.15, θ = π/4 and � = 0. Indeed, in this case the
anistropic behavior is even more pronounced, for in the model,
the “hard” axis conductivity σxx actually vanishes at T = 0 in
the limit of large SDW gap, while σyy saturates to a constant
for arbitrarily large |ψ |, because the spin-polarized electrons
are free to hop along ŷ direction. In this case, the formation of
the SDW opens the Fermi surface.

2. Optical conductivity

Optical conductivity is an other important probe of elec-
tronic structure. For LaNiO3, which is metallic at all temper-
atures, experiment shows a reduced Drude peak compared to
band theory,11 which may be considered as evidence of moder-
ately strong correlation. However, apart from this quantitative
renormalization of the low-energy Drude part, the theoretical
optical conductivity obtained from the simple two eg band
model reproduces experiment fairly well up to ω ≈ 2 eV.11

Applying the same analysis to the magnetically ordered phases
in our bulk phase diagram, Fig. 4, we obtained strikingly
different results as a consequence of SDW formation.

The calculations are made using standard linear response
theory within the Hartree-Fock variational Hamiltonian. From
the Kubo formula, the real part of optical conductivity
σαβ(	,k) is related to the imaginary part of current-current
correlation �αβ(	,k):36

σαβ = i

ω

∫
d3k

(2π )3
�αβ(	,k) + n0e

2

m
δαβ (28)

with wave vector k, frequency 	, average density n0, and
electron mass m. The current-current correlation function with
imaginary frequency i	l is defined as

�αβ(i	l,k) = 2

vol

∑
abcd

jab
α (k)jcd

β (k)
1

β

∑
n

Gad

× (iωn + i	l,k)Gcb(iωn,k). (29)

165119-12



METAL-INSULATOR TRANSITION IN A TWO-BAND . . . PHYSICAL REVIEW B 84, 165119 (2011)

FIG. 13. The real part of the optical conductivity, σ (ω), for each phase (black star) in the bulk phase diagram (see Fig. 4). In (a), the
paramagnetic metallic phase shows a large Drude peak and a small hump (see inset plot). The hump is related to a region of large DOS for
interband transitions (see Ref. 11). In (b), the metallic SDW phase has a reduced but nonzero Drude peak and a small second peak due to the
SDW gap. Plot (c) shows the case of the semimetallic B-SDW phase, for which a linear increase of σ (ω) for small frequency ω is found, related
to the linear dispersion near the Fermi level. It also shows strong anisotropy between the conductivity σ[111]‖ (along the [111] direction) (solid
line) and σ[111]⊥ (perpendicular to [111]) (dashed line). In plot (d), a large gap is visible in the S-SDW phase.

At zero temperature, this can be calculated from the spectral
representation (see Appendix E),

Im[�αβ(	,k)] =
∑
mm′

φa∗
m φb

m′φ
c∗
m′φ

d
m

∫
dω

π
Am(ω)Am′

× (ω + 	)[nF (ω) − nF (ω + 	)], (30)

where Am(ω) = γ /[(ω − Em + μN )2 + γ 2], with γ a small
scattering rate [imaginary part of the first-order self-energy
correction Im�(ωn) = −iγ sgn(ωn)] added by hand, and
φa

m(k) is the a component of mth eigenstate; nF (ω) =
1/(eβω + 1) is Fermi distribution.

Figure 13 shows the optical conductivity calculated in
this way for each of the different phases (taken at the spots
marked by symbols in the phase diagram in Fig. 4). The
above-mentioned comparison of theory and experiment for the
paramagnetic metallic state is shown in panel (a), taken from
Ref. 11. The development of SDW order strongly suppresses
the Drude peak, as expected, which can already be seen in
the metallic SDW state when the density of states at the Fermi
energy is still nonzero (but small), see Fig. 13(b). Interestingly,
a small peak appears instead at ω/t ∼ 0.3. This peak arises
from a transfer of spectral weight from low frequency to above
the SDW gap. Figure 13(c) shows σ (ω) for the B-SDW state,
which has a semimetallic band structure. One observes a linear
increase of Re[σ (ω)] for small frequency ω, which is similar to
the behavior expected from the Dirac points in graphene, and
indeed arises from the honeycomb [111] bilayer structure of
the spin-polarized regions, as discussed in Sec. III B 2. Here,

we have plotted the powder-average conductivity, since the
full tensor is anisotropic as discussed above. This calculations
has neglected orthorhombicity, which would introduce a gap
at low energy and thereby interrupt at least part of the linear
region. However, a linear increase of σ (ω) at low frequency
was indeed seen in bulk experiments on NdNiO3 below the
transition temperature.37 Finally, in Fig. 13(d), we plot the
optical conductivity for large Hund’s coupling J , in the S-SDW
where strong charge order is present. A large gap opens in the
spectrum, resulting in zero Re[σ (ω)] up to ω/t ≈ 1.

D. Summary

We have presented a theoretical analysis of the metal-
insulator transition in the nickelates from a minimal two-
band model and Hartree-Fock theory, which we argued is
appropriate for the itinerant limit of weak to intermediate
correlation. This picture of the metal-insulator transition can
be tested in various ways, as suggested above, and appears
to us to be the most consistent one for the materials NdNiO3

and PrNiO3, located close to the zero temperature MIT phase
boundary. For the more insulating nickelates, a different
type of theory is required, involving stronger correlation and
possibly an important role for electron-lattice coupling. Both,
further theoretical work in clarifying the mechanism for the
MIT transition in those materials and experimental work
that can test the itinerant picture (such as measurement of
transport anisotropy) would be very desirable. Finally, we have
shown that quantum confinement alone cannot explain a Mott
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insulating behavior in ultrathin LaNiO3 films, and suggested
a physical mechanism by which the observed insulating state
can be obtained. It will be interesting to pursue this question
further in the future.
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APPENDIX A: DYNAMICAL SPIN SUSCEPTIBILITY
FOR FREE ELECTRONS χ 0(�,k)

In this section, we derive the dynamical spin susceptibility
for free electrons both for bulk and finite layers. In general, the
dynamical spin susceptibility for Matsubara frequency i	n,
and wave vector k can be represented as following:

χ0(i	n,k) = 〈
Sz

kS
z
−k

〉
(A1)

= 1

N

〈∑
rr′

Sz
rS

z
r′e

ik(r−r′)

〉
(A2)

= 1

N

〈 ∑
rr′

∑
αβ,α′β ′

1

4
c†rαcrβc

†
r′α′cr′β ′σ z

αβ

× σ z
α′β ′e

ik(r−r′)

〉
(A3)

= 1

N

〈 ∑
{qi}

∑
rr′

∑
αα′

1

4N2
c†q1α

cq2αc
†
q3α′cq4α′

× (−1)α+α′
ei(q1−q2+k)rei(q3−q4−k)r′

〉
(A4)

= 1

N

〈 ∑
{qi}

∑
αα′

1

4N2
Nδ(q1 − q2 + k)Nδ

× (q3 − q4 − k)c†q1α
cq2αc

†
q3α′

× cq4α′ (−1)α+α′
〉

(A5)

= 1

4N

〈∑
q1q3

∑
αα′

c†q1α
ck+q1αc

†
q3α′

× c−k+q3α′(−1)α+α′
〉

(A6)

= 1

2

∫
d3q

(2π )3

1

β

∑
ωn

Tr[G0(iωn,q)

×G0(i(ωn + 	n),q + k)]. (A7)

First of all, k(qi) is a four-dimensional vector, which includes
both Matsubara frequency i	n(iωn) and the wave vector k(qi)
in three spatial dimensions. In the same way, r includes

both imaginary time τ and spatial direction r . α, β, α′, and
β ′ are for spin ↑ ,↓, σ represents Pauli matrix, and Sr =∑

rαβ c
†
rα

σ αβ

2 crβ (with ignoring orbital indices for simplicity).

We have introduced the Fourier transform Sk = 1√
N

∑
r Sre

ik·r

and c
†
rα = 1√

N
c
†
qαeiq·r, and free-electron Green’s function

G0(iωn,q) = 〈c†qcq〉 = (iωn − Eq)−1. From the last equation
of (A7), we sum all the Matsubara frequencies using the
following trick:

1

β

∑
ωn

1

iωn − x

1

i(ωn + 	n) − x ′

= −1

i	n + x − x ′ [nF (x) − nF (x ′)], (A8)

where Fermion distribution is defined as nF (x) = 1/(eβx +
1). For simplicity, we represent doubly degenerate eg orbitals
tight-binding model using Pauli matrices σ , Htb(k) = ε0(k)1 +
ε(k) · σ . Then finally, analytic continuation leads to

χ0(	,k) = 1

2

∫
d3q

(2π )3

∑
a,b∈±

−1

	 + xa(q) − xb(k + q)

×{nF [xa(q)] − nF [xb(k + q)]}
× 1

2

[
1 + ab

ε(q) · ε(k + q)

|ε(q)||ε(k + q)|
]

, (A9)

where x±(k) = ε0(k) ± |ε(k)| − μ.
For finite layers (along ẑ direction), it has discretized kz =

πlz/(Nz + 1), where lz ∈ {1,2,3, . . . ,Nz} and Nz is the number
of layers,

c†rα =
√

2

N⊥Nz

∑
k

c
†
kαeik⊥r⊥ sin kzrz. (A10)

Here, N⊥ is the number of sites on its perpendicular xy plane.
The spin susceptibility (A1) is represented as

〈
Sz

kS
z
−k

〉 = 1

N⊥Nz

〈 ∑
{q⊥

i }

∑
{qz

i }

∑
αα′

22

(N⊥Nz)2

(−1)α+α′

4

× c†q1α
cq2αc

†
q3α′cq4α′ei(q⊥

1 −q⊥
2 +k⊥)r⊥ei(q⊥

3 −q⊥
4 +k⊥)r ′

⊥

× sin qz
1rz sin qz

2rz sin qz
3r

′
z sin qz

4r
′
ze

ikz(rz−r ′
z)

〉

(A11)

= 1

N⊥Nz

〈 ∑
{q⊥

i }

∑
{qz

i }

∑
αα′

22

(N⊥Nz)2

(−1)α+α′

4

× c†q1α
cq2αc

†
q3α′cq4α′N⊥δ(q⊥

1 −q⊥
2 +k⊥)N⊥δ

× (q⊥
3 − q⊥

4 − k⊥)
1

24
Nz

[ ∑
ab∈±

δ
(
aqz

1+bqz
2+kz

)]

×Nz

[∑
ab∈±

δ
(
aqz

3 + bqz
4 − kz

)] 〉
(A12)
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= 1

N⊥Nz

〈 ∑
q⊥

1 q⊥
3

∑
{qz

i }

∑
αα′

(−1)αα′

24
c
†
q⊥

1 qz
1α

ck⊥+q⊥
1 qz

2αc
†
q⊥

3 qz
3α′

× c−k⊥+q⊥
3 qz

4α′

[ ∑
ab∈±

δ
(
aqz

1 + bqz
2 + kz

)]

×
[ ∑

ab∈±
δ
(
aqz

3 + bqz
4 − kz

)]〉
(A13)

= 1

23Nz

∑
qz

1qz
2

∫
d2q⊥
(2π )2

1

β

∑
ωn

Tr
{
G0

(
iωn,q⊥,qz

1

)
G0

× (
i(ωn + 	n),(q⊥ + k⊥),qz

2

)[
δ
(
qz

1 + qz
2 + kz

)
+ δ

(
qz

1 + qz
2 − kz

) − δ
(
qz

1 − qz
2 + kz

)
− δ(qz

1 − qz
2 − kz

)]2}
. (A14)

From Eqs. (A11)–(A13), we abbreviate the Matsubara fre-
quency indices for simple representation. δ functions in
Eq. (A14) can be rewritten as δ(qz

1 + qz
2 + kz) = δ(l1 + l2 +

lz){mod[2(Nz + 1)]}, where qz
i = πli/(2Nz + 1) and kz =

πlz/(2Nz + 1).

APPENDIX B: DETAILED HARTREE-FOCK
CALCULATION

Our variational Hamiltonian (14) can be diagonalized by
writing

cnaα(k) =
∑
A

φAα
na (k)cAα(k), (B1)

with A = 1, . . . ,8 indices representing the eigenstates for each
k. With appropriate choice of φ, the diagonalized Hamiltonian
becomes

Hvar =
′∑
k

∑
Aα

εA(k)c†Aα(k)cAα(k). (B2)

Here, we have used that εA(k) are independent of α. This can be
seen from the transformation cnaα(k) → (−1)ncnaα(k), which
maps α → −α. Hence

φA−
na (k) = (−1)nφA+

na (k), (B3)

and the energies are independent of α. Now, we take the
expectation values of each term. Ground state |�0〉 is nothing
but occupation of all the quasiparticle states below the Fermi
energy. First, we consider the expectation value of Htb,

〈Htb〉 =
′∑
k

∑
n

∑
ab

∑
A

Hab(k + nQ)
[
φAα

na (k)
]∗

φAα
nb (k)nF [εA(k)], (B4)

where nF (ε) is the Fermi function. Next, we consider the expectation value of on-site Coulomb interaction HU = U
∑

i n
2
i ,

∑
i

n2
i =

∑
i

c
†
iaαciaαc

†
ibβcibβ = 1

N

∑
k1k2k3k4

c†aα(k1)caα(k2)c†bβ (k3)cbβ(k4)δk1+k3,k2+k4

= 1

N

′∑
{ki }

∑
{ni }

c†n1aα(k1)cn2aα(k2)c†n3bβ
(k3)cn4bβ

(k4)δk1+k3,k2+k4δn1+n3,n2+n4 (mod 4)

= 1

N

′∑
{ki }

∑
{ni }

∑
ABCD

[
φAα

n1a
(k1)

]∗
φBα

n2a
(k2)

[
φ

Cβ

n3b
(k3)

]∗
φ

Dβ

n4b
(k4)

×c
†
Aα(k1)cBα(k2)c†Cβ(k3)cDβ(k4)δk1+k3,k2+k4δn1+n3,n2+n4 (mod 4). (B5)

Now we take the expectation value. There are both Hartree and Fock terms:〈 ∑
i

n2
i

〉
= 1

N

′∑
k1,k3

∑
{ni }

∑
A,C

∑
ab

∑
αβ

{[
φAα

n1a
(k1)

]∗
φAα

n2a
(k1)

[
φ

Cβ

n3b
(k3)

]∗
φ

Cβ

n4b
(k3)

− [
φAα

n1a
(k1)

]∗
φCα

n2a
(k3)

[
φCα

n3b
(k3)

]∗
φAα

n4b
(k1)δαβ

}
nF [εA(k1)]nF [εC(k3)]δn1+n3,n2+n4 (mod 4). (B6)

Using Eqs. (B3) and (B6), it can be simplified after summing the spin indices α and β:〈∑
i

n2
i

〉
= 1

N

∑
k1k3

∑
{ni }

∑
AC

∑
ab

{
2[1 + (−1)n1+n2 ]

[
φA+

n1a
(k1)

] ∗ φA+
n2a

(k1)
[
φC+

n3b
(k3)

]∗
φC+

n4b
(k3)

− 2
[
φA+

n1a
(k1)

]∗
φC+

n2a
(k3)

[
φC+

n3b
(k3)

]∗
φA+

n4b
(k1)

}
nF [εA(k1)]nF [εC(k3)]δn1+n3,n2+n4 (mod 4). (B7)

In the same way, the expectation value of Hund’s coupling is represented by〈∑
i

S2
i

〉
= 1

4N

′∑
ki

∑
{ni }

∑
ABCD

{[
φAα

n1a
(k1)

]∗
σ αβφBβ

n2a
(k2)

} · {[
φCα′

n3b
(k3)

]∗
σ α′β ′φ

Dβ ′
n4b

(k4)
}
nF [εA(k1)]nF [εC(k3)]

× (δABδCDδk1k2δk3k4δαβδα′β ′ − δADδBCδk1k4δk2k3δαβ ′δβα′ )δn1+n3,n2+n4 (mod 4)
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= 1

4N

′∑
k1k3

∑
{ni }

∑
AC

∑
αβα′β ′

{[
φAα

n1a
(k1)

]∗
φAβ

n2a
(k1)

[
φCα′

n3b
(k3)

]∗
φ

Cβ ′
n4b

(k3)(2δαβα′β ′ − δαβδα′β ′)

− [
φAα

n1a
(k1)

]∗
φCβ

n2a
(k3)

[
φCα′

n3b
(k3)

]∗
φ

Aβ ′
n4b

(k1)(2δαβ ′δβα′ − δαβα′β ′)
}

nF [εA(k1)]nF [εC(k3)]δn1+n3,n2+n4 (mod 4)

= 1

4N

′∑
k1k3

∑
{ni }

∑
AC

∑
ab

{
2[1 − (−1)n1+n2 ]

[
φA+

n1a
(k1)

]∗
φA+

n2a
(k1)

[
φC+

n3b
(k3)

]∗
φC+

n4b
(k3)

− [2 + 4(−1)n1+n4 ]
[
φA+

n1a
(k1)

]∗
φC+

n2a
(k3)

[
φC+

n3b
(k3)

]∗
φA+

n4b
(k1)

}
× nF [εA(k1)]nF [εC(k3)]δn1+n3,n2+n4 (mod 4). (B8)

Finite layers Nz along ẑ direction lead the discretized kz = πlz/(L + 1), where l = 1,2,3, . . . ,Nz:

ciaα =
√

2

N

′∑
k⊥kz

∑
n

cnaα(k⊥kz)e
ik⊥ri⊥ sin kzrz. (B9)

Now, the interaction term, Eq. (B6), has a modi-
fied function of δk1+k3,k2+k4 . For both Eqs. (B6) and
(B8), we needed 1/4δk1

⊥+k3
⊥,k2

⊥+k4
⊥{4 + 2δ2(k1

z +k3
z )[mod(2π )] +

2δ2(k1
z −k3

z )[mod(2π )]}. The last two δ functions correspond to
δ(l1+l3),L+1 and δl1,l3 .

APPENDIX C: ORTHORHOMBIC GDFEO3 DISTORTION

In this section, we discuss the point symmetries of the
orthorhombic lattice (GdFeO3 type perovskite) and study how
this symmetry operators constrain the on-site splitting vectors
Di defined in Eq. (17). We first define four basis sites of the
orthorhombic lattice (in cubic coordinates):

r1 = (0,0,0), (C1)

r2 = (1,0,0), (C2)

r3 = (0,0,1), (C3)

r4 = (1,0,1). (C4)

The orthorhombic space group has three point group opera-
tions (in cubic coordinates):

P1 : (x,y,z) −→ (1 − y, − x, − z), (C5)

P2 : (x,y,z) −→ (−1 − x,1 − y,1 + z), (C6)

P3 : (x,y,z) −→ (−1 − x,1 − y, − z). (C7)

One finds that P1 interchanges sites r1 ↔ r2 and r3 ↔
r4, while P2 interchanges sites r1 ↔ r3 and r2 ↔ r4. The
inversion P3 leaves the basis unpermuted. Taking the usual
cubic basis of dx2−y2 and dz2 orbitals, one then readily finds
the transformations of creation/annihilation operators:

P1 :

⎧⎪⎨
⎪⎩

c1 → −τ zc2

c2 → −τ zc1

c3 → −τ zc4

c4 → −τ zc3

, P2 :

⎧⎪⎨
⎪⎩

c1 → c3

c2 → c4

c3 → c1

c4 → c2

, P3 : I, (C8)

where the last equation indicates that P3 acts as the identity
in both the orbital and sublattice space. From this, we see
that P3 places no constraints whatsoever on the orbital fields.
Invariance under the first and second transformations then

allows all four orbital fields to be determined from one. One
finds

D1 = (Dx,Dy,Dz), (C9)

D2 = (−Dx, − Dy,Dz), (C10)

D3 = (Dx,Dy,Dz), (C11)

D4 = (−Dx, − Dy,Dz). (C12)

Thus there are two and not four different orbital fields
appearing. Taking into account the coordinates of these basis
sites, we can finally write a simple form, which is basis
independent:

Di = ((−1)xi+yi Dx,(−1)xi+yi Dy,Dz). (C13)

APPENDIX D: DEGENERATE PERTURBATION THEORY
CALCULATION IN THE STRONG COUPLING LIMIT

1. O(t2/JH ): charge ordering

There are three possible types of hops at second order: (1)
an electron hops from a double occupied site to an empty
site, and then back. This lowers the energy when occupied
sites are adjacent to empty sites, and so results in an effective
repulsion between boson pairs. (2) Both electrons from a
doubly occupied site hop onto the same, previously empty,
site. This results in an effective hopping of the bosons. (3) In
the case where neighboring sites are occupied with bosons,
there can be exchange if the spins of both bosons are not
parallel.

The terms in the effective Hamiltonian corresponding to the
above three procedures can be written as

H(1)
eff = −Ptab

ij c
†
iaαcjbαRQtba

ji c
†
jbαciaαP, (D1)

H(2)
eff = −Ptab

ij c
†
iaαcjbαRQt cdij c

†
icβcjdβP, (D2)

H(3)
eff = −2Ptab

ij c
†
iaαcjbαRQtba

ji c
†
jbβciaβP. (D3)

All three terms include implied sums over nearest-neighbor
sites i and j . Here, we have neglected O(t ′2) contributions
which are parametrically small in the limit considered. The

165119-16



METAL-INSULATOR TRANSITION IN A TWO-BAND . . . PHYSICAL REVIEW B 84, 165119 (2011)

factor two in Eq. (23) arises from the fact that electrons can
hop first from site i to j or vice versa.

Using the exact form of the hopping matrix in Eq. (1),
one finds that the second effective Hamiltonian vanishes,
H(2)

eff = 0. This can also be understood from simple orbital
considerations: only one of the two orbitals overlaps along
any of the principle directions. Since both electrons must
be transferred for the pair to transfer, the boson hopping
vanishes. Due to the absence of the pair hopping, the effective
Hamiltonian commutes with Ni .

2. Magnetic interactions

Consider a plaquette on the original cubic lattice, we name
the occupied sites i and j and empty sites k and j , such that i

and j are next nearest neighbors on the square plaquette. We
calculate terms for nearest-neighbor spin exchange at different
orders one by one as follows.

(1) O(t4/J 3
H ): (i) one electron from each of sites i and j

hops to site k, and then the two electrons at site k return to i

and j . There are four distinct time orders in which this process
can occur and they contribute equally. The same procedure can
also happen to sites i, j , and l. This gives the coefficient eight
in front of the Hamiltonian below:

H(4)
eff = −8Pt

cf

jk c
†
jcγ ckf γRQtae

ik c
†
iaλckeλ

×RQtdc
kj c

†
kdαcjcαRQtba

ki c
†
kbβciaβP. (D4)

(ii) One electron at site i hops to site k and then to j , it forms
a singlet state with another electron at site j , and then one
of two electrons forming a singlet, hops back to site k and
then to i (for brevity, we will not write down the effective
Hamiltonian of the other hopping procedure from now on).
(iii) One electron from site i(j ) hops to site k(l), so now four
corners of the plaquette are all occupied with single electrons,
then the electron at site k(l) hops back to j (i). (iv) One electron
at site i hops to site k and then to j , it forms a singlet state with
another electron at site j , and then one of the two electrons
forming a singlet hops to site l and then to i. Combining the
four terms, we have

J
(1)
1 ≡ J

(1)
i,i±μ̂±ν̂

= − t4

J 3
H

1

(1 − 4α)2

[
8(5 + 4α)

(1 − 4α)(5 − 4α)

− 5

5 + 4α
− 1

1 − 4α

]
. (D5)

(2) O(t2t ′/J 2
H ): (i) one electron at site i hops to j via

next-nearest-neighboring hopping, it forms a singlet state with
another electron at site j , then one of the two electrons forming
a singlet hops back to site k and then to i. (ii) One electron
at site i hops to k, another electron at site j hops to site i via
next-nearest-neighbor hopping, then the electron at site k hops
to j . Together these two terms give

J
(2)
1 = t2t ′

J 2
H

1

1 − 4α

[
10

5 + 4α
+ 5

1 − 4α

]
. (D6)

(3) O(t ′2/JH ): one electron at site i hops to an fcc nearest-
neighbor j , forming a singlet state with another electron at

site j , then one of the two electrons forming the singlet hops
back to site i. We obtain

J
(3)
1 = t ′2

JH

5

5 + 4α
. (D7)

The spin exchange coupling between nearest neighbor is
then J1 = J

(1)
1 + J

(2)
1 + J

(3)
1 .

For second nearest-neighbor spin exchange, we consider
three sites i, k, and j along the same cubic axis, where i(j )
and k are nearest neighbors on the original cubic lattice. Sites
i and j then correspond to the second-nearest-neighbor sites.
Then, there are two possible ways of the hopping procedure,
which is of identical hopping order to the first two cases of
O(t4/J 3

H ) terms.

APPENDIX E: OPTICAL CONDUCTIVITY

The current-current correlation function with imaginary
time is defined as

�αβ(τ,k) = − 1

vol
〈Tτ−τ ′j †

α(τ,k)jβ(τ ′,k)〉

= 2

vol

∑
abcd

jab
α (k)jcd

β (k)Gad (τ ′−τ,k)Gcb(τ−τ ′,k),

where jab
α = ∂Hab/∂kα and Gad (τ ′ − τ,k) is a retarded

Green’s function with imaginary time τ ′ − τ and wave vector
k and a prefactor two for spin sums. The Fourier transform
with Matsubara frequency iωn leads to the following:

�αβ(i	l,k) = 2

vol

∑
abcd

jab
α (k)jcd

β (k)
1

β

×
∑

n

Gad (iωn + i	l,k)Gcb(iωn,k). (E1)

Green’s function Gad (iωn,k),

Gad (iωn,k) =
∫

dτ�(τ )Gad (τ,k)eiωnτ

=
∑
mm′

e−βεm + e−βεn

iωn + ε′
m − εm

〈m′|cd |m〉〈m|c†a|m′〉

=
∑
m

φa∗
m (k)φd

m(k)

iωn + iγ sgn(ωn) − (Em − μN )
. (E2)

The last term in Eq. (E2) is for zero temperature with
the imaginary part of the first-order self-energy correction
Im[�(ωn)] = −iγ sgn(ωn), and the a component of m eigen-
state is φa

m(k). By substituting Eq. (E2) to Eq. (E1) and using
analytic continuation i	l → 	 + iη, the imaginary part of the
current-current correlation function is represented as

Im[�αβ(	,k)] =
∑
mm′

φa∗
m φb

m′φ
c∗
m′φ

d
m

∫
dω

π
Am(ω)Am′(ω + 	)

× [nF (ω) − nF (ω + 	)], (E3)

where Am(ω) = γ /[(ω − Em + μN )2 + γ 2] and Fermi distri-
bution nF (ω) = 1/(eβω + 1).
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