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Fermionic Chern-Simons theory of SU(4) fractional quantum Hall effect
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We develop a Fermionic Chern-Simons (CS) theory for the fractional quantum Hall effect in monolayer
graphene with SU(4) symmetry. We construct a general CS coupling matrix such that an even number of spin-
and valley-dependent flux quanta is attached to all electrons and that any electron sees an integer number of flux
attached to other electrons with different spin and valley quantum numbers. Using this matrix, we obtain a list of
possible fractional quantum Hall states (FQHS) in graphene and propose wave functions for them. Our analysis
unifies previously studied FQHS with different symmetries, predicts several states whose presence may be tested
experimentally, and also applies to FQHS of bilayer spin polarized graphene and conventional bilayer quantum
Hall systems. We thus provide a systematic way of charting FQHS in these systems and also reproduce earlier
results as special cases.
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I. INTRODUCTION

The strong correlation arising out of a complete quench of
the kinetic energy of the electrons in a two dimensional system
in the presence of a strong perpendicular magnetic field B

leads to the striking phenomenon called fractional quantum
Hall effect (FQHE).1 In the fractional quantum Hall regime,
the applied magnetic field is strong enough to make the lowest
Landau level have more states than the number of electrons in
the system, leading to a huge degeneracy which is lifted only
by the electron-electron interaction leading to the fractional
quantum Hall states (FQHS).2 A way to understand the nature
of these states is provided by the composite Fermion(CF)
theory3 in which the state of the system is described in terms
of CF quasiparticles which correspond to electrons bound to
an even number (2k) of vortices of flux quantum φ0 = hc/e.
Such a flux attachment can also be understood by carrying
out Chern-Simon (CS) transformation4 on the electron field
operators, which leads to the introduction of a topological
CS vector potential a resulting in a CS magnetic field
b(r) ≡ (1/e)∇ × a = 2kφ0ρ(r) proportional to the electron
density ρ(r).5,6 The factor 2k ensures that the statistics
of the quasiparticles thus produced remain Fermionic. The
FQHE of the electrons with filling fraction ν = ν∗/(2kν∗ + 1)
correspond to integer quantum Hall effect (IQHE) of these
quasiparticles with ν∗ = p ∈ Z. Such an analysis has also
been applied to systems with SU(2) symmetry7,8 and is found
to correctly describe spin (layer) polarizations for FQHS for
a single layer system with spin degree of freedom (bilayer
system with frozen spin).

More recently, both IQHE9,10 and FQHE11–13 have been
observed in single layer graphene whose effective low-energy
theory is described in terms of Dirac-like quasiparticles which
are low energy excitations around the Dirac cones centered
around the edge of the graphene Brillouin zone.14 There are
two such inequivalent cones leading to two species of Dirac
quasiparticles in graphene. These quasiparticles carry, apart
from their physical spin, a valley quantum number which
endows them with an additional internal symmetry. In the
absence of any symmetry breaking interactions, their internal
symmetry group is thus SU(4). FQHE in the lowest Landau
level (LLL) for graphene has been studied in the past.15–21

In Refs. 15 and 16, FQHS for spin-polarized electrons, i.e.,
with SU(2) symmetry due to the valley degrees of freedom,
has been studied. However, given that the Zeeman energy
in graphene is small compared to the Landau level splitting
(the ratio of the two is approximately 10−4 for B ∼ 1T ), a
full SU(4) symmetric FQHE seems to be more relevant in
graphene. Such SU(4) symmetric FQHS has been studied
using SU(4) generalized CF wave functions17 and Halperin-
like wave functions.18 The former17 described a restricted class
of filling factor which arises from equal even integral flux 2k

attached to each species of Dirac quasiparticles leading to ν =
ν∗/[2kν∗ ± 1], where ν∗ = ν1 + ν2 + ν3 + ν4 and ν1,ν2,ν3,ν4

are the effective integer filling factors of four different species
of CFs. In this scheme, one obtains the spin and the valley
polarizations of the FQHS for a given ν depending on the
individual values of νi’s (keeping their sum fixed). In contrast,
Ref. 18 computes the spin and the valley polarization directly
from the proposed Halperin-like wave functions and describes
some FQHS which do not have definite spin, valley, or mixed
polarizations. These states do not feature in Ref. 17. Other
relevant studies involve computation of collective modes and
skyrmion excitations in SU(4) quantum Hall ferromagnets,19

computation of Hall conductivity for a general CS coupling
matrix,20 and construction of a general wave function for the
SU(4) symmetric CS coupling matrix.21 However, none of
these studies obtains a list of possible FQHS. To the best of our
knowledge, there is no unified formalism which reproduces all
FQHS obtained by the above-mentioned schemes and provides
a systematic method of generating the list of possible FQHS
and their wave functions.

In this paper, we develop a CS theory for SU(4) FQHE
which is relevant for monolayer graphene as well as for
spin-polarized bilayer graphene and for conventional bilayer
quantum Hall systems. The central point of our work is to
introduce a general flux attachment scheme by using a CS
coupling matrix. As shown schematically in Fig. 1, we choose
the corresponding elements of this coupling matrix such that
an even number of flux quanta, which may depend on the
spin and valley quantum numbers, is attached to all electrons,
and that any electron with a given spin and valley quantum
number sees an integer number of flux attached to other
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FIG. 1. (Color online) A pictorial representation of the flux
attachment scheme. The spheres represent electrons and their colors
denote the valleys [K(+) and K ′(−)] in which the electrons belong.
The arrows (thick arrows) represent the spin of (flux attached to)
the electrons. The top left panel shows 2k1 flux attached to a (↑,+)
electron, which sees m1, n1, and n2 flux quanta attached to (↓,+),
(↑,−), and (↓,−) electrons respectively. Other panels have similar
representations.

electrons with different (spin and valley) quantum numbers.
Using this CS matrix, we obtain a list of possible FQHS that
might occur in graphene. We show that our formalism not only
reproduces the FQHS obtained in Refs. 17 and 18 as special
cases, but also provides a systematic method for listing all
possible FQHS in such a system including those which do not
have any SU(2) analogues. All of these FQHS emerge from
Fermionic CS theory with IQHE of CS-CF quasiparticles. We
also propose wave functions for these states and demonstrate
that the applicability of the CF theory in the SU(4) case is much
more robust than that studied in Ref. 17. Our analysis therefore
constitutes a significant extension of the understanding of
FQHS in these systems and is expected to provide a guideline
to the forthcoming experiments on FQHE in monolayer and/or
bilayer graphene.

The organization of the rest of the paper is as follows. In
Sec. II, we develop the SU(4) CS theory, derive equations
for the filling factor ν, the spin (S), the valley (V ), and the
mixed (M) polarizations using this theory, and propose wave
functions which describe the obtained FQHS. This is followed
by Sec. III, where we analyze these equations to provide an
exhaustive list of possible FQHS for monolayer graphene.
Finally, we summarize our results and conclude in Sec. IV.

II. FORMALISM

The low-energy states in graphene can be described by an
effective Dirac-like Hamiltonian

H =
∫

d rψ†
e (r)Hψe(r)

+ 1

2

∫
d r

∫
d r ′V (r − r ′) : ρ̂e(r)ρ̂e(r ′):, (1)

where ψe is the eight component electronic annihilation
operator whose components correspond to the sublattice, the
valley, and the spin degrees of freedom,14 ρ̂e = ψ

†
eψe is

the density operator, : . . . : denotes normal ordering, V (r)
represents electron-electron interaction whose precise form is
unimportant for our purpose, and H = vF (σx�x + τzσy�y)
with � = −i∇ + eA, ∇ × A = Bẑ and σ ’(τ )’s are Pauli
matrices which describe two sublattices (valleys) of graphene.
Here and in the rest of this work, we shall set h̄ = c = 1 and use
the shorthand notation 1 ≡ (↑,+), 2 ≡ (↓,+), 3 ≡ (↑,−),
and 4 ≡ (↓,−), where ↑, ↓ (+,−) represent the physical spin
(valley) states of graphene electrons.

We now introduce the CS-CF quasiparticle creation opera-
tor ψ†(r) in terms of ψ

†
e (r):

ψ†
e,α(r) → ψ†

α(r)e−iKαβ

∫
d r ′arg(r−r ′)ρβ (r ′), (2)

where the indices α and β take value from 1 to 4 as described
above. Here arg(r − r ′) represents the angle made by the
vector (r − r ′) with the x axis, and the explicit form of the
symmetric integer valued matrix K is chosen, as schematically
shown in Fig. 1 and given by

K =

⎛
⎜⎜⎜⎝

2k1 m1 n1 n2

m1 2k2 n3 n4

n1 n2 2k3 m2

n3 n4 m2 2k4

⎞
⎟⎟⎟⎠ , (3)

where k’s, m’s, and n’s are positive integers including zero.
The quasiparticles obtained by this transformation have the
same interaction energy term as the electrons. However, the
effective kinetic energy term for them is given by

Heff =
∫

d2rψ†
α(r)vF (σx�̃α,x + τzσy�̃α,y)ψα(r), (4)

where �̃α = −i∇ + eA − aα , with

aα = Kαβ

∫
d r ′g(r − r ′)ρβ(r ′) (5)

and g(r) = (ẑ × r)/r2. The corresponding singular CS mag-
netic field seen by these quasiparticles is

bα ≡ (1/e)∇ × aα = φ0Kαβ ρβ(r). (6)

Note that the effective field depends on the quantum numbers
(spin and valley) carried by the quasiparticles. Within a mean
field approximation, the electron filling factor ν and the
effective filling factor να of CS-CF quasiparticles are thus
related by

ρα/να = ρ/ν − Kαβρβ, (7)

with να > (<)0 for B > (<)bα .
By defining the spin (S), the valley (V ), and the mixed (M)

polarizations of these quasiparticles in a given FQHS as

S = (ρ1 + ρ3 − ρ2 − ρ4)/ρ,

V = (ρ1 + ρ2 − ρ3 − ρ4)/ρ, (8)

M = (ρ1 + ρ4 − ρ2 − ρ3)/ρ,
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the above-mentioned relation can be expressed as

γ1

(
2k1 + 1

ν1

)
+ γ2m1 + η1(n1 + n2) + δ1(n1 − n2) = 4

ν
,

γ2

(
2k2 + 1

ν2

)
+ γ1m1 + η1(n3 + n4) + δ1(n3 − n4) = 4

ν
,

γ3

(
2k3 + 1

ν3

)
+ γ4m2 + η2(n1 + n2) + δ2(n1 − n2) = 4

ν
,

γ4

(
2k4 + 1

ν4

)
+ γ3m2 + η2(n3 + n4) + δ2(n3 − n4) = 4

ν
,

(9)

where η1(2) = 1 − (+)V , δ1(2) = S − (+)M , γ1(2) = η2 +
(−)δ2, and γ3(4) = η1 + (−)δ1.

Equation (9) represents the central result of this work and
provides a relation between the total filling factor ν and the
spin (S), the valley (V ), and the mixed (M) polarizations of a
FQHS in terms of the attached flux numbers k’s, m’s, and n’s.
Thus it provides a systematic way of charting out the possible
FQHS for a given filling factor ν at the saddle point level
and specifying the polarizations M , S, and V for these states.
Moreover, in terms of these flux attachment numbers, one can
write down, via a straightforward generalization of methods
used in Refs. 7 and 8, a variational wave function (neglecting
obsequious Gaussian factors) of these FQHS for the filling
factor ν as

�({uα}) = PL

[ ∏
α=1..4

�να

(
uα

1 , . . . ,uα
Nα

)] Nα∏
i<j

(
uα

i − uα
j

)2kα

×
Nα,Nβ∏

i,j ;α,β;α 
=β

(
uα

i − u
β

j

)Kαβ
, (10)

where uα = xα − iyα denotes complex coordinates for the par-
ticles of species α,2 Nα denotes the number of quasiparticles of
species α, �να

represents the IQHE wave function for να-filled
Landau levels of these quasiparticles, and PL represents
projection into the LLL. Note that the CS theory alone cannot
lead to Eq. (10); the IQHE wave functions and the projection
into the LLL receive input from the CF theory.3 Below, we
solve Eq. (9) to obtain the set of parameters for a specific ν,
S, V , and M . The definite wave function (10) is then obtained
for a FQHS in terms of these parameters. In this respect,
Eq. (10) differs from the previously suggested Halperin-like
wave functions18 and is expected to provide an accurate
starting point for numerical studies of FQHS in these systems.

III. RESULTS

For the rest of this work, we make special choices of the
parameters n1 = n2 = n3 = n4 = n and k1 = k2, k3 = k4 for
which Eq. (9) admits analytical solutions. First, we note that
for 2k1 = 2k3 = m1 = m2 = n = 2k, there is one dynamical
CS gauge field Aμ = a

μ

1 + a
μ

2 + a
μ

3 + a
μ

4 . The rest of the CS
gauge fields decouple.7 Solving Eq. (9), we find

ν = ν∗

2kν∗ + 1
, V = 2(ν1 + ν2) − ν∗

ν∗ ,

(11)

S = 2(ν1 + ν3) − ν∗

ν∗ , M = 2(ν1 + ν4) − ν∗

ν∗ .

This is precisely the Toke-Jain sequence in graphene and the
wave function [Eq. (10)] obtained for these sets of parameters
exactly matches with the CF wave function.17 The sequence of
FQHS generated with this set of parameters is the same as the
SU(2) sequence for ν∗ � 2. We find that in the limit ν∗ → ∞,
ν = 1/2k and hence these even denominator states correspond
to Fermi sea of CFs.6 Second, we consider 2k1 = 2k3 = m1 =
m2 = 2k and n 
= 2k: For this choice of parameters, we find

ν = ν∗ + 2(2k − n)(ν1 + ν2)(ν3 + ν4)

2kν∗ + 1 + (4k2 − n2)(ν1 + ν2)(ν3 + ν4)
,

V = 2(ν1 + ν2) − ν∗

ν∗ + 2(2k − n)(ν1 + ν2)(ν3 + ν4)
,

(12)

S = 2(ν1 + ν3) − ν∗ + 2(2k − n)(ν1ν3 − ν2ν4)

ν∗ + 2(2k − n)(ν1 + ν2)(ν3 + ν4)
,

M = 2(ν1 + ν4) − ν∗ + 2(2k − n)(ν1ν4 − ν2ν3)

ν∗ + 2(2k − n)(ν1 + ν2)(ν3 + ν4)
.

Note that for these solutions, the even denominator FQHS
with ν = 1/2k occurs when (ν1 + ν2) = 1 = (ν3 + ν4) and
n = 2k ± 1; they do not correspond to ν∗ → ∞ and hence do
not lead to the formation of a Fermi sea of the quasiparticles.
These states are similar to those obtained for bilayer SU(2)
quantum Hall systems. Finally, for 2k1 = 2k3 = 2k, m1 =
m2 = m 
= 2k, and n 
= 2k, we find solutions with zero spin
and mixed polarization (M = S = 0) and with finite nonzero
valley polarizations given by

ν = [4ν∗ + 4(2k + m − 2n)(ν1 + ν2)(ν3 + ν4)]/D,

D = 4 + 2(2k + m)ν∗ + ((2k + m)2 − 4n2)

× (ν1 + ν2)(ν3 + ν4), (13)

V = 2(ν1 + ν2) − ν∗

2ν∗ + 2(2k + m − 2n)(ν1 + ν2)(ν3 + ν4)
.

We note that these states do not have any analog in U(1) and
SU(2) FQHE and can only occur for SU(4) symmetric FQHE.
Similarly, a set of FQHS which has M = V = 0 and S 
= 0
and/or S = V = 0 and M 
= 0 can also be found. For S 
= 0,
we find

ν = 4(ν2ν3 − ν1ν4)

ν∗ − 2(ν1 + ν4) + (2k + m + 2n)(ν2ν3 − ν1ν4)
,

(14)

S = ν∗ − 2(ν1 + ν2)

(2k − m)(ν2ν3 − ν1ν4)
,

while for the states with M 
= 0 we get

ν = 4(ν1ν3 − ν2ν4)

ν∗ − 2(ν2 + ν4) + (2k + m + 2n)(ν1ν3 − ν2ν4)
,

(15)

M = 2(ν1 + ν2) − ν∗

(2k − m)(ν1ν3 − ν2ν4)
.

Next, we concentrate on the SU(4) singlet states which
correspond to all να = 1. In this case, one has several possible
solutions. First, there is a class of solutions which correspond
to M = S = V = 0 and are given by

ν = 8

2 + 2k1 + 2k3 + m1 + m2 + 4n
, (16)

provided that 2k1 + 1 
= m1 and 2k3 + 1 
= m2. Toke-Jain17

SU(4) singlet states ν = 4/(1 + 8k) such as 4/9 are special

165118-3



SANHITA MODAK, SUDHANSU S. MANDAL, AND K. SENGUPTA PHYSICAL REVIEW B 84, 165118 (2011)

cases of this sequence. There are several other states in this
category of which the wave function of 4/11 is the same as
proposed in Ref. 18. We note that for the U(1) and SU(2)
case where the state 4/11 occurs due to FQHE of CFs;22 in
contrast, here it arises due to IQHE of CS-CF quasiparticles.
Second, there is a set of states that correspond to M = S = 0,
but V 
= 0 and have

V = 2(k3 − k1) + m2 − m1

2(1 + k1 + k3) + (m1 + m2 − 4n)
,

(17)

ν = 4(1 + k1 + k3) + 2(m1 + m2 − 4n)

(2k1 + 1 + m1)(2k3 + 1 + m2) − 4n2
.

A few examples of such even-denominator states are 1/2 and
3/8, and odd-denominator states are 3/5, 3/7, and 4/7. These
states do not feature in previous studies. Third, within the
SU(4) singlet FQHS with k1 = k3 = k and 2k + 1 = m1 =
m2 = m, we find

ν = 2

m + n
. (18)

These correspond to a set of states with undetermined M and
S. V can be determined only if m 
= n (which corresponds
to V = 0); for m = n, V is also undetermined. The filling
factors for this sequence with V = 0 are 2/3, 1/2, and 2/5

TABLE I. A chart of the possible filling fractions ν with
numerator � 4 for the SU(4) singlet states and the corresponding
polarizations S, V and M for different sets of parameters {k1 =
k2,k3 = k4,m1,m2,ni = n}. The symbol “—” for the polarizations
denotes undetermined value.

ν k1 k3 m1 m2 n S V M

1/2 1 1 3 3 1 – 0 –
1/2 1 2 2 3 1 0 1/3 0
1/2 2 2 1 1 1 0 0 0
1/3 1 1 3 3 3 – – –
1/3 2 2 5 5 1 – 0 –
1/4 2 2 5 5 3 – 0 –
1/5 2 2 5 5 5 – – –
2/3 1 1 1 1 1 0 0 0
2/5 1 1 3 3 2 – 0 –
2/5 2 2 3 3 1 0 0 0
2/7 2 2 3 3 3 0 0 0
2/7 2 2 5 5 2 – 0 –
2/9 2 2 5 5 4 – 0 –
3/5 1 2 1 1 1 0 1/3 0
3/7 1 2 2 1 2 0 1/3 0
3/7 1 2 3 5 1 – 1/3 –
3/8 1 2 3 3 2 – 1/3 –
3/8 2 2 1 3 2 0 1/3 0
4/7 1 1 2 2 1 0 0 0
4/7 1 2 1 3 1 0 1/2 0
4/9 1 1 2 2 2 0 0 0
4/9 2 2 2 2 1 0 0 0
4/11 1 2 3 5 2 – 1/2 –
4/11 2 2 2 2 2 0 0 0
4/11 2 2 4 4 1 0 0 0
4/13 2 2 4 4 2 0 0 0
4/15 2 2 4 4 3 0 0 0
4/17 2 2 4 4 4 0 0 0

TABLE II. Same as in Table I but with numerators �5.

ν k1 k3 m1 m2 n S V M

5/6 1 2 1 1 0 0 1/5 0
5/7 1 2 0 1 1 0 3/5 0
5/8 1 1 1 2 1 0 1/5 0
5/8 1 2 1 0 1 0 1/2 0
5/9 2 2 1 4 0 0 1/5 0
5/12 1 2 2 3 2 0 3/5 0
5/12 2 2 0 3 2 0 3/5 0
5/13 2 2 1 2 2 0 1/5 0
5/18 2 2 3 4 3 0 1/5 0
7/10 1 2 0 3 1 0 5/7 0
7/12 1 2 1 2 1 0 3/7 0
7/12 1 2 3 3 0 – 1/7 –
7/12 2 2 1 3 0 0 1/7 0
7/13 1 2 2 1 1 0 1/7 0
7/13 2 2 0 1 1 0 1/7 0
7/19 2 2 1 4 2 0 3/7 0
8/9 1 2 0 4 0 0 1/2 0
8/11 1 1 0 2 1 0 1/2 0
8/19 1 2 2 2 2 0 1/2 0
8/19 2 2 0 2 2 0 1/2 0

for k = 1 and 2/5, 1/3, 2/7, 1/4, and 2/9 for k = 2. In
contrast, the states for which V is also undetermined have
filling factor 1/3 with k = 1 and 1/5 with k = 2. Among
these, the wave functions [Eq. (10)] for the filling factors 2/3,
2/5, and 1/3 obtained from our formalism are precisely the
Halperin-like wave functions proposed in Ref. 18. Note that
this exact similarity of the wave functions are not generic but
is a consequence of the condition να = 1 for which Eq. (10)
becomes identical to those in Ref. 18. Also, while the filling
factor 2/3 occurs due to reverse flux attachment in CF theory,17

it occurs here for parallel flux attachment as well. We note that
the even denominator states in the above-mentioned sequence
(such as 1/2 and 1/4) do not correspond to the Fermi sea of
CFs. Fourth, if 2k + 1 = m1 
= m2, the solutions of Eq. (9)
yield FQHS with M = S but undetermined, and with the
values of the filling fractions and the valley polarizations given
by

ν = 3m1 + m2 − 4n

m2
1 + m1m2 − 2n2

,V = m2 − m1

3m1 + m2 − 4n
. (19)

These states do not appear in the work of Ref. 18. This
demonstrates that the general formalism outlined here pro-
duces several FQHS which have not been charted out before.
The filling factors for a few representative SU(4) singlet FQHS
and their corresponding spin, valley, and mixed polarizations
are tabulated in Tables I and II. We expect similar FQHS
for spin-polarized bilayer graphene with S replacing the layer
index and bilayer quantum Hall system with V denoting the
layer index.

IV. CONCLUSION

In summary, we have developed a Fermionic CS theory
for SU(4) FQHE and analyzed the possible FQHS obtained
from such a theory. We have reproduced SU(4) FQHS arising
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from CF theory,17 as well as Halperin-like18 states within a
single unified formalism. We have also proposed several other
states which are not obtained in the previous studies. Although
the filling factors and their polarizations presented here are
for monolayer graphene, the analysis is valid for any SU(4)
system. Two other examples of such systems where this theory
could be applicable are bilayer quantum Hall systems and
bilayer graphene23 with complete spin or valley polarizations.
Taking cue from the CS theory,3 we have proposed wave
functions for all of these FQHS. We note that for FQHS with a
particular filling factor, the precise ground state wave function
will depend on the exact nature of the interaction between
electrons. It will be interesting to obtain the overlap of the

ground state with our proposed wave function. Finally, the
ground state for FQHS in graphene may be tuned by tuning
either the Zeeman coupling or the intervalley coupling. It will
certainly be interesting to use our proposed wave function
to study the resulting transitions between the FQHS for all
of these states by changing Zeeman coupling and obtain the
corresponding phase diagram. We leave these issues for future
studies.
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