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Dirac-Weyl fermions are massless relativistic particles with a well-defined helicity which arise in the
context of high-energy physics. Here we propose a quantum simulation of these paradigmatic fermions
using multicomponent ultracold atoms in a two-dimensional square optical lattice. We find that laser-assisted
spin-dependent hopping, specifically tuned to the (2s + 1)-dimensional representations of the su(2) Lie algebra,
directly leads to a regime where the emerging massless excitations correspond to Dirac-Weyl fermions with
arbitrary pseudospin s. We show that this platform hosts two different phases: a semimetallic phase that occurs
for half-integer s, and a metallic phase that contains a flat zero-energy band at integer s. These phases host a variety
of interesting effects, such as a very rich anomalous quantum Hall effect and a remarkable multirefringent Klein
tunneling. In addition, we show that these effects are directly related to the number of underlying Dirac-Weyl
species and zero modes.

DOI: 10.1103/PhysRevB.84.165115 PACS number(s): 37.10.Jk, 67.85.−d, 11.15.Ha, 71.10.Fd

I. INTRODUCTION

Graphene and topological insulators have recently stim-
ulated an enormous interest at both the theoretical and
experimental levels (see Refs. 1 and 2 and references therein).
These two systems share an attractive and unique property,
namely, the fact that the electronic transport at low energies is
not governed by the usual Schrödinger equation, but rather by
its relativistic counterpart: the Dirac equation.3 In graphene, a
single layer of carbon atoms densely packed in a honeycomb
lattice,1 the band structure corresponds to a semimetallic phase
whose Fermi surface consists of an even number of isolated
points. Interestingly, the low-energy excitations around these
points display a relativistic dispersion relation, and can be
thus described by the two-dimensional Dirac Hamiltonian for
massless fermions. Conversely, in three-dimensional topolog-
ical insulators, which are semiconducting alloys with a strong
spin-orbit coupling,2 the bulk band structure corresponds
to a gapped insulating phase. Nonetheless, these materials
also support a robust surface conductivity which can be
described by an odd number of two-dimensional massless
Dirac fermions. The recent interest in both graphene and
topological insulators is twofold. On the one hand, they
provide concrete platforms where interesting phenomena were
originally predicted in a high-energy context, for example, the
Klein paradox4 or axion electrodynamics.5 On the other hand,
they also foresee novel and useful device applications (see,
e.g., Ref. 6). The emergence of massless Dirac fermions in
solid-state materials is not only an exciting area of condensed
matter, but is also becoming an exciting topic in cold-atom
physics (see, e.g., Ref. 7).

In high-energy physics, a relativistic electron is described
by a spin- 1

2 fermion, an unavoidable fact that fixes the
dimensionality of the Dirac spinor.3 In clear contrast, the
pseudospin of an emergent relativistic fermion in solid-state
materials depends on the geometry of the underlying lattice.
For graphene, the existence of two interpenetrating triangular
lattices fixes the dimensionality of the Dirac spinor, which in
this case corresponds to a pseudospin- 1

2 fermion. Recently,

some researchers have studied alternative lattices, e.g., the
T3 lattice,8 the line-centered-square (Lieb) lattice,9–11 and
the Kagome lattice,12 where emergent massless relativistic
fermions present a pseudospin-1 structure. These higher-spin
relativistic fermions show some distinctive features with
respect to graphene’s Dirac fermions, such as all-angle perfect
tunneling,11 particle localization,10 and the absence of the
anomalous quantum Hall effect.9 In view of these results, a
natural question arises: could we engineer an experimental
setup where massless relativistic particles with arbitrary spin
emerge? Moreover, would these higher spins host novel effects
that have no counterpart in the low-spin cases?

As we try to increase the pseudospin by modifying the
lattice geometry, the corresponding structures become increas-
ingly complex. Due to the limited number of two-dimensional
Bravais lattices and materials that realize such lattices, this
construction seems doomed to failure. In this article we
propose an alternative approach which is based on the fact that
these pseudospin structures, which arise from complex lattice
geometries, can be reproduced by a standard square lattice
with a matrix hopping.13 Such a model can be engineered
with an optical lattice populated by multicomponent ultracold
atoms with specific state-dependent hoppings. We show that
such a setup presents a rich playground where the low-energy
excitations can be described by massless relativistic particles
with arbitrary spin. Interestingly these fermions are governed
by the Weyl-like Hamiltonian H = vF S · p, which is the
massless version of the Dirac Hamiltonian but can have any
spin, and whose eigenstates we refer to as Dirac-Weyl fermions
in this paper.

More explicitly, we demonstrate that a spin-dependent
hopping, tuned according to the (2s + 1)-dimensional repre-
sentations of the su(2) Lie algebra, directly leads to a regime
where the low-energy excitations are Dirac-Weyl fermions
with pseudospin s. We show that this platform hosts two
different phases at half-filling: a semimetallic phase that occurs
for half-integer s, and a metallic phase that contains a flat
zero-energy band at integer s. In the semimetallic phase
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we show that a Dirac-Weyl fermion with high spin can be
described as a collection of spin-1/2 counterparts, where each
species has a different effective speed of light. Accordingly, the
low-energy transport is characterized by spin-1/2 Dirac-Weyl
fermions moving at different velocities, an effect known as
multirefringence in the field of optics.14 As a consequence,
we find exotic tunneling properties across a potential barrier,
which shows a remarkable multirefringent Klein paradox.
Additionally, we study the properties of this exotic Fermi gas
in the presence of a synthetic magnetic field (see Ref. 15 and
references therein). We find that the Weyl-Landau problem
can be mapped onto a Dicke Hamiltonian,16 a well-known
model in quantum optics which describes the interaction of
an ensemble of two-level atoms with a quantized mode of
the electromagnetic radiation. From this insightful mapping,
we derive the exact solution of the Hamiltonian, and predict
the interesting consequences of an anomalous half-integer
quantum Hall effect.17 These predictions are confirmed by
the numerical evaluation of the topological Chern numbers18

and edge states,19 which directly give the quantum Hall
sequence. We obtain a general rule describing the quantum
Hall effect for Dirac-Weyl fermions with arbitrary spin
structures, generalizing the anomalous quantum Hall effect
for pseudospin- 1

2 in graphene.1,19

The paper is organized as follows: in Sec. II we describe
the optical lattice setup to simulate the Dirac-Weyl fermions
with arbitrary spin. In Sec. III we show how to describe a
single Dirac-Weyl fermion with high spin as a collection of
two-dimensional massless Dirac fermions, and also provide
topological invariants that can be assigned to these excitations.
In Sec. IV we present the anomalous quantum Hall effect
which appears when these exotic particles are subjected to a
synthetic magnetic field. In Sec. V we explore the transmission
properties of these excitations in the presence of a potential
barrier, leading to multirefringent Klein tunneling. In Sec. VI
we discuss how to probe various phenomena predicted in the
main text. We present our conclusions in Sec. VII, and leave
some technical aspects to the Appendices. In Appendix A
we describe in detail how the model Hamiltonian can be
simulated using laser-assisted hopping in optical superlattices.
In Appendix B we discuss the analytical solution of the
model, and the calculation of the topological invariants which
characterize the emerging Dirac-Weyl fermions with arbitrary
spin. In Appendix C we present the details on the calculation
of the Weyl-Landau levels, the zero-energy modes, and their
relation to a topological index theorem. In Appendix D we
show the impact of a flat band on the zero-energy modes.
Finally, the technical aspects of the multirefringent Klein
tunneling are presented in Appendix E.

II. THE MODEL

Let us consider an ultracold Fermi gas of 40K atoms trapped
in the periodic pattern of an optical superlattice.20 The ground
state of this atomic gas corresponds to the hyperfine manifold
with total angular momentum F = 9/2, and corresponding
Zeeman sublevels mF ∈ {−9/2, . . . ,9/2}. In this work we
shall focus on a subset of N = (2s + 1) internal states, which
will be referred to as spins, and represented by the fermionic

creation (annihilation) operators c
†
rτ (crτ ). Here r stands for

the sites of a two-dimensional square superlattice, and τ ∈
{1, . . . ,N} is the internal index. As described in Appendix A,
we assume that the depth of the superlattice is so large that the
hopping of the atoms due to kinetic energy is inhibited. Instead
this tunneling shall be laser assisted by Raman transitions to
certain excited states that are trapped in the secondary minima
of the superlattice.20 Accordingly, it is possible to control
externally the spin-dependent hopping of the atoms along the
primary minima of the superlattice. In the noninteracting limit,
which can be accessed by means of Feshbach resonances, the
Hamiltonian reads

H = −
∑
r,ν

∑
ττ ′

tν[Tν]τ ′τ c
†
r+ν,τ ′crτ + H.c., (1)

where the hopping amplitude along the ν = x,y direction is
modified by a spin-dependent operator Tν , and we have set the
lattice spacing to a = 1. In this work we will study a regime
where the hopping operators correspond to a N -dimensional
representation of the su(2) Lie algebra, namely, Tx = Sx , and
Ty = Sy , which fulfill the corresponding algebra [Sz,S±] =
±S± and [S+,S−] = 2Sz, where S± = Sx ± iSy . We note
that this particular Hamiltonian cannot be obtained from an
external non-Abelian gauge field,13,21 which would require
that Tx,y belong to a Lie group rather than to a Lie algebra. In
this paper we only consider a two-dimensional optical lattice,
but the setup can also be implemented in a three-dimensional
one by adding Tz = Sz in the third direction.20

III. DIRAC-WEYL FERMIONS WITH ARBITRARY SPIN
AND FLAT BANDS

In this section we show that the low-energy excitations
of the su(2) Hamiltonian in Eq. (1) correspond to a particular
type of relativistic particles, the so-called Dirac-Weyl fermions
with arbitrary spin.3 Surprisingly, the spin-dependent hopping
modifies the nonrelativistic theory that describes the gas
of ultracold atoms, and gives rise to emergent Dirac-Weyl
fermions of arbitrary spin s at low energy. In addition, we
show that for half-integer spin, each Dirac-Weyl fermion with
high spin can be decomposed into a collection of ND = s + 1

2
independent 2 + 1 spin-1/2 Dirac-Weyl fermions. We note
that this type of excitation has raised great interest in the
context of graphene.4 On the other hand, for integer spin, each
Dirac-Weyl fermion with high spin gives rise to ND = s spin-
1/2 Dirac-Weyl fermions together with a single zero-energy
flat band. Recently the physics of flat bands has also received
considerable attention.8,10,11 The atomic system discussed here
can be used to explore a variety of interesting effects at the
forefront of condensed-matter and high-energy physics.

Transforming the Hamiltonian in Eq. (1) to momentum
space crτ = 1√

L

∑
k eik·rckτ , where L is the number of lattice

sites and k ∈ [−π,π ) × [−π,π ) lies within the first Brillouin
zone, one obtains the following N -band model

H =
∑

k

�†(k)H (k)�(k), H (k) = −
∑

ν

2tνSν cos(kν),

(2)
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where the spinor �(k) = (ck1, . . . ,ckN )t contains the
fermionic operators. Using the properties of the su(2) Lie
algebra, this Hamiltonian can be readily diagonalized (see
Appendix B), leading to the following spectrum:

Em(k) = mε(k) = m

√
(2tx cos kx)2 + (2ty cos ky)2, (3)

where m = −s, . . . ,s − 1,s. We show in Fig. 1 the resulting
band structures with N = 2, 3, 4, 5 internal components.
Further band structures, corresponding to configurations using
more internal atomic states (N > 5), are easily derived from
this figure. As can be observed, for N = 2, one recovers the
familiar Dirac cones that arise in graphene.4 Conversely, for
N = 3 the Dirac cones are accompanied by a zero-energy
flat band.8 When N = 4 and N = 5 we get very interesting
double-layer cones that host excitations with pseudospin 3/2
and 2, respectively (cf. below). As shown in Figs. 1(c)
and 1(d), these double-layer cones correspond to different
effective speeds of light, therefore leading to the birefringence
phenomenon.

In general, we may conclude that N energy bands touch
at four highly symmetric momenta Kd

W = (π
2 dx,

π
2 dy), where

dν ∈ Z2, which we shall refer to as Dirac points (see Fig. 2).
At half-filling, the low-energy excitations can be described by
the following Hamiltonian:

Heff =
∑
d,p

�†(p)H d
W(p)�(p), H d

W(p) =
∑

ν

cνdνSνpν,

(4)

where p = h̄(k − Kd
W) is the momentum around each Dirac

point, and we define cν = 2tν/h̄. We stress that in the isotropic
regime cx = cy the effective Hamiltonian for the excitations
around KW = (π

2 , π
2 ) corresponds to that of the usual Dirac-

Weyl fermions. One finds HW = cp�s , where we have used
the helicity operator �s = S · p

p
, that is, the projection of the

spin along the direction of the linear momentum.3 Therefore,
the excitations described by Eq. (4) can be interpreted as NW =
4 relativistic Dirac-Weyl fermions with arbitrary spin in an
underlying anisotropic spacetime with an effective speed of
light cx �= cy . We stress that for N > 2, the Sν matrices do
not satisfy a Clifford algebra and therefore the Hamiltonian in
Eq. (4) does not correspond to a Dirac Hamiltonian. We also
note that due to the fermion doubling problem,22 the helicity
operator cannot be globally incorporated into the lattice.

At this point it is worth emphasizing that in a high-energy
context, Dirac-Weyl fermions are usually associated to spin-
1/2 particles. Interestingly, our experimental platform allows
us to synthesize Dirac-Weyl fermions with any arbitrary spin,
integer, or half-integer. In fact, we find two different phases
that depend upon the spin s, and can be thus controlled
experimentally.

(1) Semimetallic phases: For semi-integer spin m �= 0
and the Fermi surface consists of NW = 4 isolated points
(see Fig. 2). It is possible to find an appropriate basis (see
Appendix B), where each Dirac-Weyl fermion with high spin
is described by means of ND = s + 1

2 spin-1/2 counterparts
in 2 + 1 dimensions. The corresponding Hamiltonian reads

Heff =
∑
d,p

∑
m>0

�̃†
m(p)

(
cxmαd

xpx + cymαd
ypy

)
�̃m(p), (5)

FIG. 1. (Color online) Energy bands and Dirac-Weyl fermions.
Energy spectrum E = E(kx,ky) for (a) N = 2, (b) N = 3, (c) N = 4,
and (d) N = 5. The wave vector k = (kx,ky) belongs to the first
Brillouin zone.

where cνm = 2tνm/h̄ is the effective speed of light, αd
ν = dνσ̃

ν
m

are the so-called Dirac matrices in 2 + 1 expressed in terms of
the more usual Pauli matrices, and �̃m(p) is a two-component
Dirac-Weyl spinor (see Appendix B for the details). This is
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FIG. 2. (Color online) Schematic representation of the Dirac
points and their topological description. Inside the first Brillouin
zone we find NW = 4 isolated points where conical intersections
occur. Around these points, one finds that the emergent description
is that of Dirac-Weyl fermions with arbitrary spin. For semi-integer
spin s, these Dirac-Weyl fermions have an associated Berry phase of
abnormal parity γ d

m = π mod(2π ), and an integer-valued topological
charge μd = ±ND ∈ Z, which ensure the robustness of this phase
against external perturbations. In this figure we show the double-
layered cone structure of s = 3/2 Dirac-Weyl fermions.

the Hamiltonian for spin-1/2 massless Dirac fermions. Let
us stress that in this semimetallic phase, each Dirac-Weyl
fermion with high spin corresponds to a collection of spin-1/2
counterparts propagating with a different speed of light (see
Fig. 1). This will lead to interesting effects, such as the
multirefringent Klein tunneling presented in Sec. V below.

(2) Metallic flat-band phases: For integer spin, we find that
each Dirac-Weyl fermion with high spin describes ND = s

spin-1/2 counterparts in 2 + 1 dimensions (see Appendix B).
Besides, in this case, there is always a m = 0 spin com-
ponent, and thus a zero-energy flat band. We note that the
presence of this peculiar flat band shall completely modify
the properties of the system. Dispersionless energy bands
have indeed remarkable consequences on single-particle and
many-body properties.12,23–26 In particular, for N = 3 our
model shares great similarities with the Lieb lattice,9,11

where the low-energy regime is also described by a spin-1
Dirac-Weyl Hamiltonian. Note that in this specific relativistic
band configuration, the fermion doubling imposed by the
Nielsen-Ninomiya theorem for lattice fermions is substituted
by the flat band.11,27

(3) Topological invariants: Due to the Hamiltonian particle-
hole symmetry, the zero eigenvalues are necessarily doubly
degenerate and could therefore lead to nontrivial Berry
phases.28 We have indeed demonstrated, in Appendix B, that
each of the underlying spin-1/2 Dirac-Weyl fermions carries
a Berry phase γ d

m = 2πm sgn(dxdy), a property also familiar
from graphene.4 Note that for half-integer spin, the Berry phase
is of abnormal parity γ d

m = π mod(2π ), regardless of the Dirac
point or Dirac-Weyl fermion. Therefore our semimetal phase
(s half-integer) has a Berry phase of π which is protected by
the particle-hole symmetry.

Furthermore, the particle-hole symmetry also allows for
a more complete topological description of the semimetallic
phases. In Appendix B we show that a particular topological
invariant can be assigned to each Dirac point. This topological
index is given by an integer-valued topological charge μ ∈ Z
introduced in Ref. 29. In our case we find that the different
Dirac points carry a topological charge with a different
sign given by μd = ∑

m>0 μd
m, where μd

m = sgn(dxdy) ∈ Z2.

Accordingly, we can give a topological characterization of
each Dirac point, which is μd = ±ND ∈ Z (see Fig. 2). For
small perturbations that preserve the particle-hole symmetry,
this semimetallic phase is topologically protected since these
topological invariants cannot change. On the other hand,
when the perturbation is strong enough, topological charges
of opposite sign may annihilate each other, giving rise to
interesting quantum phase transitions that generalize those
studied in Ref. 30. In the presence of a weak harmonic
confining potential, it has been found that the Dirac points
and the characteristic spectrum survives locally in the trap,
provided the confining potential varies over a length scale
much larger than the extent of a unit cell.31

IV. WEYL-LANDAU LEVELS AND THE HALF-INTEGER
QUANTUM HALL EFFECT

In this section we study a peculiar quantum Hall effect
which occurs when the Dirac-Weyl fermions are subjected
to an external synthetic magnetic field. The integer quantum
Hall effect is characterized by the perfect quantization of the
transverse Hall conductivity σH = ν e2

h
, where ν is an integer.

This fundamental phenomenon takes place in two-dimensional
systems subjected to a strong magnetic field and exists in the
noninteracting limit. Since the ultracold atoms are neutral, one
needs to mimic the effects of an external magnetic field in
order to perform a quantum simulation of the quantum Hall
effect. A simple way to introduce a magnetic field is to rotate
the system where the Coriolis force in the rotating frame plays
the same role as the Lorentz force on a charged particle in a
uniform magnetic field. Alternatively, optically induced gauge
potentials by means of laser-assisted tunneling can be used,
see also Appendix A and Refs. 15 and 20. These techniques
allow us to modify the hopping of Eq. (1) according to the
so-called Peierl’s substitution Tν → Tνe−i e

h

∫
ν
dr·A, where A is

a synthetic gauge potential giving rise to an effective magnetic
field B = ∇ × A. As shown in recent experiments,32 ultracold
atoms can indeed be used to investigate the effects of external
gauge fields. In the following, we investigate the interplay
between the Hall plateaus and the underlying spin structure.
This study offers a generalization of the anomalous quantum
Hall effect observed in graphene, where zero-energy modes
contribute in a fundamental manner. Here we demonstrate
how this peculiar Hall sequence is indeed related to the
number of Dirac points and zero-energy modes, for the general
case of arbitrary spin structures. This study is performed
both for the lattice and for the continuum limit of our
model.

(1) Continuum description: Weyl-Landau levels. For small-
enough gauge fields, one can show that the Peierl’s sub-
stitution leads to the usual minimal coupling performed in
the effective Hamiltonian (4). The standard procedure is to
replace the canonical momentum by a gauge-invariant quantity
p → � = p + eA, whose components no longer commute
[�x,�y] = −ih̄2/l2

B, where lB = √
h̄/eB is the magnetic

length. By introducing the bosonic creation-annihilation op-
erators a† = lB√

2h̄
(�x + i�y) where a = (a†)†, the effective

Weyl-like Hamiltonian in Eq. (4) is recast into

H d
WL = H d

W(p + eA) = gd+aS+ + gd−aS− + H.c., (6)
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FIG. 3. (Color online) Ladder scheme of the isotropic Weyl-
Landau Hamiltonian. The system with pseudospin s can be un-
derstood as a (2s + 1)-level atom, where transitions between the
different spin projections m → m + 1 (m → m − 1) are dressed by
the annihilation a (creation a†) of a motional quanta.

where we have introduced gd± = h̄(cxdx ± cydy)/(2
√

2lB).
Interestingly the problem of Dirac-Weyl fermions subjected
to a magnetic field,33 hereafter referred to as the Weyl-
Landau levels (WLLs), can be exactly mapped onto the
so-called Dicke model which is well known from quantum
optics.16 This model, which describes the interaction between
a collection of two-level atoms and a single mode of the
quantized electromagnetic field, displays a wide range of
interesting phenomena (see, e.g., Ref. 34). In Fig. 3 we rep-
resent schematically the physical content of the Weyl-Landau
Hamiltonian of Eq. (6) in the isotropic regime, namely, cx =
cy =: c, and for d = (1,1). In this situation, gd− = 0, gd+ =
h̄c/

√
2lB =: g, and the spin raising (lowering) transitions are

dressed by the annihilation (creation) of motional bosonic
quanta.

In Appendix C we present a compact way to solve the
Weyl-Landau Hamiltonian in Eq. (6) for d = (1,1), in the
isotropic regime cx = cy . This solution is iterative in nature
and allows us to take the analytical expressions of the WLLs
from pseudospin s to (s + 1

2 ). From this method one can derive
the exact energy spectrum for different pseudospins, such as

TABLE I. Analytical expression of the Weyl-Landau levels. The
energies corresponding to the Landau levels of Dirac-Weyl fermions
with different pseudospin s = { 1

2 ,1, 3
2 ,2} are expressed as a function

of the coupling strength g = h̄c/
√

2lB, and the number of motional
bosonic quanta n.

s Weyl-Landau levels Enj Constraint

1
2 En,± = ±g

√
2n n � 1

1 E1,± = ±g
√

2 n = 1
En,± = ±g

√
2(2n − 1) n � 2

En,0 = 0
3
2 E1,± = ±g

√
3 n = 1

E2,± = ±g
√

10 n = 2

En,±,1 = ±g

√
(5n − 1) −

√
16(n − 1)2 + 9 n � 3

En,±,2 = ±g

√
(5n − 1) +

√
16(n − 1)2 + 9

2 E1,± = ±2g n = 1
E2,± = ±g

√
14 n = 2

E3,±,1 = ±g
√

15 − 3
√

17, E3,±,2 = ±g
√

15 + 3
√

17 n = 3

En,±,1 = ±g

√
5(2n − 3) − 3

√
4n2 − 12n + 17 n � 4

En,±,2 = ±g

√
5(2n − 3) + 3

√
4n2 − 12n + 17

En,0 = 0

s = { 1
2 ,1, 3

2 ,2} presented in Table I. In Table I we also find
that the energy spectrum of the s = 1

2 WLL is analogous to
the relativistic Landau levels in graphene.1 We also observe
the characteristic dependence of the energies E ∝ g ∝ √

B

which is a hallmark that guarantees the relativistic nature
of the particles. As can be seen in Table I, this peculiar
dependence E ∝ √

B is also fulfilled in higher pseudospin
cases. In the s = 1 case, we observe a couple of particle-hole
symmetric levels with analogous properties, but also a novel
zero-energy Landau level which is completely absent in
the half-integer spin case. The presence of this particular
zero-energy WLL will have important consequences in the
quantum Hall response of the system. Finally, for s = 3

2
and s = 2, we observe two pairs of particle-hole symmetric
levels, which is a consequence of the two underlying species
of spin-1/2 Dirac-Weyl fermions assigned to each Dirac
point. Note also that the dependence on the number of
motional quanta n gets more involved as the pseudospin is
increased.

In addition to the WLLs presented in Table I, we also study
the presence of certain special topological solutions that occur
at zero energy (see the details in Appendix C). These solutions,
the so-called zero-energy modes, play a key role in the quantum
Hall response of the sample and give rise to the half-integer
anomaly.17 The underlying topological modes contribute with
a fractional transverse conductivity (in units of e2/h), even in
the absence of interactions. In Table II we show that Dirac-
Weyl fermions with a half-integer spin s support Nz = s + 1

2
topological zero modes which are protected by a topological
Atiyah-Singer index theorem.35,36 Besides, they present half
the degeneracy of higher Landau levels, and thus lead to a half-
integer anomaly in the quantum Hall response. On the other
hand, for integer spin s, there are also nontopological zero-
energy Landau levels that arise from the highly degenerate flat
band (see Table I). As argued in Appendix C, these zero modes
are not related to an index theorem and thus are not protected.
This highly degenerate zero-energy band characterizing the
integer-spin case is responsible for the vanishing of the half-
integer anomaly. As confirmed numerically in (2) (cf. below),
the Hall conductivity of the system fulfills

σxy = e2

h
NW

(
ν + Nz

2

)
, s half-integer,

(7)

σxy = e2

h
NWν, s integer,

where ν = 0,1, . . . determines the different plateaus, and
NW = 4 is the number of Dirac points. Therefore, as stated
above, the half-integer anomaly is only valid for the half-
integer spin Dirac-Weyl fermion. It is also important to note
that due to the fermion doubling,22 NW = 4 in our case, the
fractional character of the Hall sequence is lost.

(2) Lattice description: Computing the Chern numbers.
The Hall conductivity can be evaluated numerically by
diagonalizing the full tight-binding Hamiltonian in Eq. (1)
after the Peierl’s substitutionTν → Tνe−i e

h

∫
ν
dr·A. Considering
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TABLE II. Analytical expression of the zero-energy modes. The Weyl-Landau Hamiltonain in Eq. (6) also yields certain zero-energy modes
whenever the constraints over the number of motional quanta presented in Table I are not fulfilled. In this Table we list these topological
zero-energy modes for pseudospins s = { 1

2 ,1, 3
2 ,2}, where |s,m〉 refers to the spin state, and |n〉 to the motional Fock state.

s First zero mode (n = 0) Second zero mode (n = 2)

s = 1
2 |E0〉 =

∣∣∣ 1
2 , − 1

2

〉
|0〉

s = 1 |E0〉 = |1, − 1〉|0〉
s = 3

2

∣∣∣E(1)
0

〉
=

∣∣∣ 3
2 , − 3

2

〉
|0〉

∣∣∣E(2)
0

〉
=

√
2
5

∣∣∣ 3
2 , − 3

2

〉
|2〉 −

√
3
5

∣∣∣ 3
2 , 1

2

〉
|0〉

s = 2
∣∣∣E(1)

0

〉
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the standard Kubo formula, the Hall conductivity is given by
the TKNN expression37 as follows:

σH = e2

h

∑
Eα<EF

i

2π

∫
T 2

dk
〈
∂uα

∂kx

∣∣∣∣∂uα

∂ky

〉
−

〈
∂uα

∂ky

∣∣∣∣∂uα

∂kx

〉
(8)

= e2

h

∑
occ. bands

Nch(band) , (9)

where |uα〉 are single-particle eigenstates of (1) and where the
Chern numbers associated to each occupied band, Nch(band),
can be efficiently computed using the method of Ref. 18. Here
EF denotes the Fermi energy, which can be tuned in our setup
by varying the atomic filling.

Before analyzing the specific Hall plateaus of the systems
associated to different spin structures, let us draw their energy
spectra E = E() as a function of the dimensionless magnetic
flux  = 2πBa2. These computed spectra generalize the
famous Hofstadter butterfly.38 The fractal butterfly spectra
corresponding to the cases N = 2, 3, 4, 5 are illustrated in
Fig. 4. For N = 2, one recovers the spectrum of the π -flux
model.19 For N = 3 one observes a spectrum similar to the
Lieb lattice,9,39 which highlights the similarity between these
two models that share a spin-1 configuration. We note the
existence of a highly degenerate flat band lying exactly at zero
energy. For N > 3, the spectra become more complex and
show complicated overlaps between butterfly-like substruc-
tures. In particular, one identifies two overlapping butterflies
in Figs. 4(c) and 4(d), each of which belongs to one of the
two species of spin-1/2 Dirac-Weyl fermions for s = 3/2 and
s = 2. We note that for integer spin (N odd), the central flat
band at E = 0 remains robust for all flux .

The Hall plateaus corresponding to N = 2, 3, 4, 5 are
illustrated in Fig. 5. We expect the Hall sequences to be
compatible with the continuum analysis in the low flux regime,
and we therefore set  = 1/51 in this analysis. We also focus
on the low-energy range, where the description in terms of
Weyl-Landau levels is valid. First we note that for all the cases
[Figs. 5(a)–5(d)], steps of NW = 4 are observed in the ranges
EF < 0 (hole) and EF > 0 (particles). The differences between
these several Hall sequences occur at half-filling (EF = 0),
where the flat band and the number of zero modes play a
fundamental role. For N = 2 (spin- 1

2 ), one observes a central
step of NWNZ = 4 × 1 = 4, while for N = 4 (spin- 3

2 ), one
gets a central step of NWNZ = 4 × 2 = 8. This numerical
results confirm the prediction of Eq. (7) based on the analytical

expressions for the Dirac points, and zero-energy modes
derived earlier.

For general N even (half-integer spin), one indeed obtains
that the two central plateaus, around half-filling, are given by
σxy = ±NWNZ/2 (in units of e2/h), therefore giving a funda-
mental signature of the number of Dirac points and zero modes.

For N odd (integer spin), one finds a vanishing contribution
of the zero modes to the Hall conductivity: a Hall plateau
corresponding to σxy = 0 is clearly observed in the vicinity
of EF = 0 [cf. Figs. 5(b) and 5(d)]. One can understand the
vanishing of the half-integer anomaly as a consequence of the
lack of an index theorem for the zero modes.40 Note that this
general result is in perfect agreement with the Hall sequences
computed for the T3

8 and Lieb9 lattices (i.e., lattices with
pseudospin 1).

In order to deepen our understanding of the different
Hall conductivity plateaus for odd and even N cases, we
further investigate the associated edge states, which can be
obtained by diagonalizing the system in a cylindrical geometry.
In other words, the topological properties hidden in the
bulk (i.e., the Chern numbers) may be visible around the
boundaries by the holographic bulk-to-edge correspondence.19

This correspondence is based on the fact that the edge states
carry the Hall current along the boundaries of the system. In
Fig. 6 we show the corresponding energy spectra E = E(k),
where k is a Bloch parameter, for N = 2 (half-integer spin)
and N = 3 (integer spin). Note that Fig. 6(a) is similar to the
spectrum of graphene [cf. Fig. 21 in Ref. 1], and highlights the
anomalous quantum Hall effect that occurs for half-integer
spins: the contribution of the zero modes at half-filling
confirms the aforementioned result σxy(EF = 0+) = NWNZ/2
(in units of e2/h). In Fig. 6(a) we observe that each boundary
is populated by two edge states: this is due to the presence
of four Dirac points in the first Brillouin zone (in contrast
with the two Dirac points of graphene that lead to a single
edge state). Figure 6(b) emphasizes the absence of gapless
edge states in the first gap above E = 0, as observed for all
the cases corresponding to odd N . This analysis confirms the
general result presented in Eq. (7).

The absence of an anomalous quantum Hall effect for
integer s is certainly interesting. As discussed above, this
effect is also manifested by the zero Hall plateau around
EF = 0 [cf. Figs. 5(b) and 5(d)] or by the absence of
visible edge states stemming from the zero-energy modes
[cf. Fig. 6(b)]. The absence of an index theorem in this case
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FIG. 4. (Color online) Hofstadter-like fractal butterflies in the
Dirac-Weyl fermion system. The energy spectrum E = E() as a
function of the magnetic flux shows a fractal butterfly structure:
(a) N = 2 (s = 1

2 ), (b) N = 3 (s = 1), (c) N = 4 (s = 3
2 ), and (d)

N = 5 (s = 2). The parabolic dependence at low magnetic fluxes can
be related to the underlying relativistic fermions. Note also that for
integer spin, one gets a flat band exactly located at zero energy.

FIG. 5. (Color online) Quantum Hall effect in the Dirac-Weyl
fermion system. The transverse Hall conductivity as a function of
the Fermi energy σH (EF) displays a sequence of plateaus that are
associated to an underlying topological order: (a) N = 2 (s = 1/2),
(b) N = 3 (s = 1), (c) N = 4 (s = 3/2), and (d) N = 5 (s = 2). Here
we set the magnetic flux to  = 1/51.

prevents the robustness of the topological zero modes and
therefore, it is reasonable to argue that they cannot contribute
to the Hall conductivity (since this physical observable is
topologically protected). Furthermore, the localized properties
of the states rooted in the flat band10 could also explain that
their associated zero modes would potentially contribute to
edge states with zero velocity (i.e., they would not contribute
to the Hall conductivity). The latter effect is further detailed in
Appendix D.

V. KLEIN MULTIREFRINGENCE TUNNELING

It was shown in Ref. 4 that due to the coupling of
positive and negative chirality channels outside and inside
a potential barrier, quantum tunneling of Dirac particles in
graphene becomes highly anisotropic, and the barrier remains
perfectly transparent for normal incidence. The fermionic and
bosonic Klein paradox are both discussed in the literature
(see Ref. 41 and references therein). It was shown that while
the central mechanism for fermionic Klein tunneling is the
Pauli exclusion principle, the key to bosonic Klein tunneling
is stimulated emission. Jakubsky et al.42 were able to show
that for normal incidence, the potential can be gauged away
by a unitary transformation, leaving a free particle dynamics in
disguise, where a unitary equivalence between the transformed
Hamiltonians becomes encoded in a supersymmetry algebra.
Evidence for Klein tunneling has been obtained from graphene
pn junction43,44 and most recently been simulated using
trapped ions.45

The different helicities carried by the Dirac-Weyl fermions
can naturally couple inside the barrier, but there is also a
possibility to transform one helicity to another outside the bar-
rier, resulting in a remarkable multirefringence phenomenon
familiar from optics.14 In Appendix E we present a detailed
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FIG. 6. Energy spectrum and current-carrying edge states. Energy
spectrum E = E(k) for (a) N = 2 and (b) N = 3. Here we set  =
1/51.

treatment of the Klein tunneling of Dirac-Weyl fermions
with arbitrary spin. Using the equations introduced there, a
numerical investigation of the double-layered cone structure
of spin-3/2 particles shows that Klein birefringence is indeed
present (see Fig. 7 for a schematic overview). The incident
energy of the particle is E, where the barrier width is D

and height V0, respectively. The incident particle is chosen
to follow the outer layer cone. As such, the evanescent waves
do not cause a cutoff for any helicity outside the barrier [see
Fig. 7(b)].

Figure 8 shows the transmission of spin-3/2 Dirac-Weyl
fermions when the width and height of the barrier changes.
For normal incidence, the barrier is perfectly transparent as in

FIG. 7. (Color online) Klein birefringent tunneling. Schematic
view of a spin-3/2 Dirac-Weyl fermion incident on a potential barrier
(a) while following the outer cone (b).

FIG. 8. (Color online) Klein birefringent tunneling. Double
transmissions (birefringence) of spin-3/2 Dirac-Weyl particles from
the double-layered cone structures as the width and height of the
barrier change. In (a) the transmission diagram with the increase of
width (up two panels) and height (down two panels) of potential
barrier are shown. Parameters used in the simulation: up two panels,
2(V0 − E)/ch̄k = 5 fixed with the evolution of kD; down two panels
with kD = 50 fixed, and the evolution of 2(V0 − E)/ch̄k. (b) shows
the blowup of initial increase with height of the barrier of the down
two panels in (a) to illustrate the role of evanescent waves, where
the cutoff conditions for helicities h1 = 1/2 and h2 = 3/2 are clear
visible.

graphene4 [see Fig. 8(a)]. When the incident angle deviates
from normal incidence, the component following the inner
cone shows periodic peaks in the transmission, which is the
hallmark of birefringence. There are no resonant conditions,
where the barrier would become perfectly transparent at
certain incident angles, apart from normal incidence. For
lower barriers, evanescent waves play an important role
when coupling helicities outside and inside the barrier, as
shown in the two lowest panels in Figs. 8(a) and 8(b). For
a low enough barrier, and for an incident wave beyond
the critical angle θc1 = arcsin[(V0 − E)/ch̄kh1], h1 = 1/2,
all the helicities coupled inside the barrier are evanescent
waves, hence there is no transmission for any component as
shown in Fig. 8(b). For a combination whose critical angle
is θc2 = arcsin[(V0 − E)/ch̄kh2] and h2 = 3/2, there is only
one negative helicity of h1 = 1/2 inside the barrier which is
coupled in the form of a propagating wave. The transmission
properties are consequently modified dramatically in this
regime [see Fig. 8(b)]. These two boundaries stemming from
the helicities of h1 = 1/2 and h2 = 3/2 are clearly visible in
Fig. 8(b). Herein lies the paradox. For low barriers there is no
transmission, while for high barriers the transmission is high.
For the case of an incident particle following the inner cone,
there is an additional cutoff condition exerted by evanescent
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waves with helicity h2 = 3/2 outside the barrier, that is,
beyond the critical angle θc = arcsin(h1/h2) = arcsin(1/3) =
0.34, a particle with helicity h2 = 3/2 cannot be transmitted.

For n-layered cones we obtain similar results, where
inside the barrier the presence of evanescent waves will
exert a cutoff for each helicity, where with increasing barrier
height transmission is gradually allowed for the different
helicities. Outside the barrier the evanescent waves only exert
a cutoff when a small helicity is transformed to a large one.
The transmission spectrum typically shows n refringence,
which we refer to as Klein multirefringent tunneling. This
multirefringence is a result of the rather unique and nontrivial
helicity of these Dirac-Weyl fermions.

VI. DETECTION

The experimental realizations of the proposed scenarios and
the detection of the resulting effects are certainly challenging
but should still be within experimental reach with state of
the art trapping and manipulation of atomic ensembles. Any
detection scheme capable of resolving the effects discussed in
this paper will typically have to be able to distinguish between
spin states, particle density, and momentum distribution. We
briefly outline here some of the possible techniques one can
use, and refer the reader to Ref. 30 for an extensive discussion
about detection methods of exotic quasi particles in optical
lattices.

Regarding the number of Dirac points, we note that this can
be addressed by measuring the atom density close to a zero
chemical potential.46 To obtain the number of zero modes and
the number of Dirac points one can evaluate, or indeed mea-
sure, the Hall conductivity around half-filling. This could be
achieved using the Streda formula based on the atomic density
which can be measured precisely by the in situ individual atom
detection as in Refs. 47 and 48. In addition, a measurement of
the atom density as a function of the chemical potential allows
us to map the density of states (DOSs), where the Van Hove
singularities in the DOSs are directly related to the number
of layers of the cone structure (see Ref. 13). By mapping
out the momentum distribution using atomic angle-resolved
photoemission spectroscopy (ARPES),49 momentum-resolved
Bragg spectroscopy,50 or adiabatic release,51 allows us to map
the Fermi surface and thus the location of each Dirac points.

The existence of a flat band with integer spin can be
detected by its energy dispersion and its related wave function.
The flat band gives a peak in the DOSs,8 which can be
detected by measuring the atomic density. More importantly,
the localization properties resulting from the flat band could
also be detected.10 This localization can be observed after the
weak harmonic confinement of the atoms is removed but with
the optical lattice kept in place: the atoms occupying the Dirac
cones will fly away fast while the atoms occupying the flat
band will remain stuck in the immobile flat band states as
shown in Ref. 10. In our system, this localization property
should be observed for N odd and can be understood by
observing the vanishing of the Dirac-Weyl spinor components
corresponding to odd cyclotron modes [see for instance
Eq. (C5) in Appendix C]—in direct analogy with the flat
band wave function of the Lieb lattice. The vanishing of
the components corresponding to the odd cyclotron modes

of the Dirac-Weyl spinor can also be confirmed by the color
resolution strategies summarized in Ref. 30.

The presence of edge states in the bulk gap above half-
filling52–54 is an intriguing concept. For this undoubtedly
challenging endeavor one would need to engineer a sharp
boundary, with a characteristic length on the order of the lattice
constant, in order to stabilize the presence of topological edge
states within the center of the trap.54 Loading the atoms into
the edge states can be achieved with external light pulses.53,54

In addition, the dynamical structure factor S(q,ω) from light
Bragg scattering can also provide a direct way to observe the
edge states and bulk states as demonstrated in Ref. 52. The
lack of edge states in the bulk gaps around half-filling could
be an important indicator of the existence of a flat band.

To detect the Klein tunneling the most natural approach
seems to be designing a potential barrier for the atoms by
optical or magnetic means, and prepare the atoms with a well
defined momentum, then see if particles have tunneled through
the barrier to the other region. However, a direct confirmation
of the Klein multirefringent tunneling would require a launch
of a multicomponent mass current. To launch such a mass
current, several schemes can be used. For example, one can
connect the optical lattice to two reservoirs with different
chemical potentials as in Refs. 55 and 56, exert a static force
from a tilted optical lattice,57 or by an effective electric field
on the atoms from the optical dipole force.58 Measuring the
mass current across the barrier will consequently reveal the
intricate dependence on helicity for the tunneling dynamics.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have proposed the quantum simulation
of Dirac-Weyl fermions with arbitrary spin by a particular
laser-assisted tunneling in optical lattices. By tuning the spin-
dependent hopping according to the su(2) Lie algebra, we can
assign an arbitrary spin s to these fermions, and go beyond the
standard spin- 1

2 regime of high-energy physics.
We have presented a detailed study, both analytically

and numerically, of several striking aspects of Dirac-Weyl
fermions. In particular, our system hosts two different phases:
a semimetallic phase for half-integer s, and a metallic phase
that contains a flat zero-energy band for integer spin s. We
have shown that the low-energy transport in the semimetallic
phase is characterized by multirefringent spin-1/2 Dirac-Weyl
fermions moving at different speeds. As a consequence, we
also find an exotic Klein tunneling across a potential barrier. In
the presence of a synthetic magnetic field, we have connected
the Weyl-Landau problem to the Dicke model known from
quantum optics. The corresponding Hamiltonian presents a
rich structure of Weyl-Landau levels and zero-energy modes
whose robustness can be related to an index theorem for
half-integer s, which also includes an anomalous half-integer
quantum Hall effect.

Many interesting avenues remain however unexplored. It
is possible to engineer a mass term by a particular on-site
Raman transition13 in order to explore a massive regime
and even look for a topological insulating phase. Another
interesting possibility is to engineer a curved spacetime
background following Ref. 59, and study the effects of the
higher spin of these Dirac-Weyl fermions. One can also
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separate each spin-1/2 Dirac-Weyl component of the Dirac-
Weyl fermions with high spin by an appropriate tailoring
of the spin-dependent hopping,11,30 which could potentially
lead to interesting topological quantum phase transitions. An
intriguing supersymmetric algebraic structure42 also deserves
further attention in the Klein multirefringent regime. We thus
believe that several new effects can be explored starting from
the results presented in this work.
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APPENDIX A: EXPERIMENTAL REALIZATION
OF SPIN-DEPENDENT HOPPING

In this Appendix we describe the main ingredients of
a method to engineer the spin-dependent tunneling20 that
leads to the Hamiltonian in Eq (1). We consider a cloud
of ultracold 40K atoms described by the fermionic field
operators c

†
xτ (cxτ ), where τ ∈ {1, . . . ,N} is the internal index

that labels a particular subset of Zeeman sublevels in the
ground state L = 0, F = 9/2, and x stands for the sites
of a two-dimensional square superlattice. This particular
superlattice follows from the optical potential created by two
pairs of counterpropagating lasers along each axis α, V (xα) =
V1

∑
j cos2(kLxα) + V2

∑
j cos2(2kLxα), where V1 
 V2 rep-

resent the lattice depths, and kL an optical wave vector.
As shown in Fig. 9, the atoms are trapped in a periodic
structure of primary and secondary minima, that shall be
referred to as sites r, and links l henceforth. For a deep
optical superlattice, the atomic tunneling between neighboring
sites will be completely suppressed. The fundamental idea to
engineer a spin-dependent hopping is to assist this tunneling
using additional lasers that drive a Raman transition to an
excited state in the hyperfine manifold F = M = 7/2 (see
Fig. 9), here represented by the fermionic operators d

†
x(dx).

The use of a pair of lasers in a Raman configuration is twofold.
On the one hand, the effective frequency can be tuned to
the microwave transition F = 9/2 ↔ F = 7/2. On the other
hand, the effective wave vector can be large so that the lasers
impart enough momentum to the atoms to tunnel between
neighboring lattice sites. As customary,60 such a two-photon
transition is obtained after the adiabatic elimination of a higher
excited state in the fine structure L = 1. The Raman lasers
aligned along a particular hopping direction not only drive
the transition between the hyperfine levels, but also transfer a

FIG. 9. (Color online) Superlattice scheme for a laser-assisted
hopping. Atoms in the ground state L = 0, F = 9/2 are coupled via
a two-photon Raman transition to neighboring atoms in a different
hyperfine manifold L = 0, F = 7/2. This Raman transition takes
place through an intermediate excited state L = 1, such that for large
enough detuning δ,|�1|,|�2| � �, where �i are the Rabi frequencies
for each laser, one readily arrives at the Hamiltonian in Eq. (A1).

finite momentum to the atoms which allows them to tunnel to
a neighboring site. This assisted hopping61 is described by the
following Hamiltonian:

HR =
∑
x ′,x

�eff
τ Sxx ′c

†
x ′τ dxe−iωRt + H.c., (A1)

where �eff
τ is the two-photon Rabi frequency driving

the transition |F = 9/2,τ 〉 ↔ |F = 7/2,7/2〉, and Sxx ′ =
〈x|eikRr |x′〉 = ∫

d3rw∗
x(r)eikR ·rwx′(r) determines the momen-

tum transfer that the Raman lasers impart on the atom, thus
assisting the transition between neighboring superlattice sites.
The parameters of this two-photon Raman transition ωR =
ω1 − ω2, and kR = k1 − k2, follow from each laser frequency
and wave vector. Here we have introduced the corresponding
Wannier functions wx(r). In the expression of Sxx′ , one sees the
importance of using a two-photon Raman scheme rather than
a simple microwave, since the integral between neighboring
Wannier functions will only be finite when the imparted
momentum is large (i.e., the effective wavelength is on the
order of the lattice spacing λR ≈ a, typically a few hundred
nanometers). As shown in Ref. 20, by selecting an appropriate
detuning, Zeeman splitting, and lattice staggering, it is possible
to perform an adiabatic elimination of the auxiliary states
d
†
x(dx) that reside on the links, and thus obtain an effective

Hamiltonian that describes the hopping of F = 9/2 atoms
along the primary sites of a two-dimensional lattice. Therefore,
the auxiliary link serves as a bus that allows us to assist the
tunneling, and one obtains the effective Hamiltonian in Eq. (1),

H = −
∑
r,ν

∑
ττ ′

tν[Tν]τ ′τ c
†
r+ν,τ ′crτ + H.c., (A2)

where the tunneling strengths tν now depend on the four-
photon Rabi frequencies. We note that the particular matrices
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Tν can in principle be designed at will, although the experi-
mental requirements are certainly challenging.

For the simplest situation s = 1/2, one selects a pair of
Zeeman sublevels M = 9/2, 7/2, and the hopping operators
would correspond to Tx = 1

2τx, Ty = 1
2τy . Each of these can

be engineered with a single pair of Raman beams, once
their frequencies are tuned to the resonance given by the
Zeeman splitting and the lattice staggering. To account for
the real/complex matrix elements, one should control the
laser phases appropriately, which can be accomplished by
means of acousto-optical modulators. The scheme gets more
complicated for s = 1, where the hopping operators have now
four nonvanishing elements, and thus double the number of
beams required. Let us note, however, that since the different
resonance frequencies rely on the Zeeman splitting and
staggering, which is a small fraction of the laser frequency,20

the desired frequencies can be obtained from the same source
once the beams are split and their frequencies tuned by an
acousto-optical modulator. For arbitrary s, the scheme is more
involved, yet benefits from the fact that the hopping matrices
are of sparse nature. Let us finally remark that there might
be more clever schemes that take advantage of the light
polarization to select the different hopping elements.

APPENDIX B: DIRAC-WEYL FERMIONS AND
TOPOLOGICAL INVARIANTS

In this Appendix we show how to describe a single
Dirac-Weyl fermion with high spin as a collection of spin-1/2
Dirac-Weyl fermions, and also give an explicit derivation
of the topological charges that can be assigned to these
excitations. The Hamiltonian in Eq. (2) can be diagonalized
using a similarity transformation for the su(2) Lie algebra.62

In particular, the su(2) rotation

U = ei π
2 (ny

kSx−nx
kSy ), nν

k = −2tν cos kν/ε(k) (B1)

brings the Hamiltonian into a diagonal form

H ′
k = U †HkU = E0P0 +

∑
m>0

Em(k)σ̃ z
m, (B2)

where the energies Em(k) are those of Eq. (3), and we have
defined P0 = |s,0〉〈s,0| as the projector onto the zero-energy
flat band for m = 0, and the Pauli matrices σ̃ z

m = |s,m〉〈s,m| −
|s, − m〉〈s, − m|, where |s,m〉 are the eigenstates of Sz. Let us
note that the eigenstates of the Hamiltonian |Em〉 = U |s,m〉
can be understood as the su(2) spin-coherent states for different
fiducial states.

Once we have an analytic expression for the diagonal
Hamiltonian, we shall show that for half-integer spin, each
Dirac-Weyl fermion with high spin can be expressed as
a collection of spin-1/2 Dirac-Weyl fermions. Let us de-
fine the Pauli matrices σ̃ x

m = |s,m〉〈s, − m| + H.c. and σ̃
y
m =

−i|s,m〉〈s, − m| + H.c. Now we perform the following block-
diagonal rotation to the Pauli matrices in Eq. (B2)

U ′ = diag
(
e−i π

2 ε(k)(−n
y

kσ̃ x
1 +nx

kσ̃
y

1 ), . . . ,e−i π
2 ε(k)(−n

y

kσ̃ x
N+nx

kσ̃
y

N )
)
.

(B3)

The block structure of the Hamiltonian (B2) allow us to easily
derive the effective description in terms of spin-1/2 Dirac-
Weyl fermions

H ′′
k = U ′H ′

kU
′† = −

∑
m>0

(
2txm cos kxσ̃

x
m + 2tym cos kyσ̃

y
m

)
,

(B4)

which directly leads to the Weyl-like Hamiltonian in Eq. (5).
We note that the Dirac-Weyl spinor introduced here is
built from pairs of states with opposite spin �̃m(p) =
U ′U (|s,m〉,|s, − m〉)t . By a simple counting argument, one
finds that there are ND = s + 1

2 underlying spin-1/2 Dirac-
Weyl femions per Dirac-Weyl fermion of half-integer spin.
Conversely, for the integer-spin case, one finds ND = s spin-
1/2 Dirac-Weyl fermions and a single zero-energy flat band.

We now derive the Berry phases28 that can be assigned
to the semimetallic phase. The parallel transport of the
eigenstates {|Em(k)〉} below Eq. (B2) can be defined from
the so-called Berry connection on the principal fiber bundle
P(T2,U (1)), where T2 is the 2-torus assigned to the Bril-
louin zone. The Berry connection is defined as Am(k) =
i〈Em(k)|∇k|Em(k)〉 = i〈s,m|U †

k∇kUk|s,m〉. This expression
can be evaluated using Sneddon’s formula for the parametric
differentiation of the operator exponential.62 In the particular
case of eigenstates at half-filling, the Berry connection reads
A−|m|(k) = |m|(nx

k∇kn
y

k − n
y

k∇kn
x
k). We can now derive the

Berry phase γm = ∮
C

dk · Am(k), where C represents a cycle
in the Brillouin zone that surrounds a certain Dirac singularity.
Performing the corresponding line integral, we have found
that the Berry phase associated to each filled eigenstate is
γ d

−|m| = −2π |m|sgn(dxdy), where dx,dy ∈ {−1,1} determine
the particular Dirac point. Since the Berry phase is defined
modulo 2π , we find that the Berry phase for each of the
filled bands has an abnormal parity γ d

−|m| = π for half-
integer spin s. This particular homotopic and topological
invariant underlies many of the fascinating phenomena of
graphene.1

Finally, we close this Appendix by calculating an
integer-value topological charge which is more descriptive
than the Berry phase presented above. This topological
invariant29 is defined for particle-hole symmetric Hamiltoni-
ans, such as Eq. (B4), which fulfills {H ′′

k ,�} = 0, where � =
diag{σ̃ z

1 , . . . ,σ̃ z
N } exploits the block structure of the Hamilto-

nian and fulfills �† = �, �2 = I. The topological invariant is
defined as a winding number μ = 1

4πi

∮
C

Tr{�(H ′′
k )−1dH ′′

k },
which vanishes unless the cycle C encloses a zero of the
Hamiltonian. Therefore, this invariant is ideally suited to
detect the Dirac points in the Fermi surface, and the value it
assigns μd ∈ Z shall be topologically protected for any small
perturbation that preserves the particle-hole symmetry. This
winding number reduces to μd = ∑

m>0 μd
−|m|, where

μd
m = 1

4πi

∮
C

(d log hmk − d log h∗
mk), (B5)

and we have introduced hmk = 2txm cos kx + 2itym cos ky .
Performing the line integrals, it can be shown that the topolog-
ical charges around the Dirac points read μd = NDsgn(dxdy),
where ND = (2s + 1)/2. Accordingly, the charges are integer
values, and their sign depends on the particular Dirac point
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dx,dy ∈ {−1,1} under consideration. For particle-hole pre-
serving perturbations, only when two opposite charges meet,
a quantum phase transition can take place. Therefore, on very
general grounds, we can claim that the semimetallic phase is
topologically protected.

APPENDIX C: ANALYTICAL SOLUTION OF THE
WEYL-LANDAU LEVELS, TOPOLOGICAL

ZERO-ENERGY MODES, AND THE INDEX THEOREM

In this Appendix we derive the exact solution of the
Hamiltonian in Eq. (6), and describe the appearance of multiple
zero-energy modes which are responsible for the half-integer
anomaly in the quantum Hall sequence.

Complete analytical solution: In this part of the Ap-
pendix we derive the exact solution of the Hamiltonian
in Eq. (6) for the Dirac point d = (+1, + 1), and in the
isotropic regime cx = cy . To do this we write out the matrix
elements explicitly as H d

WL = gd+
∑

n,m[Enmδn,m+1ρma† +
Enmδn,m−1ρna], where ρn = √

n(2s + 1 − n) and Enm is the
(2s + 1) × (2s + 1) matrix with 1 at row n and column
m, and zeros otherwise. The eigenvector can be expressed
as � = (φ1,φ2, . . . ,φ2s+1)t , and the eigenequations are the
following operator equations ρi−1a

†φi−1 − εφi + ρiaφi+1 =
0 with i = 1,2, . . . ,2s + 1. We solve the Weyl-Landau levels
by successive substitutions, that is, we substitute the second
equation into the first one, and then substitute the third
one to the result obtained by the previous substitution and
repeat the process (see Table III). After r substitutions,
we get Ar,i(aa†)i−1φr = ρrBr,j (aa†)j−1aφr+1, where Ar,i

and Br,j are energy-dependent constants, using the Einstein
summation convention for repeated indexes i,j . Setting
ρra

†φr = εφr+1 − ρr+1aφr+2, we get Ar,i(a†a)i−1(εφr+1 −
ρr+1aφr+2) = Br,jρr (a†a)jφr+1. Recasting the expression, we
obtain

Ar+1,i = ε
∑

[(r+2)/2]�k�i

Ar,k

(
k − 1
i − 1

)
(−1)k−i − ρ2

r

×
∑

[(r+1)/2]�k�i−1

Br,k

(
k

i − 1

)
(−1)k−i+1,

Br+1,i =
∑

[(r+2)/2]�k�i

Ar,k

(
k − 1
i − 1

)
(−1)k−i , (C1)

where ( n

m ) is a binomial coefficient and [r] is the integer part of
r . By using the cutoff condition ρ2s+1 = 0, the Weyl-Landau
levels are obtained compactly as

[s+3/2]∑
i=1

A2s+1,i(n + 1)i−1 = 0, (C2)

where A2s+1,i are determined by the recursion above with ini-
tial values A1,1 = ε and B1,1 = 1. Here, n is the eigenvalue of
the number operator a†a for the Fock state |n〉. The eigenvector
is then expressed as �s

n = (f2s(n,ε)|n − 2s〉,f2s−1(n,ε)|n −
2s + 1〉, . . . ,f0(n,ε)|n〉)t , where fi(n,ε) are determined by the
algebraic equation

ρi−1f2s+2−i

√
n − 2s + i − 1 − εf2s+1−i

+ ρif2s−i

√
n − 2s + i, (C3)

with i = 1,2, . . . ,2s + 1. For s = 1/2 and s = 1, the results
in Table III confirm the results in Refs. 4 and 11. However, the
general expression here is applicable to any arbitrary spin. The
Weyl-Landau states of these high spin particles are a mixture
of successive nonrelativistic Landau levels, that is, the spin
and orbital degrees of freedom of �s

n are highly entangled.
This entanglement is a source of many interesting topics,
like the mesoscopic superposition states in relativistic Landau
levels,63 possible fractional Hall states with high Landau-level
index and nonfractional to fractional QHE transition,64 and
nonabelian anyons.65 We note that our Weyl-Landau problem
can be mapped to a single-mode Dicke model which shows
a quantum phase transition from the normal to superradiant
state (i.e., the ground state has a large Weyl-Landau index n)
in the limit of s → ∞. This may be the way to realize a stable
fractional QHE state with higher Weyl-Landau index n in this
kind of system when the interaction is turned on.

Existence of zero-energy modes: In this part of the Appendix
we explicitly derive the zero-energy modes displayed by the
Weyl-Landau Hamiltonian in Eq. (6) for d = (+1, + 1) in

TABLE III. Weyl-Landau levels by successive substitutions.

nth substitution Expression Weyl-Landau levels pseudospin

First (A2,1 + A2,2aa†)φ2 = ρ2(B2,1)aφ3
a ε = ±g

√
2n s = 1/2

Second (A3,1 + A3,2aa†)φ3 = ρ3(B3,1 + B3,2aa†)aφ4
b ε = 0, ± g

√
2(2n − 1) s = 1

Third
[
A4,1 + A4,2aa† + A4,3(aa†)2

]
φ4 = ρ4(B4,1 + B4,2aa†)aφ5

c ε = ±g

√
(5n − 1) ±

√
16(n − 1)2 + 9 s = 3/2

Fourth
[
A5,1 + A5,2aa† + A5,3(aa†)2

]
φ5 = ρ5

[
B5,1 + B5,2aa† + B5,3(aa†)2

]
aφ6

dε = 0, ± g

√
5(2n − 3) ± 3

√
4n2 − 12n + 17 s = 2

...
rth

∑
i Ar,i(aa†)i−1φr = ∑

j ρrBr,j (aa†)j−1aφr+1

aA2,1 = ε2 + ρ2
1 , A2,2 = −ρ2

1 ; B2,1 = ε.
bA3,1 = ε(ε2 + 2ρ2

1 + ρ2
2 ), A3,2 = −ε(ρ1

2 + ρ2
2 ); B3,1 = ε2 + 2ρ2

1 , B3,2 = −ρ2
1 .

cA4,1 = ε4 + ε2(3ρ2
1 + 2ρ2

2 + ρ2
3 ) + 3ρ2

1ρ
2
3 , A4,2 = −ε2(ρ2

1 + ρ2
2 + ρ2

3 ) − 4ρ2
1ρ

2
3 , A4,3 = −ρ2

1 ; B4,1 = ε(ε2 + 3ρ2
1 + 2ρ2

2 ),
B4,2 = −ε(ρ2

1 + ρ2
2 ).

dA5,1 = ε[ε4 + ε2(4ρ2
1 + 3ρ2

2 + 2ρ2
3 + ρ2

4 ) + 8ρ2
1ρ

2
3 + 4ρ2

1ρ
2
4 + 3ρ2

2ρ
2
4 ], A5,2 = ε[ε2(ρ2

1 + ρ2
2 + ρ2

3 + ρ2
4 ) + 6ρ2

1ρ
2
3 + 5ρ2

1ρ
2
4 +

4ρ2
2ρ

2
4 ], A5,3 = ε(ρ2

1ρ
2
3 + ρ2

1ρ
2
4 + ρ2

2ρ
2
4 ); B5,1 = ε2(ε2 + 4ρ2

1 + 3ρ2
2 + 2ρ2

3 ) + 8ρ2
1ρ

2
3 , B5,2 = −ε2(ρ2

1 + ρ2
2 + ρ2

3 ) − 6ρ2
1ρ

2
3 ), B5,3 = ρ2

1ρ
2
3 .
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the isotropic regime cx = cy . The complete Hilbert space is
H = F ⊗ CN , where F = span{|n〉,n = 0,1, . . .} is the Fock
space of the cyclotron modes, whereasCN = span{|s,m〉,m =
−s, . . . ,s} is the angular momentum space. Nonetheless, the
action of the Hamiltonian decomposes in a set of invariant
subspaces H = ⊕∞

n=0Hn, where each Hn is spanned by a
different combination of the Fock and spin states. In particular,
we find that for n < 2s, there are certain special subspaces with
odd dimensionality:

H0 = span{|0〉|s, − s〉},

H2 = span{|2〉|s, − s〉, . . . ,|0〉|s, − s + 2〉},
(C4)

...

H2s−1 = span{|2s − 1〉|s, − s〉, . . . ,|0〉|s,s − 1〉}.
Each of these subspaces hosts a zero-energy mode of

the Weyl-Landau Hamiltonian. By introducing the following
quantities fn,s,m = g

√
n[s(s + 1) − m(m + 1)], where g is the

coupling constant introduced in the Weyl-Landau Hamiltonian
of Eq. (6), one finds the following zero-energy modes for which
H |E0〉 = 0:

∣∣E(1)
0

〉 = |0〉|s, − s〉,∣∣E(2)
0

〉 ∝ f1,s,−s+1|2〉|s, − s〉 − f2,s,−s |0〉|s, − s + 2〉,
... (C5)

∣∣E(Nz)
0

〉 ∝
2s−2∏
n′odd

fn′,s,s−1−n′ |2s − 1〉|s, − s〉 − f2s−1,s,−s

2s−4∏
n′odd

fn′,s,s−1−n′ |2s − 3〉|s, − s + 2〉 + · · ·

+(−1)s−3/2f1,s,s−2

2s−3∏
n′even

f2s−1−n′,s,−s+n′ |2〉|s,s − 3〉 + (−1)s−1/2
2s−1∏
n′even

f2s−1−n′,s,−s+n′ |0〉|s,s − 1〉,

where we have omitted an irrelevant normalization factor. By
simple counting, we find that the Weyl-Landau Hamiltonian
hosts Nz = s + 1

2 zero-energy modes for half-integer spin.
Interestingly, the number of zero modes coincides with the
number of the spin-1/2 Dirac-Weyl fermions contained by
a single high spin Dirac-Weyl fermion. Therefore, one may
argue that each underlying spin-1/2 Dirac-Weyl fermion hosts
a single zero-energy mode, which shall be responsible for
a half-integer anomaly in the quantum Hall response of the
system [see Eq. (7)]. Conversely, the number of zero modes
for integer spin is not bounded (see Table I).

Index theorem and robustness of zero modes: We have
already seen two physical manifestations of topology, namely,
the topological charge, or the abnormal Berry phase, that can
be assigned to each of the Dirac-Weyl fermions (Sec. III), and
the Chern numbers that determine the quantum Hall response
of the system (Sec. IV). In this part of the Appendix we
describe yet another manifestation of topology: the relation
of the zero modes to the Atiyah-Singer theorem.35 This
famous theorem, which relates the analytical and topological
features of differential operators, has important consequences
on the properties of Dirac-Weyl fermions subjected to external
gauge fields.66 Graphene therefore has turned out to be an
excellent platform to understand this relationship both from a
theoretical67 and experimental viewpoint.66 In this Appendix
we describe how these concepts can be generalized to Dirac-
Weyl fermions of arbitrary spin s, and we find that only the zero
modes of half-integer spin Dirac-Weyl fermions are protected
by the topological features of the system. As discussed in
Sec. IV, this justifies the absence of the half-integer anomaly
for integer-spin Dirac-Weyl fermions.

The Weyl-Landau Hamiltonian in Eq. (6) for d = (+1, + 1)
in the isotropic regime cx = cy presents the following particle-
hole symmetry:

�s = eiπ(Sz+s),
{
H d

WL,�s

} = 0, (C6)

which fulfills �2
s = I, �

†
s = �s . This operator, known as an

involution,68,69 allows us to decompose the Hilbert space
as H = H+ ⊕ H−, where H± follow from the orthogonal
projections P± = 1

2 (I ± �s) associated to the ±1 eigenvalues
of the involution. With this formulation, the Weyl-Landau
Hamiltonian can be rewritten as a supercharge Q,

H d
WL = Q =

(
0 D†

D 0

)
, (C7)

where the differential operators D = P−H d
WLP+ : H+ →

H−, and D† = P+H d
WLP− : H− → H+, join the orthogonal

subspaces. In this language, the analytical index of the
supercharge can be expressed as

indQ = ν+ − ν− = dim(kerD) − dim(kerD†). (C8)

For elliptic operators68 this index can be related to the
topological features of the system via the famous Atiyah-
Singer index theorem. This relationship not only gives insight
into the number of zero modes in the system, but also pinpoints
their robustness with respect to local perturbations of the
Hamiltonian. From the results in Tables I and II, we observe
that

ν+ = s + 1
2 , ν− = 0, s half-integer, (C9)
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and therefore the total number of zero modes determines the
index indQ = s + 1

2 , which is related to the total magnetic
flux that pierces the system. Therefore, these zero modes
are extremely robust with respect to local perturbations of
the Hamiltonian. Conversely, the number of zero modes for
integer spin is unbounded (see Table I). In this case, the
differential operator D is not an elliptical operator,40 and thus
the index theorem does not apply. Accordingly, the zero modes
for an integer-spin Dirac-Weyl fermion are not topologically
protected.

APPENDIX D: FLAT BAND, ZERO MODES, AND HALL
CONDUCTIVITY

In Sec. IV we have demonstrated that Dirac-Weyl particles
with integer spin s do not present the anomalous (half-integer)
quantum Hall effect. Namely, we have shown the absence
of edge states stemming from the zero modes, therefore
leading to a zero Hall plateau above half-filling. This effect is
particularly interesting as it seems to be rooted in the absence
of an index theorem that guarantees the robustness of these
topological zero modes. An alternative explanation comes
from the possibility that edge states with zero velocity could
be hidden in the flat band and would therefore not contribute
to the Hall conductivity.

The squeezing of the edge states, namely, the fact that their
dispersion relation is given by E(k) = 0 for integer s, can be
investigated in a model that extrapolates continuously between
the case of Dirac-Weyl particles with integer and half-integer
spin. Such a model has been introduced by Kennett et al.70 This
model has four sites in its unit cell and contains a fundamental
parameter β: When β = 1, the model is equivalent to the Lieb
lattice,9 therefore describing a spin-1 Dirac-Weyl particle and
displaying a flat band. For arbitrary β, the energy spectrum
displays two interpenetrating cones and thus describes a spin-
3/2 Dirac-Weyl particle.

We have computed the Hall conductivity for this model,
and we find that σH = ±e2/h around half-filling for β �= 1.
This is in perfect agreement with the fact that the model
displays a single Dirac point, ND = 1 with NZ = 2 zero modes
[cf. Eq. (7)]. For β = 1, one observes a zero Hall conductivity
plateau at half-filling, as expected for a spin-1 Dirac-Weyl
particle. Therefore, this model is well suited to investigate
the fate of the edge states as one goes from σH = ±e2/h

(half-integer spin) to σH = 0 (integer spin) around half-filling.
Thus, we now investigate the edge states in this model. We

have computed the energy spectrum of Kennett’s model in
the presence of an external magnetic field, using a cylindrical
geometry. For β = 0, the first bulk gap hosts a single edge state.
As β is increased, the energy curves Ẽ(k) around E = ±1
are progressively squeezed while opening an energy gap. For
β = 1 this energy gap is exactly located around E = 0 and
the energy curves Ẽ(k) disappear into the flat band, that is,
they are completely squeezed Ẽ(k) = 0. Therefore, the edge
states associated to these curves, hiding at E = 0, have a zero
velocity in the limit β → 1, and thus cannot contribute to the
Hall conductivity.

This analysis emphasizes the existence of edge states with
zero velocity within the flat band, in the presence of a magnetic
field. While we have demonstrated this property for Kennett’s

model, which is equivalent to the Lieb lattice in the limit
β → 1, we believe that it should be applicable to general
systems exhibiting Dirac-Weyl particles with integer spin.

APPENDIX E: KLEIN PARADOX AND
MULTIREFRINGENCE

In this Appendix we give a general description of the Klein
multirefringence of the Dirac-Weyl fermions with arbitrary
spin. We shall consider the isotropic cx = cy = c Weyl-like
Hamiltonian in Eq. (4), which is valid for low-momentum
excitations around the Dirac point d = (+1, + 1), that is,
H d

W(k) = ∑
ν ch̄Sνkν . For simplicity we consider a spin-s

Dirac-Weyl particle tunneling through a rectangular potential
barrier with potential V0 in the interval 0 < x < D and zero
elsewhere. The particle is incident on the interface at x = 0 at
an angle θ from the interface normal (see Fig. 7). The plane-
wave part of the solution is ei(kxx+kyy), where kx = k cos θ and
ky = k sin θ . Due to the particle-hole symmetry, the helicities
form [s + 1/2] pairs, where [s] stands for the integer part
of s. For incident particles with energy V0 > E > 0, and
helicity h0 (i.e., the helicity determines the corresponding
energy E = ch̄kh0), all negative-helicity channels are coupled
inside the potential barrier with the relation (E − V0) =
ch̄kh

inh, and kh
in,x = kh

in cos φh
in and kh

in,y = kh
in sin φh

in. Outside
the potential barrier, helicity h0 is allowed to convert to other
positive values under the condition of energy and momentum
conservation, that is, kh

outh = kh0 and kh
out,x = kh

out cos φh
out and

kh
out,y = kh

out sin φh
out. Due to the conservation of parallel wave

vectors in the tunneling process, one has kh
in sin φh

in = k sin θ =
kh

out sin φh
out. Note that a nonzero helicity is not allowed to

convert into a zero helicity due to the violation of energy
conservation. The wave function in the three regions is

�I = φ
h0
R eikxx +

h=s∑
h= 1

2 or1

rhφ
h
Le−ikh

out,xx , x < 0,

�II =
h=− 1

2 or −1∑
h=−s

Ahφ
h
Reikh

in,xx + Bhφ
h
Le−ikh

in,xx , 0 < x < D,

�III =
h=s∑

h= 1
2 or 1

thφ
h
Reikh

out,xx , D < x,

where the spinor φh
R(φh

L) is the eigenvector of H d
W with

helicity h for the right (left) moving wave. Note that φh
in

and φh
out for left moving waves are obtained by using the

(π − φh
in) and (π − φh

out) angles in the solution for the right
moving wave. Here rh, Ah, Bh, and th are 4[s + 1/2] unknown
parameters to be determined. By integrating the equation
H d

W� = E� over an interval in the vicinity of the interface,
the boundary conditions are obtained. For half-integer spin, the
boundary conditions require the continuity of each component
of the (2s + 1)-component spinor at the two boundaries of
x = 0 and x = D, which give 4s + 2 equations that equal
to the number of unknowns, 4[s + 1/2] = 4s + 2 for half-
integer spin. However, for integer spin where even and odd
components of the spinor are decoupled, the boundary condi-
tions require the continuity of each even spinor component,

165115-14



DIRAC-WEYL FERMIONS WITH ARBITRARY SPIN IN . . . PHYSICAL REVIEW B 84, 165115 (2011)

together with the continuity of a sum of two neighboring odd
components at x = 0 and x = D (specifically, continuity of
ρ2i−1�2i−1 + ρ2i�2i+1 with i = 1, . . . ,s). These conditions
give 4s equations that also equal to the number of unknowns,
4[s + 1/2] = 4s for integer spin. Thus, in principle, the
tunneling properties can be completely determined by the wave
function and boundary conditions. Since different helicity
spinors carry a different current, the transmission and reflection
coefficients have to be renormalized with respect to the
incident current, that is, Th = t2

h [φh†
R Sxφ

h
R]/[φh0†

R Sxφ
h0
R ] and

Rh = t2
h[φh†

L Sxφ
h
L]/[φh0†

R Sxφ
h0
R ] according to the current den-

sity j = �†Sx� of the Weyl-like Hamiltonian. Consequently,
conservation of the current requires

∑h=s
1/2,1(Rh + Th) = 1. In

general, for incident particles with spin-s Dirac-Weyl fermions
and fixed helicity, the transmission show [s + 1/2]-fringence.

Role of evanescent waves: In graphene, evanescent waves
do not play a role in the Klein tunneling due to the single-
layered cone structure. For multiple-layered cones however,
evanescent waves will play an important role in the coupling
and transformation of one helicity to another both inside and
outside the barrier, by exerting cutoff conditions for each
helicity component. We first consider the coupling of the
incident helicity to the ones inside the barrier. For a low enough
barrier, there are negative helicities inside the barrier which are

not coupled; they are evanescent. Specifically, for an incident
wave beyond the critical angle θc = arcsin[(V0 − E)/ch̄km],
where m = 1/2 or 1 all helicities are uncoupled, thus there
is no transmission. For higher barriers, beyond the critical
angle θc = arcsin[(V0 − E)/ch̄khc], only helicities of h � hc

are coupled in the form of propagating waves. However, the
transmission properties would be modified dramatically in this
regime. Besides the cutoff condition inside the barrier, the
evanescent waves also exert cutoff conditions for different he-
licities outside the barrier where a small helicity is transformed
into a larger one. Since sinφh

out = sinθh/h0 for incident wave
beyond the critical angle θc = arcsin(h0/h), the transmitted
wave with helicity h become evanescent. This gives a cutoff
condition for each helicity component which is larger than
the helicity of the incident particle. It is clear that if the
incident particle follows the outermost cone of the multicone
structure, there will be no cutoff for any helicity outside the
barrier.

In Sec. V we present detailed numerical results of Klein
birefringent tunneling by evaluating the different transmission
coefficients of spin-3/2 Dirac-Weyl fermions with a double
cone structure. From the results there, the transmission
properties of more complex multilayered cone structure can
readily be deduced.
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