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The general problem of representing the Greens function G(k,z) in terms of self-energy in field theories lacking
Wick’s theorem is considered. A simple construction shows that a Dyson-like representation with a self-energy
�(k,z) is always possible, provided we start with a spectral representation for G(k,z) for finite-sized systems
and take the thermodynamic limit. The self-energy itself can then be iteratively expressed in terms of another
higher order self-energy, capturing the spirit of Mori’s formulation. We further discuss alternative and more
general forms of G(k,z) that are possible. In particular, a recent theory, by the author, of extremely correlated
Fermi liquids at density n, for Gutzwiller projected noncanonical Fermi operators, obtains a new form of the
Greens function: G(k,z) = [(1 − n

2 ) + �(k,z)]/[z − Êk − �(k,z)], with a pair of self-energies �(z) and �(z).
Its relationship with the Dyson form is explored. A simple version of the two-self-energies model was shown
recently to successfully fit several data sets of photoemission line shapes in cuprates. We provide details of the
unusual spectral line shapes that arise in this model, with the characteristic skewed shape depending upon a
single parameter. The energy distribution curve (EDC) and momentum distribution curve (MDC) line shapes are
shown to be skewed in opposite directions, and provide a testable prediction of the theory.
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I. INTRODUCTION

Our work explores the representation of the Greens function
G(k,z) of a particle in field theories without Wick’s theorem.
While Wick’s theorem for bosons and fermions automatically
gives rise to the Dyson form of self-energy, its absence for
noncanonical, i.e., general operators (other than bosons of
fermions), leads to a conundrum that is poorly understood.
This work addresses a particular type of noncanonical theory
originating from Gutzwiller projection of electrons on a lattice.

The representation of the propagator or the Greens function
in terms of its Dyson self-energy is a fundamental paradigm
of standard interacting relativistic and nonrelativistic field
theories. The structure of this representation and the generation
of approximations for the self-energy in terms of Feynman
diagrams, the vertex function, or higher order Greens functions
form the dominant part of existing literature of many-particle
physics.

In the context of extending these studies to extremely
large and singular repulsive interactions, termed extreme
correlations,1 one needs to deal with noncanonical electrons.
A standard noncanonical problem involves the Hubbard
operators2 X

a,b
j located at sites j of a lattice. These are

“graded” projection operators with label a representing
the three allowed local configurations 0, ↑ , and ↓. Among
these operators, X0σ

j and Xσ0
j are fermionic destruction- and

creation-type objects. Their Greens function is measured di-
rectly in angle-resolved photoemission experiments (ARPES)
on certain experimental systems embodying extreme correla-
tions, including the high-temperature superconductors.3

Quite recently, the author has formulated in Ref. 1, the the-
ory of an extremely correlated Fermi liquid (ECFL) state of the
t-J model, where he has found another type of representation
for the Greens function with a pair of self-energies [see Eq. (4)
below] by using the nonperturbative Schwinger approach of
source fields to depict the equations of motion. The use of
more general forms of Greens functions is not completely new,
there are examples in literature of multiple self-energies in

Refs. 4 and 5. The physics of extreme correlations treated here
is based on nonperturbative considerations without obvious
parallels in weak or intermediate coupling problems. It leads
to the two-self-energies form, Eq. (4), whose distinctive
signatures are strikingly different from those of Fermi liquids.

The technical details of the construction in Ref. 1 are
intricate and require the processing of two parallel hierarchies
for the two self-energies. A separate paper is in preparation
detailing the involved technical details and the calculation in
Ref. 1. Further background details of the notation, definitions,
and sum rules satisfied by the Greens functions for extreme
correlations, and its analyticity can be found in the earlier
publication.2 A suggestive functional form of the Greens
function, Eq. (37), emerges from Ref. 1, by making the
assumption of momentum independence of the two self-
energies, valid in high dimensions. It satisfies the number sum
rule and the total particle weight integrates to unity in each
state. In Ref. 3, Gweon, Gu, and the author have shown that
several experimental data sets on ARPES by different groups
using both the traditional synchrotron light source and a laser
light source can be reconciled very well with the line shape in
Eqs. (37) and (60). This is the first satisfactory functional form
that has been found to fit both laser and synchrotron data and
to work very well with few adjustable parameters.

Therefore a major objective of this paper is to elucidate the
detailed form of the spectral lines that emerged from the above
simple version of the ECFL theory in Ref. 1 and successfully
employed to understand experiments in Ref. 3. Our hope is that
this detailed analysis will familiarize readers with the nuances
of the new spectral function, and thereby facilitate ARPES
line-shape analysis of further experiments on high-temperature
superconductors and other materials, in a manner analogous
to that in Ref. 3.

For the above purpose, we recall that in a lattice of finite (say
small) number of sites, the state space is finite dimensional and
hence the Greens function for arbitrarily complicated objects
can be computed by numerical means, leading to rational
functions of the complex frequency z as in Eq. (5) below.
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We begin by studying this representation and see how the
Dyson representation arises; we find that the two-self-energies
representation, Eq. (4), is also quite natural from this view
point. We further study the infinite size limits where the poles
coalesce to give cuts in the complex z plane. We adopt a
phenomenological model for an underlying auxiliary Fermi
liquid (aux-FL) self-energy, enabling us to display analytic
expressions for the Greens function. We provide a detailed
perspective on the representation in Eq. (37), namely, the
location of the poles and the subtle differences from a standard
Fermi liquid.

Another result in this paper is to show that a Dyson-like
representation with a self-energy �(k,z) is always possible,
provided we start with a spectral representation. The self-
energy itself can then be iteratively expressed in terms of
another higher order self-energy. This hierarchical result is
cast in the same form as the Mori formalism. While the
Mori formalism is very abstract, and expressed in terms of
projection operators, we can go beyond it in a certain sense. By
working with standard spectral representation, we show that it
is possible to express the higher self-energy spectral functions
in terms of the lower ones, leading to an explicit hierarchy.
Our construction completely bypasses the Mori projection
operators, and should be useful in throwing light on the latter.

The plan of the paper is as follows. In Secs. II and III,
we note the spectral representation and study the Greens
function as a rational function of complex frequency z for
a finite system. In Sec. IV, we note the representation in
the limit of infinite size and introduce the high-dimensional
expression with two self-energies. The detailed structure of
the characteristic line shape as in Eq. (60) is discussed, and
its dependence on physical parameters displayed with the help
of a numerical example. An explicit example of the auxiliary
Fermi-liquid Greens function is provided, and typical values
of the parameters are argued for. In Sec. V, the line shapes
in EDC and MDC are displayed in detail, in order to bring
out the specific signatures of the theory, namely, a skew in
the spectrum arising from the caparison factor in Ref. 1 and
Eq. (37). In Sec. VI, we discuss the amusing connection with
higher order self-energies of the type that Mori’s formalism
yields, but at a much more explicit level than what is available
in the literature.

II. SPECTRAL REPRESENTATION OF THE GREENS
FUNCTION

Let us begin with the spectral representation10 of the
Matsubara Greens function at finite temperatures given by

G(k,z) =
∫

dx
ρG(k,x)

z − x
, (1)

where G is the Greens function at a fixed wave vector k,
ρG is its spectral density, and the integration range is −∞ �
x � ∞. To simplify notation, we call the Greens function as
G(k,z), the same object was denoted by G(k,z) in Ref. 1. The
index k can be also replaced by a spatial index when dealing
with a local Greens function. The spectral function ρG(k,x) in
most problems of interest in condensed matter physics has a
compact support, so that G(k,z) has “reasonable” behavior in
the complex z plane, with an asymptotic 1/z fall off, and, apart

from a branch cut on a portion of the real line, it is analytic.
The frequency z is either fermionic or bosonic depending on
the statistics of the underlying particles. The spectral function
is given by the standard formula2,10

ρG(k,x) =
∑
α,β

|〈α|A(k)|β〉|2(pα + pβ) δ(x + εα − εβ), (2)

where A(k) is the destruction operator, pα is the Boltzmann
probability of the state α given by e−βεα /Z, and εα is the
eigenvalue of the grand Hamiltonian of the system K =
H − μN̂ . In the case of canonical particles, A(k) is the usual
Fermi or Bose destruction operator. In Ref. 1, noncanonical
Hubbard ‘X operators are considered; we will not require
any detailed information about them here except that the
anticommutator {A,A†} is not unity, but rather an object
with a known expectation value (1 − n/2), in terms of the
dimensionless particle density n.

We consider two alternate representations of the Greens
function in terms of the complex frequency z that are available
in many-body physics: (a) for canonical bosons or fermions,
the Dyson representation in terms of a single self-energy �(z)
and (b) for noncanonical particles, a novel form proposed
recently by the author with two self-energy type objects �(z)
and �(z):

G(k,z) = aG

z − Êk − �(k,z)
(Dyson) (3)

= aG + �(k,z)

z − Êk − �(k,z)
(ECFL). (4)

For canonical objects, aG = 1 and for Hubbard operators in
the ECFL we write aG = 1 − n/2. We start below from a
finite-size system, where the Greens function is a meromorphic
function expressible as the sum over isolated poles in the
complex frequency plane with given residues. In fact, it is
a rational function as well, expressible as the ratio of two
polynomials. Using simple arguments, we will see that the
above two representations in Eqs. (3) and (4) are both natural
ways of proceeding with the self-energy concept. In the limit
of a large system, the poles coalesce to give us cuts in the
complex frequency plane with specific spectral densities. In
this limit, we display the equations relating the different
spectral functions.

III. FINITE-SYSTEM GREENS FUNCTION

We drop the explicit mention of the wave vector k, and
start with the case of a finite-sized system, where we may
diagonalize the system exactly and assemble the Greens
function from the matrix elements of the operators A and the
eigenenergies as in Eq. (2). We see that ρG is a sum over say
m delta functions located at the eigenenergies Ej (assumed
distinct), so we can write the meromorphic representation

Ḡ(z) =
m∑

j=1

aj

z − Ej

. (5)
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The overbar in Ḡ(z) is to emphasize that we are dealing with
the finite-sized version of the Greens function G(z). Here,
aj and Ej constitute 2m known real parameters. The sum

m∑
j=1

aj = aG, (6)

where aG = 1 for canonical objects and we denote aG = 1 −
n/2 for the noncanonical case of ECFL. In the infinite-size
limit, we set Ḡ(z) → G(z). It is clear that for z � {Ej }max,
we get the asymptotic behavior Ḡ → aG

z
, and therefore Ḡ is

a rational function that may be expressed as the ratio of two
polynomials in z of degrees m − 1 and m:

Ḡ(z) = aG

Pm−1(z)

Qm(z)
, Q(z) =

m∏
j=1

(z − Ej ),

P (z) =
m−1∏
r=1

(z − γr ), (7)

where the roots γr are expressible in terms of aj and Ej . We
use the convention that all polynomials Qm have the coefficient
of the leading power of z as unity, and the degree is indicated
explicitly.

We now proceed to find the self-energy type expansion
for Ḡ, and for this purpose, multiplying Eq. (5) by z and
rearranging we get the “equation of motion:’

(z − Ê)Ḡ(z) = aG + Ī (z), (8)

where we introduced a mean energy Ê:

Ê = 1

aG

∑
ajEj ,

Ī (z) =
m∑

j=1

aj (Ej − Ê)

z − Ej

, (9)

so that asymptotically at large z we get Ī (z) ∼ O(1/z2).
In standard theory, Ê plays the role of the Hartree-Fock
self-energy so that the remaining self-energy vanishes at high
frequencies.12 Motivated by the structure of the theory of
extremely correlated Fermi systems,1 we next introduce the
basic decomposition

Ī (z) = Ḡ(z)�(z) + �(z), (10)

where we have introduced two self-energy type functions �(z)
and �(z) that will be determined next. Clearly, Eq. (10) leads
immediately to the Greens function (4) (or Eq. (3), if we
set � → 0). The rationale for Eq. (10) lies in the fact that
the function Ī has the same poles as Ḡ(z). Thus it has a
representation as a ratio of two polynomials:

Ī (z) = i0
Rm−2(z)

Qm(z)
, (11)

with Rm−2 a polynomial of degree m − 2, i0 a suitable constant,
and the same polynomial Q from Eq. (7), thereby it is natural
to seek a proportionality with Ḡ itself. If we drop � and
rename � → �, then this gives the usual Dyson self-energy
�(z) determined uniquely using Eqs. (7) and (11) as

�(z) = i0

aG

Rm−2(z)

Pm−1(z)
. (12)

Expression (10) offers a more general possibility, where �(z)
and �(z) may be viewed as the quotient and remainder
obtained by dividing Ī (z) by Ḡ(z). It is straightforward to
see that �(z) and �(z) are also rational functions expressible
as ratios of two polynomials:

�(z) = ψo

Km−3(z)

Dm−1(z)
, �(z) = φo

Lm−2(z)

Dm−1(z)
, (13)

where K, L, and D are polynomials of the displayed degree.
Comparing the poles and the zeros of Ḡ in Eq. (4) with
Eqs. (12) and (7), we write down two equations:

aGPm−1 = aGDm−1 + ψoKm−3,

Qm = (z − Ē)Dm−1 − φ0Lm−2, (14)

so that we may eliminate D and write an identity,

(z − Ē)Pm−1 − Qm = ψo

aG

(z − Ē)Km−3 + φoLm−2. (15)

Here, the left-hand side is assumed known and we have two
polynomials to determine from this equation. Therefore there
are multiple solutions of this problem, and indeed setting K →
0 gives the Dyson form as a special case.

A. A simple example with two sites

The Greens function of the t-J model at density n with
J = 0 and only two sites is a trivial problem that illustrates the
two possibilities discussed above. The two quantum numbers
k = 0,π correspond to the bonding and antibonding states with
energies ek = ∓t , and a simple calculation at a given k gives
Eq. (5) as

Ḡ(k,z) = a1

z − ek

+ a2

z + ek

, (16)

where z = iωn + μ, a2 = eβμ[1 + eβ(μ−ek )]/(2Z), a1 = 1 −
n/2 − a2, and the grand partition function Z = 1 + 4e2βμ +
4eβμ cosh(βt). This can be readily expressed as

Ḡ(k,z) =
(
1 − n

2

) + �(k,z)

z − Ek − �(k,z)
, �(k,z) = Bk

z + Ek

,

�(k,z) = Ak

z + Ek

, (17)

where Ek is arbitrary, Ak = (E2
k − e2

k), and Bk = (1 −
n/2)(Ēk − Ek) and with the first moment of energy Ēk =
ek(a1 − a2)/(1 − n/2). As we expected, the functions �,�

thus have a single pole, as opposed to Ḡ with two poles. In
this case the dynamics is rather trivial, so that the choice of Ek

is free. If we set Ek = Ēk , the residue Bk vanishes and so the
second form collapses.

B. Summary of analysis

In summary, guided by analyticity and the pole structure of
G(k,z), we find it possible to go beyond the standard Dyson
representation. However, we end up getting more freedom
than we might have naively expected. This excess freedom is
not unnatural, since we haven’t yet discussed the microscopic
origin of these two self-energies. The theory in Ref. 1 provides
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an explicit expression for the two objects � and �, where a
common linear functional differential operator L generates
these self-energies by acting upon different “seed” functions
as in Eq. (7) of Ref. 1. The above discussion therefore provides
some intuitive understanding of the novel form of the Greens
function in Eq. (4), without actually providing an alternative
derivation to that in Ref. 1.

IV. INFINITE-SYSTEM SPECTRAL DENSITIES AND
RELATIONSHIPS

In the infinite-size limit, the various functions will be
represented in terms of spectral densities obtained from the
coalescing of the poles. Following Eq. (1), we will denote a
general function

Q(z) =
∫

dx
ρQ(x)

z − x
, (18)

where Q = �,�,� in terms of its density ρQ(x). The density
is given by ρQ(x) = (− 1

π
)�m Q(x + i0+), as usual. In parallel

to the discussion of Eq. (1), the assumption of a compact
support of ρQ gives us well-behaved functions. We now turn
to the objective of relating the spectral functions in the two
representations discussed above.

A. Spectral representation for the Dyson self-energy

Let us start with Eq. (1) and the standard Dyson form
(3) where we drop the overbar and study the infinite system
function G(z). We use the symbolic identity:

1

x + i0+ = P 1

x
− iπδ(x), (19)

with real x, P denoting the principal value, and the Hilbert
transform of a function f (u) is defined by

H[f ](x) = P
∫ ∞

−∞
dy

f (y)

x − y
. (20)

We note the following standard result for completeness:

ρG(x) = aG

ρ�(x)

[πρ�(x)]2 + [x − Ê − H[ρ�](x)]2
. (21)

A more interesting inverse problem is to solve for ρ�(x) given
G(z). Toward this end, we rewrite the Dyson equation as

�(z) = z − Ê − aG

G(z)
, (22)

where the self-energy vanishes asymptotically as 1/z, provided
the constant part, if any, is absorbed in Ê. Therefore this
object can be decomposed in the fashion of Eq. (18). We
compare Eq. (22) with Eq. (18) with Q → � and conclude
that

ρ�(x) = 1

π
�m

aG

G(x + i0+)
= aG ρG(x)

[πρG(x)]2 + [�e G(x)]2
.

(23)

The real part can be found either by taking the Hilbert
transform,

�e �(x) = H[ρ�](x), (24)
or more directly as

�e �(x) = x − Ê − �e
aG

G(x + i0+)

= x − Ê − aG �e G(x)

[πρG(x)]2 + [�e G(x)]2
. (25)

B. Spectral representation for the ECFL self-energies

For the ECFL Greens function in Eq. (4), we set aG =
(1 − n

2 ) and write Ê → ξ representing the single-particle
energy measured from the chemical potential. We start with
the expression:

G(ξ,z) = 1

z − ξ − �(z)
×

[(
1 − n

2

)
+ �(z)

]
, (26)

and express it in terms of the two spectral functions ρ� and
ρ�.13 We can write spectral function ρG:

ρG(ξ,x) = ρ�(x)

[πρ�(x)]2 + [x − ξ − H[ρ�](x)]2

×
[(

1 − n

2

)
+ ξ − x

�(ξ,x)
+ η(ξ,x)

]
, (27)

where �(ξ,x) and the term η are defined as

�(ξ,x) = −ρ�(ξ,x)

ρ�(ξ,x)
, (28)

η(ξ,x) = H[ρ�](ξ,x) + 1

�(ξ,x)
H[ρ�](ξ,x). (29)

The real part of G is also easily found as

�e G(ξ,x) =
[(

1 − n
2

) + H[ρ�](ξ,x)
]
[x − ξ − H[ρ�](ξ,x)] − π2ρ�(ξ,x)ρ�(ξ,x)

[πρ�(ξ,x)]2 + [x − ξ − H[ρ�](ξ,x)]2
. (30)

Thus given the ECFL form of the Greens function, we can
calculate the Dyson Schwinger form of self-energy in a
straightforward way using the inversion formula, Eqs. (23)
and (24). The inverse problem of finding � and � from a
given � or G is expected to be ill defined, as discussed above
for finite systems.

The first Fermi liquid (FL) factor in Eq. (27) has a peak
at the Fermi-liquid quasiparticle frequency EFL

k for a given ξk

given as the root of

EFL
k − ξk − H[ρ�]

(
ξk,E

FL
k

) = 0, (31)
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however, ρG itself has a slight shift in the peak due to the
linear-x dependence in the numerator. This is analyzed in detail
in the next section for a model self-energy. At this solution
x(ξ ), Eq. (30) gives a relation:

ρ�

(
ξk,E

FL
k

) = −ρ�

(
ξk,E

FL
k

) × �e G
(
ξk,E

FL
k

)
. (32)

C. High-dimensional ECFL model with �k-independent
self-energies and its Dyson representation

In this section, we illustrate the two self-energies and their
relationships in the context of the recent work on the ECFL
of Ref. 1, and in Ref. 3. Here, we study a model Greens
function, proposed in Ref. 1 for the t-J model, that should be
suitable in high enough dimensions. It is sufficiently simple
so that most calculations can be done analytically. The model
Greens function satisfies the Luttinger-Ward sum rule6 and
thereby maintains the Fermi surface of the Fermi gas, but yields
spectral functions that are qualitatively different from the
Fermi liquid. This dichotomy is possible since it corresponds
to a simple approximation within a formalism that is very far
from the standard Dyson theory, as explained in the previous
sections. Our aim in this section is to take this model Greens
function of the ECFL and to express it in terms of the Dyson
self-energy so as to provide a greater feel for the model.

Here, the two self-energies are taken to be frequency
dependent but momentum independent, and by using the
formalism of Ref. 1, they become related through �0, an
important physical parameter of the theory:

�(z) = − n2

4�0
�(z). (33)

The physical meaning of �0 as the mean inelasticity of the
auxiliary Fermi liquid (aux-FL) is emphasized in Ref. 1, and
follows from Eq. (56). Thus ρ� = − n2

4�0
ρ�, and hence we get

the simple result:11

G(ξk,z) = g(ξk,z)

[(
1 − n

2

)
− n2

4�0
�(z)

]
. (34)

The auxiliary Fermi liquid has a Greens function g−1(ξk,z) =
z − ξk − �(z), where ξk is the electronic energy at wave vector
k measured from the chemical potential μ, and therefore we
may write the model Greens function as

G(ξk,z) = n2

4�0
+

(
n2

4�0

)
ε0 + ξk − z

z − ξk − �(z)
, (35)

where

ε0 = �0
4

n2

(
1 − n

2

)
. (36)

With �(x) = πρ�(x), �e �(x + i0+) = H[ρ�](x) and
ε(ξk,x) ≡ [x − ξk − H[ρ�](x)], we can express the spectral
function and the real part of the Greens function as

ρG(ξk,x) =
(

n2

4π�0

)
�(x)

�2(x) + ε2(ξk,x)
(ε0 + ξk − x) ,

(37)

�e G(ξk,x) =
(

n2

4�0

) [
1 + ε(ξk,x)(ε0 + ξk − x)

�2(x) + ε2(ξk,x)

]
. (38)

Re G

ρG ρg

x*

H1
H2

− 0.10 − 0.05 0.05 0.10

1

3

FIG. 1. (Color online) The density n = 0.85, temperature T =
600 K, �0 = 0.0786, and parameters are set I of Eq. (54). At
this rather high temperature, we can see the details of the spectral
shape clearly. The vertical line is at x∗ = E∗

kF
, this energy is the

location of the peak of the physical spectral function ρG as marked.
Its leftward (i.e., red) shift relative to the Fermi-liquid peak at the
chemical potential is clearly seen. The two horizontal lines specify
the magnitude of the �e G(0,x) at x = 0 (H1) and x = E∗

kF
(H2). The

line H1 is at height n2/(4�0) and H2 is at height n2/(4�0)(1 − Zk/2).

The linear-frequency term in braces in Eq. (37) is termed the
caparison factor in Ref. 1 and leads to significant features of
the spectrum as discussed below. For completeness, we note
the auxiliary Fermi-liquid part of the problem as

ρg(ξk,x) = 1

π

�(x)

�2(x) + ε2(ξk,x)
. (39)

In Fig. 1, we plot the above three functions for a model system
described more fully in Sec. IV F.

D. EDC or constant-wave-vector scans and energy dispersion

We first study the peak structure corresponding to fixing
�k the wave vector and hence ξk , and sweeping the energy
x. These give rise to the energy distribution curves, i.e., the
EDC’s. The aux-FL part has a peak at x = EFL

k for a given ξk , as
in standard FL theory from solving for the roots of Eq. (31). For
k ∼ kF , we find EFL

k = ξkZk with the momentum-independent
self-energy �(z), where

Zk = lim
x→EFL

k

[1 − ∂ �e�(x)/∂x]−1. (40)

Expanding around this solution, we write

ε(ξk,x) ∼ 1

Zk

(x − Zk ξk). (41)

We will also write �k ≡ �(x)/x→EFL
k

at the FL quasiparticle
location, where we expect for the Fermi liquid �k ∼ c1(k −
kF )2 + c2T

2, with suitable values as described more fully in
Sec. IV F). At this value, we have the identity �e G(ξk,E

FL
k ) =

n2/(4�0) as remarked above. As a consequence, in Fig. 1 the
intersection of the line H1 and the vertical y axis also coincides
with the value of �e G at the chemical potential. To elucidate
the line shape of the ECFL, we start with the FL solution and
perturb around it to find the corrected location of the peaks in
the full spectral function.

ρPeak
G (ξk,x) = 1

π

Z2
k �k

Z2
k �2

k + (
x − EFL

k

)2

n2

4�0
(ε0 + ξk − x).

(42)
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Peak ratio

uk/10

T=300K

κ ( k)Qk

Ek −0.1 −0.05

0.1

0.2

0.3

0.4

0.5

ξ

FIG. 2. (Color online) The density n = 0.85, T = 300 K, �0 =
0.0678, and parameters are from set I in Eq. (54). The various dimen-
sionless variables shown against EFL

k are the peak ratio from Eq. (50),
the variable uk (scaled by ten) from Eq. (44), the skew asymmetry
factor κ(ξk) from Eq. (65), and the variable Qk from Eq. (61).

Similarly, the real part is found:

�e GPeak(ξk,x) = n2

4�0

[
1 + Zk

(
x − EFL

k

)
(ε0 + ξk − x)

Z2
k �2

k + (
x − EFL

k

)2

]
.

(43)

We introduce the following convenient positive variable uk:

sinh uk ≡ ε0 + ξk − EFL
k

Zk�k

, (44)

so that near the Fermi energy and at low T the small �k ∼ T 2

drives it to a large and positive value, i.e., exp uk → 1/T 2. At
higher binding energies, uk decreases toward zero, as discussed
below. We will also define a dimensionless variable Qk below
in Eq. (61) that depends on uk only and determines the shape
of the peak. To analyze the shape at a given ξk , we introduce a
dimensionless energy variable ε through the relation

x = EFL
k + Zk�k ε, (45)

where we must require that |ε| ∼ 1 for the expansion around
the FL peak to be valid. The spectral function is expressible as

ρPeak
G (ξk,ε) = ρ∗

G(k)

[
sinh(uk) − ε

1 + ε2

]
2e−uk , (46)

�e GPeak(ξk,x) = n2

4�0

{
1 + Zk ε

[sinh(uk) − ε]

1 + ε2

}
. (47)

From Eq. (46) we see that at any k, the spectral function peaks
at ε∗ ≡ −e−uk with the true quasiparticle peak E∗

k corrected
from the Fermi-liquid value EFL

k (= Zk ξk) as E∗
k ≡ EFL

k −
e−ukZk�k at ε∗ = −e−uk . Simplifying, we find the EDC energy
dispersion or spectrum

E∗
k = ξk + ε0 −

√
[ε0 + (1 − Zk) ξk]2 + Z2

k�
2
k . (48)

We provide examples of this dispersion later in Fig. 5.
For a given ξk , the magnitude of the spectral function at this

peak is given by

�e G∗(k) = n2

4�0

(
1 − 1

2
Zk

)
,

ρ∗
G(k) = n2 Zk

8π�0
euk . (49)

The magnitude of �e G∗(k) is a little smaller than the value
n2/(4�0) arising at the FL solution ε = 0. In Fig. 1, this is
reflected in the line H2 that lies a little below H1.14

The peak value ρ∗
G(k) falls off with ξk � 0, and is always

smaller relative to the peak of the aux-FL peak value ρ∗
g (k).

The ratio of the two peak values is given by

ρ∗
G(k)

ρ∗
g (k)

= n2 Zk�k

8�0
euk . (50)

We see below numerical examples of these functions. Figure 2
illustrates the peak ratio and other features for a typical set of
parameters.

E. MDC or constant-energy scans and energy dispersion.

It is also useful to study the momentum distribution curves
obtained by fixing the energy x and scanning the energy ξk .15 In
the model of a �k-independent self-energy, this is a particularly
convenient strategy, and hence maximizing Eq. (37) at a fixed
x, we find the MDC energy dispersion or spectrum:

ξ ∗(x) = x − ε0 +
√

�2(x) + [ε0 − �e�(x)]2. (51)

Thus ξ ∗(x) is the peak position of ξk in constant-energy scans,
whereas E∗

k in Eq. (48) represents peak position of energy at
a fixed ξk . It is amusing to compare this with Eq. (48). Unlike
Eq. (48), this formula is valid at all energies, not just near the
chemical potential where the two agree closely. We will see
below in Fig. 5 that this function is multivalued in a range
of values of energy x leading to characteristic features of the
spectrum.

F. Numerical example of highdimensional ECFL model

In this section, we use a rectangular band with height
1/(2W ) and width 2W , and take W = 0.86 eV (i.e., 104 K) as a
typical value. In Ref. 3, a more realistic band structure is used
as described in detail there. The model for the Fermi liquid
introduced in Ref. 1 [see Eq. (24)] is given by the expression

�(x) = πρ�(x) = πC�(x2 + τ 2)e−C�(x2+τ 2)/ωc + η, (52)

with τ = πkBT . We have added a scattering width η as
in Ref. 3, in order to account for scattering by off planar
impurities. The real part of the self-energy is found from the
Hilbert transform of ρ�(x), and is given by

�e�(x) = C�π (x2 + τ 2)e−C�(x2+τ 2)/ωc

× Erfi(x/
√

ωc) − C� x
√

πωc e−C�τ 2/ωc , (53)

where Erfi(x) = 2√
π

∫ x

0 et2
dt is the imaginary error function.

A numerically small correction arising from η is dropped for
brevity.

G. Typical parameters

The same model is also used in the fit to experiments in
Ref. 3 with a slight change of notation given by writing C� →

1
π�0

and ωc → ω2
0

π�0
, in terms of the high- and low-frequency

cutoff frequencies ω0 and �0. We use two sets of standard
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FIG. 3. (Color online) The ECFL (top left) and the auxiliary FL spectral functions (bottom left) at density n = 0.85, T = 180 K, �0 =
0.12 eV, η = 0.12 eV, and the other parameters are from Set II in Eq. (54). Here, ξ and x are in units of eV. In the ECFL curve on left, it is seen
that the excitations near the Fermi energy become broad and dissolve into the continuum at an energy ∼−0.2 eV, and reappear as sharp modes
at a deeper binding energy. In the auxiliary FL, the excitations near the Fermi energy remain sharp and extend to lower energies than in the
ECFL curves. The contour plots of the same functions in the right panel (top ECFL and bottom auxiliary FL) give a complementary perspective
of the spectrum. The two superimposed solid lines at top right are from curves I and II of Fig. 5 and at bottom right curves III and IV of Fig. 5.

parameters;

Set I: C� = 1 eV−1, ωc = 0.25 eV or

ω0 = 0.5 eV, �0 = 0.318 eV

Set II: C� = 2.274 eV−1, ωc = 0.568 eV or

ω0 = 0.5 eV, �0 = 0.14 eV. (54)

Set I was used in Ref. 1 for schematic plots employing a simple
band density of states gB (ε) = 1

2W
�(W 2 − ε2). Set II was used

in Ref. 3 employing a more elaborate dispersion described
therein to successfully fit data on various high-temperature
superconductors at optimal doping. The value of η is displayed
in different plots. In Eq. (39), the spectral function ρg of
the aux-FL is defined. The chemical potential is fixed by the
number sum rule with ξ = ε − μ

n

2
=

∫ ∞

−∞
dx f (x)

∫
dε gB(ε) ρg(ε − μ,x), (55)

where f (x) = (1 + eβx)−1 is the Fermi function. We now write
the contributions from extreme correlations that are described

in Ref. 1. The inelastic energy scale �0 is found from the sum
rule:

�0 =
∫ ∞

−∞
dx f (x)

∫
dε gB(ε) ρg(ε − μ,x) (ε − μ − x).

(56)

Thus at a given density and temperature n,T , the model has
only two parameters ωc and C� so that �0 is fixed from
Eq. (56). We study the details of the spectra next.

V. THE SPECTRAL CHARACTERISTICS OF THE
HIGH-DIMENSIONAL ECFL MODEL (37)

A. Global view of the spectral function

We display in Fig. 3 the spectral function for the ECFL
model Eq. (37) in three-dimensional (3D) plots and contour
plots. Two distinct perspectives of the spectrum are found in
the figure from the 3D and the contour plots. In both of these
plots, we see that the excitations are sharply defined only for
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FIG. 4. (Color online) The contour plots of the aux-FL (left) and the ECFL model from Fig. 3 (right) with the same parameters as in
Fig. 3 but over a smaller energy window. We superimpose the constant-wave-vector dispersion and MDC dispersion, with a value of η = 0.12
common to the contour plots. The energy scale of the feature near the chemical potential is considerably reduced in the ECFL, and the “jump”
in the EDC dispersion occurs at roughly half the corresponding energy in the aux-FL.

a certain range near the Fermi energy, and then merge into
the continuum. At higher binding energies, the spectrum again
looks quite sharp. For comparison, in Fig. 3, we also display
the aux-FL spectral function. We note that the aux-FL spectra
also become sharp at higher binding energies. This sharpening
is modeled by the Gaussian in Eq. (39), its basic origin is
the decrease in the weight of physical processes capable of
quasiparticle damping as we move toward the band bottom.
In order to look more closely at the low-energy part of the
spectrum of the aux-FL and the ECFL, we show in Fig. 4 the
contour plots of both over a smaller energy range.

We see that viewed in this rather broad sense, dispersions
of the aux-FL and the model ECFL spectra share many char-
acteristics, with somewhat different energy scales. However,
there are crucial differences that emerge when we look at the
distribution of spectral weight that arises in the ECFL, where
the caparison factor in Eq. (37) pushes weight to higher binding
energies. This is reflected most significantly in the line shapes
that we study below. Since we use the momentum-independent
self-energy for the aux-FL in this model calculation, we
obtain very detailed EDC and MDC plots below. However,
it must be borne in mind that refined calculations within the
ECFL framework must necessarily introduce some momentum
dependence, and hence several details are likely to change, in
particular the structure far from the chemical potential would
change somewhat more. Our view is that, this caveat apart, it
is very useful to take the Eq. (37) seriously since it gives a
simple framework to correlate different data.

B. Dispersion relations in EDC and MDC

In Fig. 5, the EDC dispersion relation (i.e., locus of
peaks of the spectral function at fixed ξ , found by numerical
maximization), is plotted versus ξ along with the MDC
spectrum Eq. (51). We recall that the latter expression is exact
at all ξ and x, whereas Eq. (48) is not quite exact for the EDC
dispersion. For comparison, we also show the corresponding
figures for the aux-FL spectral function in Eq. (39), with the

same parameters. The dispersion relations Eq. (48) is displayed
in the inset of Fig. 5, where it is compared with the result of
numerically maximizing the spectral function at a fixed ξ . We
see that Eq. (48) is only good for a range of energies near the
Fermi energy.

We see that both sets of spectra for the aux-FL as well as the
ECFL model exhibit similar global features, but with different
scales of energy. In both cases, the constant energy scans show
a jump discontinuity, whereas the MDC spectra show an “S”
type or re-entrant type behavior. The origin of the latter is easy
to see in the aux-FL, here a peak in −�e�(x) occurs at an
energy approximately 2ω0, so that as x decreases from zero,
ξ ∗

aux−FL = x − �e�(x) goes back up for a certain range. In
the case of the ECFL, Eq. (51) shows that the energy scale
ε0 enters the expression when �(x) becomes comparable to
ε0 − �e�(x), and the net result is that the re-entrant behavior
is pushed to lower binding energies.

0.4 0.3 0.2 0.1 0.0

0.8
0.6
0.4
0.2
0.0

I
II

III

IV
ξ

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−1.2

−1.0

−0.8

−0.6

−0.4

−
−
−
−
−

− − − −

0.2

0.0

ξ

x

FIG. 5. (Color online) Energy dispersion curves in the ECFL and
the aux-FL models. Here, the parameters are from set II in Eq. (54),
with n = 0.85 and T = 180 K. With η = 0.12, curves I and II have
the peaks in constant-wave-vector and constant-energy scans of the
spectral function (37), and curves III and IV are corresponding figures
for the aux-FL in Eq. (39). The inset compares Eq. (48) (the truncated
curve) with the exact locus found by numerical maximization.
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C. The energy shift

The dispersion (48) corresponds to the ridge near the Fermi
energy in Fig. 3. At low temperature, since �kF

∼ O(T 2), the
corrected quasiparticle energy is always less than EFL

k , so that
there is always a leftward (i.e., red) shift of the dispersion, or
from the hole (binding) energy point of view, we may say there
is a blue shift. The peak shift is given by

�Ek = E∗
k − EFL

k

= (1 − Zk)ξk + ε0 −
√

[ε0 + (1 − Zk) ξk]2 + Z2
k�

2
k ,

(57)

which is a function of both T and k. Close to the Fermi energy,
this can be written as

�Ek = −Z2
kF

�2
k

2ε0
. (58)

At the Fermi momentum, this small shift is seen in Fig. 1
where the vertical line through x∗ is displaced to the left from
the y axis. As long as k ∼ kF this shift is very small �Ek ∼
O(T 4), but as k moves away from kF the shift (57) grows
with ξk . This departure makes the dispersion in Eq. (48) depart
significantly from the bare dispersion ξk as we move away
from kF . We see from Fig. 5 that the departure of the EDC
peaks from the Fermi liquid is somewhat less pronounced
than those of the MDC’s, the latter is operationally called
the low-energy kink. Our calculations therefore predict the
magnitude of the shift (57) in terms of the energy scale ε0 and
the Fermi-liquid parameter �k . This energy shift is therefore
also a useful method for extracting the fundamental parameter
�0 on using Eq. (36).

D. Constant-energy cuts or MDC line shapes

We display the MDC line shapes in Fig. 6. Panel (a)
shows the effect of the caparison factor [1 − n

2 + n2

4�0
(ξ − x)],

whereby the curves are skewed to the right, in contrast to the
EDC curves that are skewed to the left. The latter important
feature is also seen below in Fig. 7(a) and noted in Ref. 1.
Panel (b) shows the shallow peaks in the “S-like” region of the
energy dispersion seen in Fig. 5, and panel (c) shows the deep
interior region where the peaks are more symmetric.

E. Constant wave-vector cuts or EDC line shapes

The spectral function and the real part of the Greens
function are calculated from Eqs. (38) and (37). We display
the EDC line shapes in Fig. 7. Panel (a) gives an overview of
the spectral shapes for wave vectors near the Fermi surface,
displaying a left skewed peak that falls rapidly in intensity
as it broadens. This behavior is of great interest since it
captures the experimental features in high−Tc systems, as
elaborated in Ref. 3. Panel (b) shows the spectra at higher
binding energies, where a feature at lower energies begins to
disperse significantly with ξ . It is evident that these two sets
of dispersing features correspond to the two branches that are
seen in the 3D plots and contour plots of Fig. 3. The inset in
Fig. 7(b) shows the behavior of the aux-FL, where the two
features are again seen but with different rates of intensity
change.

We now turn to the task of understanding the reconstructed
Dyson self-energy that leads to the above electron spectral
functions. In Fig. 8, we show the spectral function ρG at
various values of the energy ξ at T = 300 K. The Fermi-liquid
spectra at the same values of parameters are also shown
for comparison. The Dyson self-energy ρ�(ξ,x) necessary to
produce these spectral functions is found using Eq. (23) and
is displayed in Fig. 8 at two temperatures. The object ρ�(ξ,x)
has a distinctive minimum for each ξ that shifts to the left
along with the energy ξ , which tracks the peaks in the physical
spectral function ρG(ξ,x) from Eq. (23). It also shows the
asymmetry between energies above and below the chemical
potential that we noted at ξ = 0 in Fig. 9. At the Fermi energy,
ρ�(ξ,x) is displayed in Fig. 9 over a large scale.

F. The reduced line-shape function

An interesting aspect of the ECFL model Greens function
(37) is the change in shape of the peaks as we leave the Fermi
surface, so that the quasiparticles become hard to define at
some point. This change in shape can be formulated neatly
in terms of a single dimensionless parameter Qk that we now
define and explore. We examine Eq. (46) around its peak by
writing

ε = ε∗ + cosh(uk)ε̄, (59)
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G
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x

(b) -.8
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-1.
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FIG. 6. (Color online) MDC line shapes at different values of energy x displayed in each curve. Here, the parameters are from set II in
Eq. (54), with n = 0.85, T = 180 K, and η = 0.12. Panel (a) corresponds to x close to the chemical potential. It is interesting to note that the
curves are skewed to the right, thus mirror imaging the leftward skew seen in the constant-ξ (EDC) scans below Fig. 7(a), in a comparable
range of energies and wave vectors. Panel (b) corresponds to the midenergy range, within the reentrant range of x from Figs. 5 or 3, with the
counterintuitive movement of the shallow peak to the right with increasing x. Panel (c) corresponds to the second set of maxima in Fig. 3 far
from the chemical potential, where the curves are quite symmetric.
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FIG. 7. (Color online) EDC line shapes at different values of energy ξ displayed in each curve. Here, the parameters are from set II in
Eq. (54), with n = 0.85, T = 180 K, and η = 0.12. Panel (a) corresponds to ξ close to the chemical potential. Note that the curves are skewed
to the left, i.e., a mirror image of the rightward skew seen in the constant-x MDC scans above Fig. 6, in a comparable range of energies and
wave vectors. Panel (b) corresponds to the higher energy range, and we see that only one broad maximum is found at a given ξ . The inset in
(b) shows the aux-FL constant-ξ scans for the same range; here, each ξ results in a pair of maxima, originating from the functional form of the
self-energy in Eq. (37).

so that ρPeak
G (ξk,ε̄) = ρ∗

G(k)γ (Qk,ε̄), with a characteristic line-
shape function γ given by

γ (Qk,ε̄) =
[

Qk(1 − ε̄)

Qk(1 − ε̄) + ε̄2

]
, (60)

with

Qk = 2
e−uk

cosh (uk)
. (61)

The parameter Qk goes to zero near the Fermi surface at low
T since uk → ∞, but at higher binding energies increases:
Qk → 2.

As we get deeper into the occupied states ξ � 0, we find
a remarkable change in shape of the spectral functions. This
is illustrated in Fig. 10 where we plot γ of Eq. (60) after
normalizing to unit area. In order to have a well-defined
quasiparticle-type peak in ρG for ε ∼ O(1), Qk must be small
enough. This translates to the requirement of ξk being close
to the Fermi surface. By setting Q ∼ 1 as the condition for
losing a peak in the spectrum, we obtain the condition

ε0 + (1 − Zk)ξk = 1√
3
Zk�k, (62)

beyond which it is meaningless to talk of quasiparticles. This
gives ε0 as a rough characteristic scale for the disappearance
of the quasiparticle peaks.

Figure 11 illustrates the change in shape somewhat dif-
ferently by normalizing all curves to unity at the peak as in
Eq. (60). The peak at ε̄ = 0 is sharp and quite symmetric for
Q � 1, and becomes broader and more left skewed as Qk

increases toward its maximum value of two. Attaining the
maximum value is possible, in principle, requirement being
uk = 0 or from Eq. (44):

�0 = n2

4 − 2n
�e �

(
EFL

k

)
. (63)

Unless �0 is very small, this condition is hard to satisfy. If this
possibility is achieved, then there are several interesting conse-
quences. Firstly, we note that from Eq. (49), the magnitude of
the spectral function at uk = 0 becomes insensitive to disorder
and temperature, etc. Its magnitude, n2Zk/(8π�0), should be

useful for finding �0. If this is approximately satisfied, then the
peak structure loses meaning and the spectrum is essentially
flat. Taking ε̄ = −1, the fall off from the peak value of unity
is 80%, and the spectrum becomes essentially featureless.

G. Skewness parameter of the spectrum

We now estimate the skewness of the spectrum. The
function (60) drops to half its peak value at two values of
ε̄L,R to the left and right of the peak given by

ε̄L,R = − 1
2Qk ∓

√
Qk + 1

4Q2
k. (64)

For small Q � 1, the (dimensionless) width of the peak is
small, it increases with Q as discussed further below. We
define a dimensionless skew parameter in terms of the energies
ε∗,εR,L [rather than the ε̄’s that are related via Eq. (59)]:

κ(ξk) = 2ε∗ − εR − εL

ε∗ − εL

= tanh(uk) − 1 +
√

[2 − tanh(uk)]2 − 1, (65)

with the property that near the Fermi level when uk → +∞
the variable κ → 0, and we get a symmetric curve about
the maximum. On the other hand, for deeper occupation,
uk decreases in magnitude toward zero, driving κ → 0.732
and gives a curve that is increasingly biased to the left. The
asymmetry κ grows as O(T 2) at low temperatures, and it is
rather large at room temperature. As a rough estimate, the
quasiparticle peak is lost when Qk ∼ 0.5 where uk ∼ 0.98
and κ(ξk) ∼ 0.5. This loss of quasiparticle peak structure, skew
factor, and its experimental signature is studied in greater detail
in Ref. 3. See Fig. 2 for typical plot of skew parameter κ and
Q versus the hole binding energy Ek .

VI. SELF-ENERGY OF THE SELF-ENERGY AND A
MORI-TYPE PROCEDURE.

Since the construction given above generates �(z) from
G(z) given only the representation (1), we can as well repeat
the trick. Since �(z) satisfies Eq. (18) with a density ρ�(x)
that is assumed known, and is analytic in the complex z plane
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FIG. 8. (Color online) Top left panel: density n = 0.85, temperature T = 300 K, �0 = 0.0678, and other parameters are from set I in
Eq. (54). From left to right ρG(ξ,x) for energies in units of eV: ξ = −0.1, − 0.075, − 0.05, − 0.025,0,0.025,0.05. Top right panel: spectral
function ρg(ξ,x) from Eq. (39) corresponding to the same ξ as in the left panel. The difference in the line shapes becomes clear when we
examine the Dyson self-energy that produces these curves. Bottom left panel: the panel shows the spectral function at T = 300 K for the inferred
Dyson self-energy ρ�(x) from Eqs. (23), (38), and (37) for the same energies. The dashed line is the input Fermi-liquid spectral function ρ�(ω)
at the same temperature. Bottom right panel: temperature T = 150 K, �0 = 0.0642, and the identical data as in the bottom left panel.

with a 1/z fall off, it satisfies the necessary conditions for a
further decomposition. Consulting Eq. (23), we write down by
inspection:

�(z) = a�

z − Ē� − �(1)(z)
,

�(1)(z) =
∫

dx
ρ�(1) (x)

z − x
. (66)

The constants a� = ∫
dx ρ�(x) and Ē� = ∫

dx xρ�(x)/a�

are known through ρ�(x). They may in practice be conve-

ρ

ρ
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0.1

0.2

0.3

FIG. 9. (Color online) With n = 0.85 and T = 300 K,
and the other parameters from set I in Eq. (54). The spectral function
for the inferred Dyson self-energy ρ�(ξ = 0,x) using Eq. (23) and
the the input Fermi-liquid spectral function ρ�(x) over a larger energy
range. Note the distinctive asymmetry in shape of ρ� below and above
the Fermi energy.

niently determined in terms of the moments of the Greens
function7–9 in applications. The spectral function is given by

ρ�(1) (x) = a� ρ�(x)

[π2ρ�(x)]2 + [�e �(x)]2 . (67)

Comparing this representation with Eq. (21), we note the
formal similarity between ρG(x) and ρ�(1) (x). Thus for a
Fermi liquid with momentum-independent self-energy, its

FIG. 10. (Color online) The spectral shapes possible are seen by
plotting the shape function at different values of the parameter Q. In
this curve, γ is the γ (Q,ε̄) of Eq. (60) normalized to unit area in the
natural interval [−1,1] for the variable ε̄.
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FIG. 11. (Color online) The same shapes as in Fig. 10 but now γ

is normalized to unity at the peak as in Eq. (60). The sharp peaks for
small Q � 0.25 flatten out as Q increases with a left skew asymmetry
that is characteristic of this functional dependence.

next self-energy resembles closely the spectral function ρG,
especially at the Fermi energy.

We follow up briefly on the above amusing observation, and
obtain a hierarchy of self-energies starting from an initial self-
energy given by the spectral representation, Eqs. (18) and (66).
This process parallels the continued fraction representation
of analytic functions and seems intimately related to the
formalism developed by Mori.7,8 The latter is expressed in
the language of projection operators for Liouville operators
that is less straightforward than our simple treatment.

In order to conform to the notation popular in the Mori for-
malism, we will express the variables in Laplace representation
rather than the one used above with complex frequencies. Let
us consider the thermal and temporal correlation function for
two operators A and B in Schrödinger time and its Laplace
transform:

CAB(t) =
∫ β

0
dτ 〈A(t − iτ )B(0)〉,

ĈAB(s) =
∫ ∞

0
e−st CAB(t) dt. (68)

In the standard case, we find A = B†, where the product is real
and also positive.16 We see that the Laplace-transform function
satisfies an integral representation:

ĈAB(s) =
∫ ∞

−∞
dν

ρAB(ν)

s − iν
, with a real density given by

ρAB(ν) =
∑
nm

pm − pn

εn − εm

〈n|A|m〉 〈m|B|n〉 δ(εn − εm − ν).

(69)

This object is closely connected with the correlation functions
used in Eqs. (1) and (2) by using the fluctuation-dissipation
theorem. Following Mori, we write down a relaxation function
with the normalization property Z0(0) = 1, and its Laplace
transform

Z0(t) ≡ CAB(t)

CAB(0)
, Ẑ0(s) =

∫ ∞

−∞
dν

ρ0(ν)

s − iν
. (70)

Here, the real density ρ0(ν) = 1
C(0)ρAB(ν), satisfies the nor-

malization condition
∫ ∞
−∞ dν ρ0(ν) = 1. Using the identity

1

0+ + i(u − v)
= π δ(u − v) − iP 1

u − v
,

with P denoting the principle value, an inverse relation
expressing ρ0(ν) = 1

π
�e Ẑ0(0+ + iν) follows. In order to find

a Dyson-type representation for ρ0, following Eqs. (8) and (9),
we take the “equation of motion” by multiplying Eq. (70) by
s and write

sẐ0(s) = 1 + i

∫ ∞

−∞
dν

ν ρ0(ν)

s − iν
≡ Y0(s) Ẑ0(s). (71)

The Dyson form of self-energy now emerges and we obtain

Ẑ0(s) = 1

s − iY0(s)
, with Y0(s) =

∫ ∞
−∞ dν

ν ρ0(ν)
s−iν∫ ∞

−∞ dν
ρ0(ν)
s−iν

. (72)

As s → ∞, the function Y0(s) tends to ω1, with a real
frequency ω1 given by

ω1 =
∫ ∞

−∞
dν ν ρ0(ν). (73)

Hence the function Y0(s) − ω1 falls off as 1/s as s → ∞.
It is analytic everywhere except on the imaginary s axis. It
therefore has a representation

Y0(s) − ω1 = i α1

∫ ∞

−∞
dν

ρ1(ν)

s − iν
, (74)

with a real density α1ρ1(ν) = 1
π
�m[Y0(0+ + iν)]. With this,

we may write

Z0(s) = 1

s − i ω1 + α1
∫

dν
ρ1(ν)
s−iν

. (75)

The real number α1 is found using the convention that ρ1(ν) is
normalized to unity. We may express ρ1 solely in terms of the
lower density ρ0(ν) by using Eq. (70) as

α1ρ1(u) = ρ0(u)

π2ρ2
0 (u) + [H[ρ0](u)]2 . (76)

We determine α1 from Eq. (76) by integrating over ν and using
the unit normalization of ρ1(u). It is evident from Eq. (76) that
for the physically important case of a real and positive initial
density ρ0(ν), the derived density ρ1(ν) is also real positive.

This scheme is clearly generalizable to higher orders, and
we simply iterate the above process. The answers may be
written down by inspection as follows:

Ẑj (s) =
∫ ∞

−∞
dν

ρj (ν)

s − iν
, with normalization:∫ ∞

−∞
dν ρj (ν) = 1. (77)

These satisfy the recursion relation

Ẑj (s) = 1

s − i ωj+1 + αj+1 Ẑj+1(s)
, (78)

where

ωj+1 =
∫ ∞

−∞
dν ν ρj (ν), (79)
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and αj+1 as well as ρj+1(ν) are defined through

αj+1 ρj+1(u) = ρj (u)

π2 ρ2
j (u) + [H[ρj ](u)]2

. (80)

Note that the numbers αj as well as ωj are real, and for all j ,
the densities ρj (ν) are positive provided the the initial density
ρo(ν) is positive. This situation arises when the initial operators
B = A†, as mentioned above.

It is clear that Eq. (76) is the precise analog of the rela-
tion (23) for the Greens function. The hierarchy of equations
consisting of Eqs. (45)–(49) constitutes an iteration scheme
that starts with the j = 0 correlation function in Eq. (70). This
is a forward hierarchy in the sense that successive densities
at level j + 1 are expressed explicitly in terms of the earlier
ones at level j . In the reverse direction, it is rather simpler
since level j is explicitly given in terms of level j + 1 by
Eq. (78). The use of this set of equations requires some a
priori knowledge of the behavior of higher order self-energies
to deduce the lower ones. Standard approximations7 consist of
either truncation of the series or making a physical assumption
such as a Gaussian behavior at some level and then working
out the lower level objects. Our object in presenting the above
procedure is merely to point out that this iterative scheme is in

essence a rather simple application of the self-energy concept
described above, with the repeated use of Eq. (23).

VII. SUMMARY AND CONCLUSIONS

A new form of the electronic Greens function, departing
widely from the Dyson form arises in the extreme correlation
theory of the t-J model. Motivated by its considerable
success in explaining ARPES data of optimally doped cuprate
superconductors,3 we have presented in this paper results on
the detailed structure of this Greens function and its spectral
function. An illustrative example is provided, complete with
numerical results, so that the novel line shape and its
dependence on parameters is revealed. We have also presented
a set of explicit results on the Mori form of the self-energy that
holds promise in several contexts.
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