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We present a class of time-reversal-symmetric fractional topological liquid states in two dimensions that
support fractionalized excitations. These are incompressible liquids made of electrons, for which the charge Hall
conductance vanishes and the spin Hall conductance needs not be quantized. We then analyze the stability of
edge states in these two-dimensional topological fluids against localization by disorder. We find a Z2 stability
criterion for whether or not there exists a Kramers pair of edge modes that is robust against disorder. We also
introduce an interacting electronic two-dimensional lattice model based on partially filled flattened bands of a
Z2 topological band insulator, which we study using numerical exact diagonalization. We show evidence for
instances of the fractional topological liquid phase as well as for a time-reversal symmetry broken phase with a
quantized (charge) Hall conductance in the phase diagram for this model.
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I. INTRODUCTION

The hallmark of the integer quantum effect (IQHE) in an
open geometry is the localized nature of all two-dimensional
(bulk) states while an integer number of chiral edge states
freely propagates along the one-dimensional boundaries.1–3

These chiral edge states are immune to the physics of Anderson
localization as long as backward scattering between edge states
of opposite chiralities is negligible.2,3

Many-body interactions among electrons can be treated
perturbatively in the IQHE provided the characteristic many-
body energy scale is less than the single-particle gap between
Landau levels. This is not true anymore if the chemical
potential lies within a Landau level as the noninteracting
many-body ground state is then macroscopically degenerate.
The lifting of this extensive degeneracy by the many-body
interactions is a nonperturbative effect. At some “magic”
filling fractions that deliver the fractional quantum Hall effect
(FQHE),4–7 a screened Coulomb interaction selects a finitely
degenerate family of ground states, each of which describes
a featureless liquid separated from excitations by an energy
gap in a closed geometry. Such a ground state is called
an incompressible fractional Hall liquid. The FQHE is an
example of topological order.8–10 In an open geometry, there
are branches of excitations that disperse across the spectral
gap of the two-dimensional bulk, but these excitations are
localized along the direction normal to the boundary while
they propagate freely along the boundary.10–12 Contrary to the
IQHE, these excitations need not all share the same chirality.
However, they are nevertheless immune to the physics of
Anderson localization provided scattering induced by the
disorder between distinct edges in an open geometry is
negligible.

The integer quantum Hall effect (IQHE) is the archetype
of a two-dimensional topological band insulator. The two-
dimensional Z2 topological band insulator is a close relative
of the IQHE that occurs in semiconductors with sufficiently
large spin-orbit coupling but no breaking of time-reversal
symmetry.13–17 As with the IQHE, the smoking gun for the Z2

topological band insulator is the existence of gapless Kramers
degenerate pairs of edge states that are delocalized along the
boundaries of an open geometry as long as disorder-induced
scattering between distinct boundaries is negligible. In contrast
to the IQHE, it is the odd parity in the number of Kramers
pairs of edge states that is robust to the physics of Anderson
localization.

A simple example of a two-dimensional Z2 topological
band insulator can be obtained by putting together two copies
of an IQHE system with opposite chiralities for up and down
spins. For instance, one could take two copies of Haldane’s
model,18 each of which realizes an integer Hall effect on the
honeycomb lattice, but with Hall conductance differing by a
sign. In this case the spin current is conserved, a consequence
of the independent conservation of the up and down currents,
and the spin Hall conductance inherits its quantization from
the IQHE of each spin species. This example thus realizes an
integer quantum spin Hall effect (IQSHE). However, although
simple, this example is not generic. The Z2 topological band
insulator does not necessarily have conserved spin currents,
let alone quantized responses.

Along the same line of reasoning, two copies of a FQHE
system put together, again with opposite chiralities for up and
down particles, would realize a fractional quantum spin Hall
effect (FQSHE), as proposed by Bernevig and Zhang.15 (See
also Refs. 19 and 20.) Levin and Stern in Ref. 21 proposed
to characterize two-dimensional fractional topological liquids
supporting the FQSHE by the criterion that their edge states
are stable against disorder provided that they do not break
time-reversal symmetry spontaneously.

In this paper, we shall not impose the condition that projec-
tion about some quantization axis of the electron spin from the
underlying microscopic model is a good quantum number. We
will only demand that time-reversal symmetry holds. We shall
thus distinguish the generic cases of fractional topological
liquids with time-reversal symmetry from the special cases of
fractional topological liquids with time-reversal symmetry and
with residual spin-1/2 U (1) rotation symmetry. In the former
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cases, the electronic spin is not a good quantum number. In
the latter cases, conservation of spin allows for the FQSHE.

The subclass of incompressible time-reversal-symmetric
liquids that we construct here is closely related to Abelian
Chern-Simons theories. Other possibilities that are not dis-
cussed in this publication, may include non-Abelian Chern
Simons theories,22,23 or theories that include, additionally,
conventional local order parameters (Higgs fields).24

The relevant effective action for the Abelian Chern-Simons
theory is of the form9–12

S := S0 + Se + Ss, (1.1a)
where

S0 := −
∫

dt d2x εμνρ 1

4π
Kij ai

μ ∂ν aj
ρ, (1.1b)

Se :=
∫

dt d2x εμνρ e

2π
Qi Aμ∂ν ai

ρ, (1.1c)

and

Ss :=
∫

dt d2x εμνρ s

2π
Si Bμ∂ν ai

ρ. (1.1d)

The indices i and j run from 1 to 2N and any pair thereof labels
an integer-valued matrix element Kij of the symmetric and
invertible 2N × 2N matrix K . The indices μ,ν, and ρ run from
0 to 2. They either label the component xμ of the coordinates
(t,x) in (2 + 1)-dimensional space and time or the component
Aμ(t,x) of an external electromagnetic gauge potential, or the
component Bμ(t,x) of an external gauge potential that couples
to the spin-1/2 degrees of freedom along some quantization
axis, or the components of 2N flavors of dynamical Chern-
Simons fields ai

μ(t,x). The integer-valued component Qi of
the 2N -dimensional vector Q represents the ith electric charge
in units of the electronic charge e and obeys the compatibility
condition

(−)Qi = (−)Kii , (1.1e)

for any i = 1, . . . ,2N in order for bulk quasiparticles or,
in an open geometry, quasiparticles on edges to obey a
consistent statistics. The integer-valued component Si of the
2N -dimensional vector S represents the ith spin charge in
units of the spin charge s along some conserved quantization
axis. The operation of time reversal maps Aμ(t,x) into
+gμν Aν(−t,x); Bμ(t,x) into −gμν Bν(−t,x); ai

μ(t,x) into
−gμνai+N

ν (−t,x) for i = 1, . . . ,N and vice versa. Here, gμν =
diag(+, − ,−) is the Lorentz metric in (2 + 1)-dimensional
space and time. We will show that time-reversal symmetry
imposes that the matrix K is of the block form

K =
(

κ �

�T −κ

)
, (1.2a)

κT = κ, �T = −� , (1.2b)

where κ and � are N × N matrices, while the integer-charge
vectors Q and S are of the block forms

Q =
(

	

	

)
, S =

(
	

−	

)
. (1.2c)

The K matrix together with the charge vector Q and spin
vector S that characterize the topological field theory with

the action (1.1a) define the charge filling fraction, a rational
number,

νe := QT K−1 Q, (1.3a)

and the spin filling fraction, another rational number,

νs := 1
2 QT K−1 S, (1.3b)

respectively. The block forms of K and Q in Eq. (1.2) imply
that

νe = 0. (1.3c)

The “zero charge filling fraction” (1.3c) states nothing but
the fact that there is no charge Hall conductance when
time-reversal symmetry holds. On the other hand, time-
reversal symmetry of the action (1.1a) is compatible with
a nonvanishing FQSHE as measured by the nonvanishing
quantized spin-Hall conductance

σsH := e

2π
× νs. (1.3d)

The origin of the FQSHE in the action (1.1a) is the U (1) ×
U (1) gauge symmetry when (2 + 1)-dimensional space and
time has the same topology as a manifold without boundary.
We shall always assume that the U (1) symmetry associated
with charge conservation holds in this paper. However, we
shall not do the same with the U (1) symmetry responsible for
the conservation of the “spin” quantum number.

The special cases of the FQSHE treated in Refs. 15 and 21
correspond to imposing the condition

� = 0, (1.4)

on the K matrix in Eq. (1.2a). This restriction is, however, not
necessary to treat either the FQSHE or the generic case when
there is no residual spin-1/2 U (1) symmetry in the underlying
microscopic model.

The effective topological field theory (1.1) with the condi-
tion for time-reversal symmetry (1.2) is made of 2N Abelian
Chern-Simons fields. As is the case with the FQHE, when
two-dimensional space is a manifold of genus one without
boundary (i.e., when two-dimensional space is topologically
equivalent to a torus), it is characterized by distinct topo-
logical sectors.8–10 All topological sectors are in one-to-one
correspondence with a finite number NGS of topologically
degenerate ground states of the underlying microscopic
theory.8–10 This degeneracy is nothing but the magnitude of
the determinant K in Eq. (1.1a), which is, because of the
block structure (1.2a), in turn given by

NGS =
∣∣∣∣det

(
κ �

�T −κ

)∣∣∣∣
=

∣∣∣∣det

(
�T −κ

κ �

)∣∣∣∣
=

∣∣∣∣Pf

(
�T −κ

κ �

)∣∣∣∣2

= (integer)2 . (1.5)

To reach the last line we made used of the fact that the K

matrix is integer valued. We thus predict that the class of
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two-dimensional time-reversal-symmetric fractional topolog-
ical liquids, whose universal properties are captured by Eqs.
(1.1) and (1.2), are characterized by a topological ground state
degeneracy that is always the square of an integer, even if
� �= 0, when space is topologically equivalent to a torus.
(Notice that the condition that � is antisymmetric implies
that nonvanishing � can only occur for N > 1.)

We discuss in detail the stability of the edge states asso-
ciated with the bulk Chern-Simons action (1.1) obeying the
condition for the time-reversal symmetry (1.2). We consider
a single one-dimensional edge and construct an interacting
quantum field theory for 1 � NK � N pairs of Kramers
degenerate electrons subject to strong disorder that preserves
time-reversal symmetry. [The integer 2NK is the number of odd
charges entering the charge vector Q (Ref. 25)]. We identify
the conditions under which at least one Kramers degenerate
pair of electrons remains gapless in spite of the interactions and
disorder. Our approach is here inspired by the stability analysis
of the edge states performed for the single-layer FQHE by
Haldane in Ref. 26 (see also Refs. 27 and 28), by Naud et al.
in Refs. 29 and 30 for the bilayer FQHE, and specially that
by Levin and Stern in Ref. 21 for the FQSHE. As for the
FQSHE, our analysis departs from the analysis of Haldane in
that we impose time-reversal symmetry. In this paper, we also
depart from Ref. 21 by considering explicitly the effects of
the off-diagonal elements � in the K matrix. Such terms are
generically present for any realistic underlying microscopic
model independently of whether this underlying microscopic
model supports or not the FQSHE. When considering the
stability of the edge theory, we allow the residual spin-1/2
U (1) symmetry responsible for the FQSHE to be broken by
interactions among the edge modes or by a disorder potential.
Hence, we seek a criterion for the stability of the edge theory
that does not rely on the existence of a quantized spin Hall
conductance in the bulk as was done in Ref. 21.

The stability of the edge states against disorder hinges on
whether the integer

R := r 	T (κ − �)−1 	, (1.6)

is odd (stable) or even (unstable). The vector 	 together
with the matrices κ and � were defined in Eqs. (1.2).
The integer r is the smallest integer such that all the N

components of the vector r (κ − �)−1 	 are integers. We
can quickly check a few simple examples. First, observe
that, in the limit � = 0, we recover the criterion derived
in Ref. 21. Second, when we impose a residual spin-1/2
U (1) symmetry by appropriately restricting the interactions
between edge channels, ν↑ = −ν↓ = 	T(κ − �)−1 	 can be
interpreted as the Hall conductivity σxy in units of e2/h for
each of the separately conserved spin components along the
spin quantization axis. The integer r has the interpretation of
the number of fluxes needed to pump a unit of charge, or the
inverse of the “minimum charge” of Ref. 21. Further restricting
to the case when κ = 1N gives R = N (i.e., we have recovered
the same criterion as for the two-dimensional noninteracting
Z2 topological band insulator).

When there is no residual spin-1/2 U (1) symmetry, one
can no longer relate the index R to a physical spin Hall
conductance. Nevertheless, the index R defined in Eq. (1.6)

discriminates in all cases whether there is or not a remaining
branch of gapless modes dispersing along the edge.

Before we turn to the detailed analysis of the stability of
the edge theory in Sec. (3.1), we shall first pose and answer
the question of whether one can realize examples of the
Abelian Chern-Simons subclass of time-reversal-symmetric
topological spin states in a two-dimensional lattice model
in Sec. II. We construct extensions of the lattice models
studied in Refs. 31, 32, 33, and 34 for which a FQHE was
found by partially filling flat bands with nontrivial Chern
numbers, as proposed in Refs. 31, 35, and 36. (See also
Ref. 37 for a discussion of isolated flat bands with broken
time-reversal symmetry in two-dimensional lattices; Refs. 38
and 39 for recent progress on the understanding of the relations
between Chern and Landau bands; and Ref. 40 for predicting
that materials belonging to the family of heterostructures
of transition-metal oxides, say LaAuO3, might realize time-
reversal symmetric topologically nontrivial band insulators
with nearly flat bands.)

The systems studied here start with flat bands that realize at
half-filling a two-dimensional integer quantum spin Hall band
insulator. We study with the help of exact diagonalization
the nature of the ground state selected by interactions at
partial filling 2/3 of the lowest band. We find supporting
evidences for a featureless ground state that is consistent with
the existence of a spectral gap and a topological degeneracy
32 in the thermodynamic limit, associated with a � = 0 state
(i.e., a FQSHE driven by interactions in a region of the phase
diagram). This state is unstable to spontaneous symmetry
breaking of time-reversal symmetry induced by sufficiently
strong interactions, which lands the system onto a state with
degeneracy 3 (not the square of an integer), which we identify
with a 1/3 FQHE of a magnetized state.

We close this paper with a summary in Sec. IV. We also
include two appendices to render the paper reasonably self-
contained.

II. EXACT DIAGONALIZATION STUDY OF A
TWO-DIMENSIONAL LATTICE MODEL WITH

TIME-REVERSAL SYMMETRY

In Sec. III, we will pose and answer the following question:
Given a time-reversal-symmetric incompressible liquid-like
ground state whose universal properties are encoded by a low-
energy and long-wavelength effective quantum field theory
for 2N Abelian Chern-Simons fields, under what conditions
is a Kramers pair of edge modes that propagates at the
boundary protected against Anderson localization as long
as time-reversal symmetry is preserved. In this section, we
want to address the question, if and when such a posited
topological state emerges in the first place. If an incompressible
state is connected to a translation invariant band insulator,
once interactions are switched off adiabatically, the answer is
entirely governed by the Bloch states of the single-particle
Hamiltonian and is well understood.41–43 If, however, the
incompressibility of the state emerges from the interactions,
the problem is qualitatively different.

As a starting point to study the second situation, we
shall follow the approach of Refs. 15 and 21 and consider
two decoupled copies of the same incompressible fractional
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quantum Hall (FQH) state to compose an incompressible
time-reversal symmetric fractional quantum spin Hall (FQSH)
state from them. Then, we know that the ground state of
the system is the direct product of the two FQH states and
thus it is also an incompressible liquid. It is then natural to
ask how stable this state is when the two FQH states are
coupled, that is, whether interactions between the two FQH
states are (i) destroying the incompressibility, (ii) breaking
spontaneously time-reversal symmetry, or (iii) generating
other incompressible time-reversal symmetric states that are
not captured by the Abelian Chern-Simons theory in Eq. (1.1).

We are going to address this question by numerical exact
diagonalization of an interacting lattice model, where we
will find evidence for all scenarios (i), (ii), and (iii). It is
advantageous to consider a system in which the z component of
the electronic spin is conserved [i.e., with a residual spin-1/2
U (1) symmetry]. This makes larger system sizes accessible
and allows to study the model with spin-dependent twisted
boundary conditions to determine the ground state degeneracy
as explained below. We consider spinfull electrons hopping on
the square lattice � = A ∪ B made up of the two sublattices
A and B. The Hamiltonian

H = H0 + Hint, (2.1)

decomposes into a quadratic part H0 and an interacting
contribution Hint.

First, let us define H0, which consists of two copies of
the π -flux phase with flat bands that was studied in Ref. 31,
one copy for each spin-1/2 species. We denote with c

†
k,α,σ the

creation operator for an electron with lattice momentum k and
spin σ = ↑ , ↓ in the sublattice α = A,B and combine them in
the sublattice-spinor ψ

†
k,σ := (c†k,A,σ ,c

†
k,B,σ ). Then, the second

quantized single-particle Hamiltonian reads

H0 :=
∑
k∈BZ

(
ψ

†
k,↑

Bk · τ

|Bk|
ψk,↑ + ψ

†
k,↓

B−k · τT

|B−k|
ψk,↓

)
, (2.2a)

where the three-vector Bk is defined by

B0,k := 0, (2.2b)

B1,k + iB2,k : = t1 e−iπ/4(1 + e+i(ky−kx ))

+ t1 e+iπ/4(e−ikx + e+iky ), (2.2c)

B3,k := 2t2(cos kx − cos ky), (2.2d)

and the three Pauli matrices τ = (τ1,τ2,τ3) act on the sublattice
index. Here, t1 and t2 represent the nearest neighbor (NN)
and next-nearest neighbor (NNN) hopping amplitudes. The
Hamiltonian (2.2a) is only well defined if t2 �= 0.

One verifies that H0 is both time-reversal symmetric and
invariant under spin-1/2 U (1) rotations. Indeed, the time-
reversal operation T acts on numbers as complex conjugation
and on the electron-operators as

ψ
†
k,↑

T−→ +ψ
†
−k,↓, ψ

†
k,↓

T−→ −ψ
†
−k,↑. (2.3)

The action of the spin-1/2 U (1) rotation Rγ by the angle
0 � γ < 2π is given by

ψ
†
k,↑

Rγ−→ e+iγ ψ
†
k,↑, ψ

†
k,↓

Rγ−→ e−iγ ψ
†
k,↓. (2.4)

The spectrum of H0 is gaped and comprises four disper-
sionless bands with the energy eigenvalues

εk,σ,± = ±1, σ = ↑ , ↓ . (2.5)

Denoting the corresponding single-particle eigenstates by
χk,σ,±, σ =↑, ↓, we can define the spin-resolved first Chern
number for each of the two pairs of degenerate single-particle
bands as

Cs,± : = 1

2

∫
k∈BZ

d2k
2πi

∇k ∧ (χ †
k,↑,±∇kχk,↑,±

−χ
†
k,↓,±∇kχk,↓,±). (2.6)

We find Cs,± = ±1. As a consequence, the noninteracting
model exhibits an IQSHE with spin-Hall conductivity σ SH

xy =
2 × e/(4π ) if the chemical potential lies in the single-particle
spectral gap.

The repulsive interactions in this model are defined by

Hint : = U
∑
i∈�

ρi,↑ρi,↓ + V
∑

〈ij〉∈�

[ρi,↑ρj,↑ + ρi,↓ρj,↓

+ λ(ρi,↑ρj,↓ + ρi,↓ρj,↑)], (2.7)

where 〈ij 〉 are directed NN bonds of the square lattice
� = A ∪ B, ρi,σ is the occupation number of the site i

with electrons of spin σ . The interacting Hamiltonian Hint
comprises an on-site Hubbard term with the coupling U � 0
and a NN term which is parametrized by the coupling V > 0
and the dimensionless number λ ∈ [0,1]. The value λ = 1
corresponds to the spin-1/2 SU (2)-symmetric limit, while all
other values of λ correspond to the spin-1/2 U (1)-symmetric
limit. These interactions lift the macroscopic degeneracy of
the single-particle bands. They couple the spin-up and the
spin-down sectors, if at least one of U or λ is nonvanishing.
Notice that Hint shares both the time-reversal and spin-1/2
U (1) symmetries of the single-particle Hamiltonian H0.

Periodic boundary conditions are imposed on lattice �

whereby sublattice A contains Lx × Ly sites. We fix the num-
ber of electrons to be 16 while Lx = 3 and Ly = 4. We define
the filling fraction 2/3 to be the number of particles, 16, divided
by the number of Bloch single-particle states in the lowest
spin-degenerate band, (3 × 4 × 2 × 2)/2 = 48/2 = 24. We
then project Hamiltonian (2.1) onto the states in the two lower
single-particle bands εk,↑,−, εk,↓,−, thereby assuming that the
single-particle gap is much larger than the energy scale of
the interactions. Exact diagonalization yields the many-body
spectrum as a function of the interaction parameters λ and
U/V . We identify three distinct incompressible states in the
λ-U phase diagram [see Fig. 1(a)].

Case λ = U/V = 0: Decoupled FQH States. The model
decouples into two FQH-like states at 2/3 filling, one for each
spin orientation. The low-energy effective theory for this state
could be compatible with the choice

K =

⎛⎜⎜⎜⎝
+1 +1 0 0

+1 −2 0 0

0 0 −1 −1

0 0 −1 +2

⎞⎟⎟⎟⎠, Q =

⎛⎜⎜⎜⎝
1

0

1

0

⎞⎟⎟⎟⎠, (2.8)

for the K matrix and the charge vector Q in that it has
degeneracy |det K| = 32 = 9 as confirmed by the numerical
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(a)

(b) (c) (d)

FIG. 1. (Color online) Numerical exact diagonalization results
of Hamiltonian (2.1) for 16 electrons when sublattice A is made
of 3 × 4 sites and with t2/t1 = 0.4. (a) Ground state degeneracies.
Denote with En the nth lowest-energy eigenvalue of the many-body
spectrum where E1 is the many-body ground state (i.e., En+1 � En for
n = 1,2, . . .). Define the parameter εn := (En+1 − En)/(En − E1).
If a large gap En+1 − En opens up between two consecutive levels
En+1 and En compared to the cumulative level splitting En − E1

between the first n many-body eigenstates induced by finite-size
effects, then the parameter εn is much larger than unity. The parameter
εn has been evaluated for n = 3 and n = 9, yielding the red and blue
regions, respectively. For all other n �= 1, no regions with εn � O(1)
of significant size were found. Within the limited range of available
system sizes, it is thus not possible to decide on whether and how
the level-splitting above the ground state in the white regions of the
parameter space extrapolates in the thermodynamic limit. (b)–(d) The
lowest eigenvalues with spin-dependent twisted boundary conditions
as a function of the twisting angle γx . The number of low-lying states
that are energetically separated from the other states is 9, 3, and 3,
respectively. In panel (c), it is the lowest band parametrized by γx

that is three-fold degenerate.

results. This phase is destabilized by introducing a sufficiently
strong coupling between the two FQH states via λ and U . The
ability to make a quantitative statement on the boundary of this
phase in the phase diagram is here limited by the difficulty in
deciding on the compressibility of a state from extrapolation
of exact diagonalization studies of small systems sizes to the
thermodynamic limit.

Case λ = 1, U/V > 2: Spontaneous Symmetry Breaking.
We observe that the ground state has the maximal spin
polarization that is allowed by the Pauli principle. To interpret
this numerical result, first recall that, after projection onto
the lowest bands, at most Lx × Ly electrons may have the

same spin (i.e., 12 for the case at hand). Now, the filling
fraction is 2/3 (i.e., there are 4/3 × Lx × Ly = 16 electrons).
If 12 electrons are fully spin polarized, which is what we
observe numerically, then the remaining 1/3 × Lx × Ly = 4
electrons may form a 1/3 FQH-like state. We conjecture that
the low-energy effective theory for this fully spin-polarized
ground state is characterized by the K matrix

K =
(+1 0

0 −3

)
, Q =

(
1

1

)
, (2.9a)

with the filling fraction
ν = QT K−1 Q = 2/3. (2.9b)

Clearly, this K matrix does not obey the decomposition (1.2),
since time-reversal symmetry is spontaneously broken. The
degeneracy |det K| = 3 is confirmed by the numerical results.
The state thus obtained resembles the conventional double-
layer 2/3 FQH state, with the difference that the electron spins
are not fully polarized.

Case λ = 1, U/V = 0: Possible Paired State. A time-
reversal symmetric state with a spectral gap and a three-fold
ground state degeneracy is obtained for small U/V . This state
cannot be captured by the Abelian Chern-Simons theory in
Eq. (1.1), since its degeneracy is not the square of an integer,
despite the time-reversal symmetry. One may speculate that
this state realizes some real-space pairing of spin-up with
spin-down electrons since for small U/V it costs little energy
to have two electrons of opposite spin at the same lattice site.

We close Sec. II with some technical material. To determine
the degeneracy of the ground state unambiguously, we have
used spin-dependent twisted boundary conditions along the x

direction defined by〈
r + Lx x̂

∣∣�γx

〉 = 〈r|eiγx σ3
∣∣�γx

〉
, (2.10)

where �γx
is the many-body state, σ3 acts on the spin degrees

of freedom, and x̂ is the corresponding basis vector of the lat-
tice. Imposing this boundary condition is equivalent to insert-
ing the flux γx and its time-reversed flux −γx for electrons with
spin up and spin down quantum numbers, respectively. This
is a well-defined operation due to the residual spin-1/2 U (1)
symmetry that preserves time-reversal symmetry for any value
of γx . For the three cases discussed above, Figs. 1(b)–1(d)
show that the states of the (nearly degenerate) ground state
manifold remain well separated from the continuum of states
as γx is varied from 0 to 2π , thereby confirming the nine-fold
and three-fold degeneracy, respectively.

III. EDGE THEORY WITH TIME-REVERSAL SYMMETRY

We consider an interacting model for electrons in a two-
dimensional cylindrical geometry as is depicted in Fig. 2.
We demand that (i) charge conservation and time-reversal
symmetry are the only intrinsic symmetries of the microscopic
quantum Hamiltonian, (ii) neither are broken spontaneously
by the many-body ground state, and (iii), if periodic boundary
conditions are assumed along the y coordinate in Fig. 2, then
there is at most a finite number of degenerate many-body
ground states and each many-body ground state is separated
from its tower of many-body excited states by an energy gap.
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FIG. 2. Cylindrical geometry for a two-dimensional band insula-
tor. The cylinder axis is labeled by the coordinate y. Periodic boundary
conditions are imposed in the transverse direction labeled by the
coordinate x. There is an edge at y = −Ly/2 and another one at
y = +Ly/2. Bulk states have a support on the shaded surface of the
cylinder. Edge states are confined in the y direction to the vicinity of
the edges y = ±Ly/2. Topological band insulators have the property
that there are edge states freely propagating in the x direction even in
the presence of disorder with the mean free path � provided the limit
�/Ly � 1 holds.

Had we relaxed the condition that time-reversal symmetry
holds, the remaining assumptions would be realized for the
FQHE.

In the open geometry of Fig. 2, the only possible excitations
with an energy smaller than the bulk gap in the closed geometry
of a torus must be localized along the y coordinate in the
vicinities of the edges at ±Ly/2. If Ly is much larger than
the characteristic linear extension into the bulk of edge
states, the two edges decouple from each other. It is then
meaningful to define a low-energy and long-wavelength
quantum field theory for the edge states propagating along
any one of the two boundaries in Fig. 2, which we take to be
of length L each.

The low-energy and long-wavelength effective quantum
field theory for the edge that we are going to construct is
inspired by the construction by Wen of the chiral Luttinger
edge theory for the FQHE.9,11,12 As for the FQHE, this
time-reversal symmetric boundary quantum field theory has
a correspondence to the effective time-reversal symmetric
bulk topological quantum-field theory built out of 2N Abelian
Chern-Simon fields and defined by Eqs. (1.1) and (1.2).44

The simplest class of quantum Hamiltonians that fulfills
requirements (i)–(iii) can be represented in terms of 2N real-
valued chiral scalar quantum fields �̂i(t,x) with i = 1, . . . ,2N

that form the components of the quantum vector field �̂(t,x).
After setting the electric charge e, the speed of light c, and h̄

to unity, the Hamiltonian for the system is given by

Ĥ := Ĥ0 + Ĥint, (3.1a)
where

Ĥ0 :=
∫ L

0
dx

1

4π
∂x�̂

T V ∂x�̂ , (3.1b)

with V a 2N × 2N symmetric and positive definite matrix
that accounts, in this bosonic representation, for the screened
translation-invariant two-body interactions between electrons.
The theory is quantized according to the equal-time commu-
tators

[�̂i(t,x),�̂j (t,x ′)] = −iπ
(
K−1

ij sgn(x − x ′) + �ij

)
, (3.1c)

where K is a 2N × 2N symmetric and invertible matrix with
integer-valued matrix elements, and the � matrix accounts for
Klein factors that ensure that charged excitations in the theory
(vertex operators) satisfy the proper commutation relations.
We review the construction of the vertex operators in detail
in Appendix A. In particular, fermionic or bosonic charged
excitations are represented by the normal ordered vertex
operators

�̂
†
T (t,x) := : e−i Ti Kij �̂j (t,x) : , (3.1d)

where the integer-valued 2N -dimensional vector T determines
the charge (and statistics) of the operator. The operator that
measures the total charge density is

ρ̂ = 1

2π
Qi ∂x�̂i (3.1e)

where the integer-valued 2N -dimensional charge vector Q,
together with the K matrix, specify the universal properties
of the edge theory. The charge qT of the vertex operator
in Eq. (3.1d) follows from its commutation with the charge
density operator in Eq. (3.1e), yielding qT = T T Q.

Tunneling of electronic charge among the different edge
branches is accounted for by

Ĥint := −
∫ L

0
dx

∑
T ∈L

hT (x) : cos (T TK �̂(x) + αT (x)) : .

(3.1f)

The real functions hT (x) � 0 and 0 � αT (x) � 2π encode
information about the disorder along the edge when position
dependent. The set

L := {T ∈ Z2N |T TQ = 0}, (3.1g)

encodes all the possible charge neutral tunneling processes
(i.e., those that just rearrange charge among the branches).
This charge neutrality condition implies that the operator
�̂

†
T (t,x) is bosonic, for it has even charge. Observe that

set L forms a lattice. Consequently, if T belongs to L so
does −T . In turn, relabeling T to −T in Ĥint implies that
hT (x) = +h−T (x) whereas αT (x) = −α−T (x). A discussion
of the gauge symmetries of this model and the properties of L
can be found in Appendix A.

The theory (3.1) is inherently encoding interactions: The
terms Ĥ0 and Ĥint encode single-particle as well as many-body
interactions with matrix elements that preserve and break
translation symmetry, respectively. Recovering the single-
particle kinetic energy of N Kramers degenerate pairs of
electrons from Eq. (3.1b) corresponds to choosing the matrix
V to be proportional to the unit 2N × 2N matrix with the
proportionality constant fixed by the condition that the scaling
dimension of each electron is 1/2 at the bosonic free-field fixed
point defined by Hamiltonian Ĥ0. Of course, to implement the
fermionic statistics for all 2N fermions, one must also demand
that all diagonal entries of K are odd integers in some basis (see
Ref. 25). While we shall proceed with the interacting bosonic
theory here, we complement this analysis with a review of
the stability of N Kramers pairs of noninteracting fermions
presented in Appendix B.
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A. Time-reversal symmetry of the edge theory

The operation of time-reversal on the �̂ fields is defined
by

T �̂(t,x) T −1 := �1 �̂(−t,x) + πK−1 �↓ Q, (3.2a)
where

�1 =
(

0 1

1 0

)
and �↓ =

(
0 0

0 1

)
. (3.2b)

This definition ensures that fermionic and bosonic vertex
operators as in Eq. (3.1d) are properly transformed under
time reversal. More precisely, one can then construct a pair of
fermionic operators �̂

†
1 and �̂

†
2 of the form (3.1d) by suitably

choosing a pair of vectors T1 and T2 , respectively, in such a way
that the operation of time-reversal maps �̂

†
1 into +�̂

†
2 whereas

it maps �̂
†
2 into −�̂

†
1. Thus, it is meaningful to interpret the

block structure displayed in Eq. (3.2b) as arising from the
upper or lower projection along some spin-1/2 quantization
axis.

Time-reversal symmetry on the chiral edge theory (3.1)
demands the following conditions, which we explain below:

V = +�1 V �1, (3.3a)

K = −�1 K �1, (3.3b)

Q = �1 Q, (3.3c)

hT (x) = h�1T (x), (3.3d)

αT (x) = ( − α�1 T (x) + πT T �↓ Q
)

mod 2π. (3.3e)

The first two conditions—Eqs. (3.3a) and (3.3b)—follow from
the requirement that Ĥ0 be time-reversal invariant. In partic-
ular, the decomposition (1.2) of K follows from Eq. (3.3b)
and K = KT. The third condition—Eq. (3.3c)—states that the
charge density is invariant under time reversal. In particular,
the decomposition (1.2) of Q follows from Eq. (3.3c). Finally,
T ĤintT −1 = Ĥint requires∑

T ∈L
hT (x) cos (T T K �̂(t,x) + αT (x))

=
∑
T ∈L

T [hT (x) cos(T T K �̂(t,x) + αT (x))]T −1

=
∑
T ∈L

hT (x) cos ( − (�1 T )TK �̂(−t,x) + αT (x)

−πT T �↓ Q)

=
∑
T ∈L

h�1 T (x) cos ( − T TK �̂(−t,x) + α�1 T (x)

−π (�1 T )T �↓ Q)

=
∑
T ∈L

h�1T (x) cos (T TK �̂(−t,x) − α�1 T (x)

+π (�1T )T �↓ Q), (3.4)

leading to the last two relations—Eqs. (3.3d) and (3.3e)—
as the conditions needed to match the two trigonometric
expansions.

Disorder parametrized by hT (x) = +h−T (x) and αT (x) =
−α−T (x) and for which the matrix T obeys

�1 T = −T , (3.5a)
and

T T �↓ Q is an odd integer, (3.5b)

cannot satisfy the condition (3.3e) for time-reversal symmetry.
Such disorder is thus prohibited to enter Ĥint in Eq. (3.1f), for
it would break explicitly time-reversal symmetry otherwise.
Moreover, we also prohibit any ground state that provides
exp(iT T K �̂(t,x)) with an expectation value when T satisfies
Eq. (3.5), for it would break spontaneously time-reversal
symmetry otherwise.

B. Pinning the edge fields with disorder potentials

Solving the interacting theory (3.1) is beyond the scope of
this paper. What can be done, however, is to identify those fixed
points of the interacting theory (3.1) that are pertinent to the
question of whether or not some edge modes remain extended
along the edge in the limit of strong disorder hT (x) → ∞ for
all tunneling matrices T ∈ L entering the interaction (3.1f).

This question is related to the one posed and answered
by Haldane in Ref. 26 for Abelian FQH states and which,
in the context of this paper, would be as follows: Given an
interaction potential caused by weak disorder on the edges as
defined by Hamiltonian (3.1f), what are the tunneling vectors
T ∈ L that can, in principle, describe relevant perturbations
that will cause the system to flow to a strong coupling fixed
point characterized by hT → ∞ away from the fixed point Ĥ0?
(See Ref. 45 for an answer to this weak-coupling question in
the context of the IQSHE and Z2 topological band insulators.)
By focusing on the strong coupling limit from the outset, we
avoid the issue of following the renormalization group flow
from weak to strong coupling. Evidently, this point of view
presumes that the strong coupling fixed point is stable and that
no intermediary fixed point prevents it from being reached.

To identify the fixed points of the interacting theory (3.1)
in the strong coupling limit (strong disorder limit) hT → ∞,
we ignore the contribution Ĥ0 and restrict the sum over the
tunneling matrices in Ĥint to a subset H of L (H ⊂ L) with
a precise definition of H that will follow in Eq. (3.10). For
any choice of H, there follows the strong-coupling fixed point
Hamiltonian

ĤH := −
∫ L

0
dx

∑
T ∈H

hT (x) : cos (T TK �̂(x) + αT (x)) : .

(3.6)

We conjecture that a fixed point Hamiltonian (3.6) is stable
if and only if the set H is “maximal.” The study of the
renormalization group flows relating the weak, moderate (if
any), and the strong fixed points in the infinite-dimensional
parameter space spanned by the nonuniversal data V , hT (x),
and αT (x) is again beyond the scope of this paper.

The reader might wonder why we cannot simply choose
H = L. This is a consequence of the chiral equal-time
commutation relations (3.1c), as emphasized by Haldane in
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Ref. 26, that prevent the simultaneous locking of the phases of
all the cosines through

∂x(T T K �̂(t,x) + αT (x)) = CT (x), (3.7)

for some time-independent real-valued function CT (x). Even
in the strong-coupling limit, there are quantum fluctuations
as a consequence of the chiral equal-time commutation
relations (3.1c) that prevent minimizing the interaction Ĥint by
minimizing separately each contribution to the trigonometric
expansion (3.1f). Finding the ground state in the strong
coupling limit is a strongly frustrated problem of optimization.

To construct a maximal set H, we demand that any T ∈
H must satisfy the locking condition (3.7). Furthermore, we
require that the phases of the cosines entering the fixed point
Hamiltonian (3.6) be constants of motion

[∂x(T T K �̂(t,x)),ĤH] = 0. (3.8)

To find the tunneling vectors T ∈ H, we thus need to consider
the following commutator

[∂x(T TK�̂(t,x)) , hT ′ (x) cos (T ′ TK�̂(t,x ′) + αT ′(x ′))]

= −i 2π T TKT ′ hT ′(x) sin(T ′ TK�̂(t,x ′) + αT ′(x ′))
(3.9)

and demand that it vanishes. This is achieved if T T K T ′ = 0.
Equation (3.9) implies that any setH is composed of the charge
neutral vectors satisfying T T K T ′ = 0. It is by choosing a set
H to be “maximal” that we shall obtain the desired criterion
for stability.

C. Stability criterion for edge modes

We presented and briefly discussed in the introduction (see
Sec. I) the criteria for at least one branch of edge excitations
to remain delocalized even in the presence of strong disorder.
Here we prove these criteria. The idea is to count the maximum
possible number of edge modes that can be pinned (localized)
along the edge by tunneling processes. The set of pinning
processes must satisfy

T T Q = 0 and T T K T ′ = 0, (3.10)

which defines a set H introduced in Sec. III B. (Note, however,
that H is not uniquely determined from this condition.) It is
very useful to also define the real extension V of a set H, by
allowing the tunneling vectors T that satisfy Eq. (3.10) to take
real values instead of integer values. Notice that V is a vector
space over the real numbers. We shall also demand that H
forms a lattice that is as dense as the lattice L by imposing

V ∩ L = H. (3.11)

For any vector T ∈ V , consider the vector K T . It fol-
lows from Eq. (3.10) that K T ⊥ T ′,∀T ′ ∈ V . So K maps
the space V into an orthogonal space V⊥. Since K is
invertible, we have V⊥ = K V as well as V = K−1V⊥,
and thus dim V = dim V⊥. Since dimV + dimV⊥ � 2N , it
follows that dimV � N . Therefore (as could be anticipated
physically) the maximum number of Kramers pairs of edge
modes that can be pinned is N ; if that happens, the edge has
no gapless delocalized mode.

Next, let us look at the conditions for which the maximum
dimension N is achieved. If dimV = dimV⊥ = N , it follows
that V ⊕ V⊥ = R2N , exhausting the space of available vec-
tors, and thus in this case the charge vector Q ∈ V⊥ because of
Eq. (3.10). Consequently, K−1Q ∈ V , and we can construct an
integer vector T̄ ‖ K−1Q by scaling K−1Q by the minimum
integer r that accomplishes this (which is possible because
K−1 is a matrix with rational entries and Q is a vector of
integers). Such a vector T̄ ∈ H is written as

T̄ := r

(+(κ − �)−1 	

−(κ − �)−1 	

)
. (3.12)

The existence of (κ − �)−1 follows from det K �= 0 and

det K = (−)N [det(κ − �)]2. (3.13)

Using T̄ , we construct the integer

R := −T̄ T �↓ Q, (3.14)

which, as we argue below, determines if it is possible or not to
localize all the modes with the N tunneling operators. Here we
employ Eq. (3.3e), also noticing that �1T̄ = −T̄ , and write

πR = −πT̄ T �↓ Q

= ( − α
T̄

(x) − α
�1 T̄

(x)
)

mod 2π

= ( − α
T̄

(x) − α−T̄
(x)) mod 2π

= 0 mod 2π, (3.15)

where in the last line we used that αT (x) = −α−T (x) for all
T ∈ L. If T̄ satisfies Eq. (3.15), then R must be an even integer.
If Eq. (3.15) is violated (i.e., R is an odd integer) then T̄ is
not allowed to enter Ĥint for it would otherwise break time-
reversal symmetry [thus h

T̄
(x) = 0 must always hold in this

case to prevent T̄ from entering Ĥint]. We therefore arrive at
the condition that (1) if the maximum number of edge modes
are localized or gaped, then R must be even. A corollary is
that (2) if R is odd, at least one edge branch is gapless and
delocalized.

It remains for us to prove that if R is even, then one
can indeed reach the maximum dimension N for the space
of pinning vectors. This is done by construction. Take all
eigenvectors of �1 with +1 eigenvalue. We can take (N − 1)
of such vectors, all those orthogonal to Q; for the last one we
take T̄ . One can check that these N vectors satisfy Eq. (3.10)
with the help of �1 K �1 = −K [listed in Eq. (3.3b)] and of
T̄ ‖ K−1Q. Now, the (N − 1) vectors �1T = +T are of the
form T T = (tT,tT), where we need to satisfy T TQ = 2tT	 =
0. This leads to T T �↓ Q even, and then Eq. (3.3e) brings no
further conditions whatsoever. So we can take all these (N − 1)
tunneling vectors. Finally, we take T̄ as constructed above,
which is a legitimate choice since R is assumed even and thus
consistent with Eq. (3.15). Hence, we have constructed the
N tunneling vectors that gap or localize all edge modes, and
can state that if R is even, then the maximum number of edge
modes are localized or gaped.

As a by-product, we see that it is always possible to localize
along the boundary at least all but one Kramers degenerate pair
of edge states via the (N − 1) tunneling vectors that satisfy
�1T = +T . Thus, either one or no Kramers degenerate pair
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of edge state remains delocalized along the boundary when
translation invariance is strongly broken along the boundary.

D. Stability criterion for edge modes in the FQSHE

What is the fate of the stability criterion when we impose
the residual spin-1/2 U (1) symmetry in the model so as to
describe an underlying microscopic model that supports the
FQSHE? The residual spin-1/2 U (1) symmetry is imposed on
the interacting theory (3.1) by positing the existence of a spin
vector S = −�1 S ∈ Z2N associated to a conserved U (1) spin
current. This spin vector is the counterpart to the charge vector
Q = +�1 Q ∈ Z2N . The condition

S = −�1 S, (3.16a)

is required for compatibility with time-reversal symmetry
and is the counterpart to Eq. (3.3c). Compatibility with
time-reversal symmetry of Q and S thus implies that they
are orthogonal, QT S = 0. If we restrict the interaction (3.1f)
by demanding that the tunneling matrices obey

T T S = 0, (3.16b)

we probe the stability of the FQSHE described by Ĥ0 when
perturbed by Ĥint (Ref. 46).

To answer this question we supplement the condition
T TQ = 0 on tunneling vectors that belong to L and H, by
T TS = 0. By construction, S is orthogonal to Q. Hence, it
remains true that H is made of at most N linearly independent
tunneling vectors.

The strategy for establishing the condition for the strong
coupling limit of Ĥint to open a mobility gap for all the
extended modes of Ĥ0 thus remains to construct the largest
set H out of as few tunneling vectors with T = −�1T as
possible since these tunneling vectors might spontaneously
break time-reversal symmetry.

As before, there are (N − 1) linearly independent tunneling
vectors with T = +�1T , while the tunneling matrix T̄ from
Eq. (3.12) must belong to any H with N linearly independent
tunneling vectors.

At this stage, we need to distinguish the case

T̄ T S = 0, (3.17a)

from the case

T̄ T S �= 0. (3.17b)

In the former case, the spin neutrality condition (3.16b) holds
for T̄ and thus the stability criterion is unchanged for the
FQSHE. In the latter case, the spin neutrality condition (3.16b)
is violated so that Ĥint is independent of any tunneling matrix
proportional to T̄ . Thus, when Eq. (3.17b) holds, as could be
the case when κ ∝ 1N and � = 0 say, the FQSHE carried by
at least one Kramers pair of edge states of Ĥ0 is robust to
the strong coupling limit of the time-reversal symmetric and
residual spin-1/2 U (1) symmetric perturbation Ĥint.

IV. SUMMARY

We have considered in this paper a subclass of time-
reversal-symmetric fractional topological liquids without

quantized charge and spin Hall conductance. These states can
be viewed as “zero filling fraction” quantum Hall states that
are related to an Abelian Chern-Simons bulk theory. The states
we considered depart from previous constructions that place
together two copies of FQHE systems, and as such they do
not need to satisfy spin conservation or display quantized spin
Hall conductances.

We have analyzed the stability of the edge theory associated
with this type of state, and obtained a discriminant, the parity
of an integer, that resolves whether there remains or not
delocalized edge states in the presence of disorder. When
the discriminant is even, there are no gapless edge modes.
In contrast, gapless edge modes are protected by time-reversal
symmetry when the discriminant is odd. These results contain
as particular cases those that display a quantized FQSHE,21

where the discriminant has a relation to the then quantized
spin Hall conductance.

We have also presented a concrete lattice realization of a
FQSHE. There have been numerous studies on the effect of
strong interactions in time-reversal-symmetric systems with
nontrivial topology at half filling.47 In contrast, we have con-
sidered the effects of interactions at a partial filling of bands.
At 2/3 filling of a lattice with 24 sites, exact diagonalization
delivers a ground state with nine-fold degeneracy, which we
interpret as a time-reversal-symmetric fractional topological
liquid. We studied the stability of this phase by tuning
parameters of the electron-electron interaction. In particular,
we found a transition toward a phase of spontaneously broken
time-reversal symmetry, which is related to a FQHE at 1/3
filling.

Let us remark that the lattice model presented in this paper
is an example of fractionalization in two spatial dimensions
without breaking time-reversal symmetry. It thus joins the
ranks with the other known examples thereof constructed on
lattices so far, that of electron-fractionalization in graphene-
like systems in Refs. 48–51 together with the lattice gauge
theory presented in Ref. 24, that of the triangular lattice
quantum dimer model in Ref. 52, and that of the doubled
chiral spin liquids in Ref. 53.

We would like to close this paper by spotlighting some
perspectives on the differences between the Z2 topological
band (weakly interacting) insulators and the time-reversal-
symmetric fractional topological liquid states whose very
existences are driven by interactions, in particular as to
the importance that one should associate with the bulk and
boundary states. In the case of the noninteracting (weakly
interacting) systems, the edge states play a disproportionally
important role, in that the bulk states are just band insulators
without any ground state degeneracy. On the other hand, the
time-reversal-symmetric fractional topological liquids display
quite rich bulk phenomena, including the possibility of
fractionalized quasiparticles, regardless of whether gapless
edge modes survive or not. Fractionalized particles can be
probed without looking at the edge: capacitive measurements
in the bulk,54 for instance, have revealed fractionalized
electrons in the bulk of ν = 1/3 FQH states. From this
perspective, fractional time-reversal-symmetric topological
liquid states should, as one might expect, be much richer
in content than Z2 topological band (weakly interacting)
insulators.
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APPENDIX A: CHIRAL BOSONIC QUANTUM THEORY

In this Appendix, we review the construction of 2N

Fermi-Bose and 2N quasiparticle vertex operators from the
chiral bosonic quantum fields �̂i(t,x), i = 1, . . . ,2N, that
enter the time-reversal invariant quantum edge theory with
broken translation invariance (3.1) and discuss their universal
properties. To this end, we consider the universal data (K,Q)
entering the theory defined by Eq. (3.1) as opposed to the
nonuniversal data (V,hT (x),αT (x)).

On the chiral bosonic quantum fields we impose the
boundary conditions

Kij �̂j (t,x + L) = Kij �̂j (t,x) + 2πni, (A1)

with ni ∈ Z for all i = 1, . . . ,2N . Together with the condition
that the tunneling vectors T are restricted to have integer-
valued components, this ensures that the Hamiltonian Ĥ is
single-valued.

The chiral nature of the bosonic quantum fields arises from
demanding that the equal-time commutator

[�̂i(t,x),�̂j (t,x ′)] = −iπ
(
K−1

ij sgn(x − x ′) + �ij

)
, (A2)

holds for any pair i,j = 1, . . . ,2N . Here,

�ij := K−1
ik Lkl K

−1
lj , (A3)

and the antisymmetric 2N × 2N matrix L is defined by (see
Ref. 26)

Lij = sgn(i − j )(Kij + QiQj ), (A4)

where sgn(0) = 0 is understood. It then follows that the
quadratic theory (3.1b) is endowed with chiral equations
of motion. Finally, we need to impose the compatibility
conditions

(−)Kii = (−)Qi , i = 1, . . . ,2N, (A5)

to construct local excitations with well-defined statistics.
Define for any i = 1, . . . ,2N the pair of normal-ordered

vertex operators

�̂
†
q-p,i(t,x) := : e−i�̂i (t,x) : , (A6a)

and
�̂

†
f-b,i(t,x) := : e−iKij �̂j (t,x) : , (A6b)

respectively. For any i = 1, . . . ,2N , the quasiparticle vertex
operator �̂

†
q-p,i(t,x) is multivalued under the transformation

(A13) provided |det K| > 1 in contrast to the Fermi-Bose

vertex operator �̂
†
f-b,i(t,x) which is always single valued under

the transformation (A13).
For any pair i,j = 1, . . . ,N , the equal-time commutator

(3.1c) delivers the identities

[N̂i ,�̂
†
q-p,j (t,x)] = δij �̂

†
q-p,j (t,x), (A7a)

[N̂i ,�̂
†
f-b,j (t,x)] = Kij �̂

†
f-b,j (t,x), (A7b)

and

[Ĉi ,�̂
†
q-p,j (t,x)] = K−1

ij �̂
†
q-p,j (t,x), (A8a)

[Ĉi ,�̂
†
f-b,j (t,x)] = δij �̂

†
f-b,j (t,x), (A8b)

respectively. Here, the quasiparticle vertex operator �̂
†
q-p,i(t,x)

is an eigenstate of the conserved topological number operator
[recall Eq. (A1)]

N̂i : = 1

2π
Kij

∫ L

0
dx (∂x�̂j )(t,x)

= 1

2π
Kij [�̂j (t,L) − �̂j (t,0)], (A9a)

with eigenvalue one, while the Fermi-Bose vertex operator
�̂

†
f-b,i(t,x) is an eigenstate of the conserved operator

Ĉi := 1

2π
[�̂i(t,L) − �̂i(t,0)], (A9b)

with eigenvalue one for any i = 1, . . . ,2N .
The permutation statistics obeyed by any pair i,j =

1, . . . ,2N of quasiparticle and Fermi-Bose operators follows
from the application of the Baker-Campbell-Hausdorff for-
mula,

�̂
†
q-p,i(t,x) �̂

†
q-p,j (t,x ′) = �̂

†
q-p,j (t,x ′) �̂

†
q-p,i(t,x)

× e−iπ [K−1
ij sgn(x−x ′)+�ij ], (A10a)

and

�̂
†
f-b,i(t,x) �̂

†
f-b,j (t,x ′) = �̂

†
f-b,j (t,x ′) �̂

†
f-b,i(t,x)

× e−iπ[Kij sgn(x−x ′)+Lij ], (A10b)

when x �= x ′, respectively. We conclude that, for any x �=
x ′, demanding that the 2N × 2N matrix K and the 2N -
component charge vector Q are integer-valued together with
the compatibility condition (A5) is required to obtain local
excitations carrying the Fermi-Bose permutation statistics

�̂
†
f-b,i(t,x) �̂

†
f-b,j (t,x ′) = (−)Qi Qj �̂

†
f-b,j (t,x ′) �̂

†
f-b,i(t,x).

(A10c)

Let us now deduce the connection between the charge vector
Q, the conserved operators Ĉi , and the total charge density
operator Q̂ that follows from integrating Eq. (3.1e) along the
edge. The charge vector Q enters explicitly the theory after
coupling the 2N chiral scalar fields to an external vector gauge
potential with the components A0 and A1 through the minimal
coupling. The minimal coupling consists in replacing the x

derivative by the covariant derivative

∂x�̂i → Dx�̂i := (∂x + QiA1)�̂i, (A11a)
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for i = 1, . . . ,2N and adding the contribution

Ĥcurrent :=
∫ L

0
dx

1

2π
A0(QT Dx�̂), (A11b)

on the right-hand side of Eq. (3.1a). The theory is then invariant
under the pure U (1) electromagnetic gauge transformation

�̂ → �̂ + Qχ, A1 → A1 − ∂xχ. (A11c)

We can now define the total charge operator by

Q̂ := Qi Ci . (A12)

It follows that the charge associated with the quasiparticle
operator �̂

†
q-p,i and with the Fermi-Bose operator �̂

†
f-b,i is given

by K−1
ij Qj and Qi , respectively.

By assumption, the integer-valued 2N × 2N matrix K is
symmetric and invertible. Consequently, its inverse K−1 is
also symmetric, but its matrix elements are rational numbers
whenever |det K| > 1. Observe that the model (3.1) is invariant
under the transformation

�̂(t,x) → �̂(t,x) + 2π T∗ , (A13a)

for any T∗ ∈ R2N that is independent of space and time and
such that

T T K T∗ ∈ Z, QTT∗ = 0, (A13b)

for all tunneling vectors T ∈ L. The quantum Hamiltonian
(3.1) thus possesses an emergent global [U (1)]2N symmetry
compared to the microscopic model. The set of all rational-
valued vectors T∗ that satisfy conditions (A13) is the lattice
L∗ dual to the lattice L. When |det K| > 1, the lattice L
is a sublattice of the dual lattice L∗ that is generated by
the quasiparticles carrying a unit topological charge. The
ground state of Hamiltonian (3.1) with the periodic boundary
conditions corresponding to the geometry of a torus is then
degenerate with the degeneracy |det K| > 1, which is nothing
but the volume of the unit cell of the lattice L in units of the
unit cell of the dual lattice L∗.

Note that there is no unique way to define the dual pair L
and L∗. For example, we can use Eq. (A7a) to define the dual
lattice L∗ to be based on the hypercubic lattice Z2N and, in
turn, use Eq. (A13b) to construct L. Alternatively, we can use
Eq. (A8b) to define the lattice L to be based on the hypercubic
lattice Z2N and, in turn, use Eq. (A13b) to construct the dual
lattice L∗. Either ways, the ratio between the unit cells of
the lattices L and L∗ is |det K|. We have chosen the latter
option.

APPENDIX B: NONINTERACTING FERMIONIC EDGE
THEORY WITH TIME-REVERSAL SYMMETRY

In this Appendix, we review a noninteracting fermionic
theory to analyze the role of disorder on the edge of a
two-dimensional band insulator when imposing time-reversal

symmetry. We consider a cylindrical geometry as is depicted
in Fig. 2. If the length Ly of the cylinder is much larger
than the characteristic linear extension into the bulk of edge
states, the two edges at y = ±Ly/2 decouple. The low-energy
and long-wavelength random single-particle Hamiltonian that
describes any one of the two edges, each supporting N Kramers
degenerate pairs of electrons, is then given by

H(x) := ivF σ3 ⊗ 1N ∂x + W(x) = T −1 H(x) T ,
(B1a)

W(x) :=
3∑

μ=0

σμ ⊗ Wμ(x) = T −1 W(x) T ,

where the operation of time-reversal for spin-1/2 electrons is
represented by

T := iσ2K = −T T (B1b)

(K represents the operation of charge conjugation). Here, we
have introduced the unit 2 × 2 matrix σ0 and the three Pauli
matrices σ1, σ2, and σ3. In view of Eq. (B1b), σ1, σ2, and σ3
are to be interpreted as the generators of the spin-1/2 algebra
of the electrons. The matrix 1N is the unit N × N matrix. The
matrix elements of the N × N Hermitean matrices Wμ(x) with
μ = 0,1,2,3 must obey

W0(x) = +W ∗
0 (x), W1(x) = −W ∗

1 (x),
(B1c)

W2(x) = −W ∗
2 (x), W3(x) = −W ∗

3 (x),

for time-reversal symmetry to hold. Hence, they can be taken
as random numbers obeying the white-noise and Gaussian
distribution of mean

〈(Wμ)ij (x)〉 = vi δij δμ,3, (B1d)

and covariance

〈(Wμ)ij (x)(W ∗
ν )kl(x

′)〉 = 1

N�
(δik δjl − (−)δμ,0δil δjk)

× δμν δ(x − x ′), (B1e)

with i,j = 1, . . . ,N the flavor index that label the Kramers
degenerate pairs of electrons. The length scale � is the mean
free path within the Born approximation. The channel μ = 3
represents forward scattering and the mean vi for i = 1, . . . ,N

results, through a gauge transformation, in a flavor-dependent
shift of the Fermi velocity vF.

It was known from the studies of quasi-one-dimensional
wires in the 1980s that the random potential W(x) localizes
all N Kramers degenerate pairs of electrons when N is
even.55 It was only realized with the seminal work of
Ando and Suzuura in Ref. 56 on carbon nanotubes that the
case of an odd number N is (i) of physical relevance and
(ii) only localizes (N − 1) Kramers degenerate pairs of
electrons, leaving one pair delocalized along the edge.57 It
then took two groundbreaking papers from Kane and Mele on
graphene with spin-orbit coupling to make the deep connection
that this absence of Anderson localization is the essence of a
two-dimensional Z2 topological insulator.13,14
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Observe that the integer quantum spin Hall effect (IQSHE)
can be deduced from the following special case of Eq. (B1). If
we demand that the symmetry condition

σ3 H(x) σ3 = H(x), (B2a)

also holds in addition to the time-reversal symmetry in
Eq. (B1). Condition (B2a) is then nothing but the residual
spin-1/2 U (1) symmetry generated by rotations about the
spin-1/2 quantization axis σ3. Imposing the residual spin-1/2
U (1) symmetry (B2a) on the disorder potential W(x) amounts
to the restrictions

W1(x) = W2(x) = 0, (B2b)

for all x along the edge. Condition (B2b) removes all backward
scattering channels from the single-particle disorder potential
W(x). The single-particle Hamiltonian H(x) thus decomposes
into the direct sum of two Hamiltonians, each of which realizes
an integer quantum Hall edge, but with opposite quantized Hall
conductivity of magnitude N in units of e2/h. The difference

between these quantized Hall conductivities is proportional to
N and yields the quantized spin Hall conductivity 2N in units
of e/(4π ).

In Sec. III, we consider an interacting effective quantum
field theory including local multiparticle interactions that
break translation invariance. The only allowed underlying
microscopic symmetries of this interacting effective quantum
field theory are charge conservation and time-reversal sym-
metry. The time-reversal symmetry in Sec. III, in particular
Eqs. (3.3d) and (3.3e), are inherited from the following
properties of the single-particle disorder potential in Eq. (B1a).
If A is any complex-valued matrix, denote with abs (A) and
arg (A) the matrices with the matrix elements given by the
absolute values and phases of the entries in A, respectively.
One then verifies that

abs (�1 W(x) �1) = absW(x),
(B3)

arg (�1 W(x) �1)) = πσ1 ⊗ E − argW(x),

where E is the N × N matrix with one for all matrix elements.
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